Tag Archives: develop

EVIO labs photo
Soapbox

(L)Earning from Failure

By Dr. Markus Roggen, Soheil Nasseri
No Comments
EVIO labs photo

The spectacular rise and crash of the Canadian cannabis stock market has been painful to watch, let alone to experience as an industry insider. The hype around the market has vanished and many investors are left disappointed. Large sustainable gains simply haven’t materialized as promised. The producers are clearly suffering. They have consistently been shedding value as they’ve been posting losses every quarter. Stock prices have plummeted along with consumer confidence. Attempts to reduce the cash bleeds through mergers, acquisitions, layoffs, restructures, fund raises, among others, have not resulted in any significant recovery. In short, the current model of a cannabis industry has failed.

Dr. Markus Roggen, Founder of Complex Biotech Discovery Ventures (CBDV)

How could it have been different? What should the industry have done differently? What makes the difference between failure and success? A recent article published in Nature (Volume 575) by Yin et al. titled “Quantifying the Dynamics of Failure Across Science, Startups and Security” analyzes the underlying principles of success. The article studies success rates of many groups after numerous attempts across three domains. One of the domains being analyzed are startup companies and their success in raising funds through many attempts at investment acquisition. The authors point out that the most important factor that determines success is not relentless trying but is actually learning after each attempt. Learning allows successful groups to accelerate their failures, making minute adjustments to their strategy with every attempt. Learning behavior is also seen early in the journey. This means that groups will show higher chances of success early on, if they learn from their mistakes.

If you want to succeed, you need to analyze the current state, test the future state, evaluate performance difference and implement the improved state.

This also needs to happen in the cannabis industry. Producers have been utilizing inefficient legacy systems for production. They have shackled themselves to these inefficient methods by becoming GMP-certified too early. Such certifications prevent them from experimenting with different designs that would enhance their process efficiency and product development. This inflexibility prevents them from improving. This means they are setting themselves up for ultimate failure. GMP is not generally wrong, as it ensures product safety and consistency. Although, at this early stage in the cannabis industry, we just don’t yet have the right processes to enshrine.

How can cannabis producers implement the above-mentioned research findings and learn from their current situation? In an ever-changing business environment, it is companies that are nimble, innovative and fast enough to continually refine themselves that end up succeeding. This agility allows them to match their products with the needs of their consumers and market dynamics. booking.com, a travel metasearch engine, is the prime example of this ethos because they carry out thousands of experiments per year. They have embraced failure through rapid experimentation of different offerings to gauge user feedback. Experimentation has allowed booking.com to learn faster than the competition and build a stronger business.

Soheil Nasseri, Business Associate at Complex Biotech Discovery Ventures (CBDV)

At CBDV, we put the need for iterative experimentation, failure and improvements to achieve breakthroughs at the core of our company. We pursue data to guide our decisions, not letting fear of momentary failure detract us from ultimate success. We continuously explore multiple facets of complex problems to come up with creative solutions.

A good example of how failure and rapid innovation guided us to success is our work on decarboxylation. We were confronted by the problem that the decarboxylation step of cannabis oil was inconsistent and unpredictable. Trying different reaction conditions did not yield a clear picture. We realized that the most important obstacle for improvements was the slow analysis by the HPLC. Therefore, we turned our attention to developing a fast analysis platform for decarboxylation. We found this in a desktop mid-IR instrument. With this instrument and our algorithm, we now could instantaneously track decarboxylation. We now hit another roadblock, a significant rate difference in decarboxylation between THCA and CBDA. We needed to understand the theoretical foundation of this effect to effectively optimize this reaction. So, we moved to tackle the problem from a different angle and employed computational chemistry to identify the origin of the rate difference. Understanding the steric effect on rate helped us focus on rapid, iterative experimentation. Now, with everything in place, we can control the decarboxylation at unrivaled speeds and to the highest precision.

If producers want to regain the trust of the market, they must embrace their failures and begin to learn. They should decrease their reliance on inefficient legacy production methods and experiment with new ones to find what is right for them. Experimentation brings new ways of production, innovative products and happier customers, which will result in higher profits. Producers should strive to implement experimentation into their corporate cultures. This can be done in collaboration with research companies like CBDV or through development of inhouse ‘centers of excellence.’

dry cannabis plants

Moisture Matters: Why Humidity Can Make or Break a Cannabis Cultivator’s Bottom Line

By Sean Knutsen
1 Comment
dry cannabis plants

Vintners have known for centuries that every step in the winemaking process—from cultivation and harvest techniques to fermentation, aging and bottling—has immense impact on the quality and value of the final product.

And that same level of scrutiny is now being applied to cannabis production.

As someone who has worked in the consumer-packaged goods (CPG) space for decades, I’ve been interested in finding out how post-harvest storage and packaging affect the quality and value of cannabis flower. After digging into the issue some more, storage conditions and humidity levels have indeed come into focus as major factors, beyond just the challenges of preventing mold.

Weighty Matters

I enlisted my research team at Boveda, which has studied moisture control in all manner of manufactured and natural CPG products, to look closer at what’s happening with cannabis once it leaves the cultivation room. There’s not a lot of research on cannabis storage—we checked—and so we explored this aspect further. We were frankly surprised by what a big effect evaporation has on quality and how this is playing out on the retail level.

We suspected moisture loss could affect the bottom line too, and so we did some number-crunching.

It’s well understood that the weight of cannabis flower directly correlates with its profitability—the heavier the yield, the higher the market value. Here’s what our analysis found: A mere 5% dip below the optimal relative humidity (RH) storage environment eliminates six pounds per every 1,000 pounds of cannabis flower. At $5 per gram wholesale, that works out to upwards of $13,500 in lost revenue—and that’s with just a 5% drop in RH below the target range of 55-65% established by ASTM International, an independent industry standards organization.

We also purchased flower at retailers in multiple state markets and commissioned a lab to test the samples, which revealed that most strains sold today are well below the optimal RH range (55-65%). Regardless of fluctuating wholesale prices, when you do the math it’s clear that tens of thousands of dollars in revenue are simply evaporating into thin air.

Why So Dry?

Historically, cultivators, processors and packagers have emphasized keeping flower below a particular humidity “ceiling” for a reason: Flower that’s too moist is prone to hazardous mold and microbial growth, so it’s understandable that many operators err on the side of being overly dry.

The misconception that cannabis flower can be “rehydrated” is another cause of dryness damage. But this method irrevocably damages the quality of the flower through trichome damage.

trichome close up
The fine outgrowths, referred to as trichomes, house the majority of the plant’s resin

Those delicate plant structures that house the all-important cannabinoids and terpenes become brittle and fragile when stored in an overly dry environment, and are prone to breaking off from the flower; they cannot not be recovered even if the flower is later rehydrated.

When trichomes are compromised, terpenes responsible for the aroma, taste and scent of cannabis also can evaporate. Overly dried-out cannabis doesn’t just lose weight and efficacy—it loses shelf appeal, which is particularly risky in today’s market.

Today’s consumers have an appreciation for how premium flower should look, smell and taste. Rehydration cannot put terpenes back in the flower, nor can it re-attach trichomes to the flower, which is why preservation of these elements is so key.

Cannabis Humidity Control

Cured cannabis flower can remain in storage potentially for months prior to sale or consumption. By the time it reaches the end consumer, much of the cannabis sold in regulated environments in the U.S. and Canada has suffered from dry damage.

dry cannabis plants
Rows of cannabis plants drying and curing following harvest

There are various humidity controls available for cannabis cultivators: desiccants that absorb water vapor; mechanical equipment that alters RH on a larger scale; or two-way humidity-control packets designed for storage containers.

In the CPG sector, with other moisture-sensitive products such as foods and electronics, we’ve seen that employing humidity controls will preserve quality, and cannabis flower is no different.

Saltwater-based humidity control solutions with two-way vapor-phase osmosis technology automatically add or remove water vapor as needed to maintain a constant, predetermined RH level and ensures a consistent level of moisture weight inside the cannabis flower.

Here’s one more notable finding we discovered in our storage research: Third-party lab tests commissioned by Boveda showed cannabis stored with humidity control had terpene and cannabinoid levels that were 15% higher than cannabis stored without.

Cannabis stored within the optimal humidity range maximizes all the qualities that attract and retain customers. Similar to wine-making, when cannabis cultivators focus on quality control they need to look beyond the harvest.

From MedTech to Cannabis: A Q&A with Jennifer Raeder-Devens

By Aaron G. Biros
No Comments

Project Yosemite, a cannabis product innovation and brand development company, announced earlier this month the appointment of Jennifer Raeder-Devens as their new Chief Scientific Officer. Raeder-Devens is a veteran of the MedTech industry, working for companies like Becton Dickinson, Cardinal Health, Medtronic and 3M.

Prior to joining Yosemite, she was the Vice President of Research & Development at Becton, Dickinson, where she oversaw product development and technology strategies to launch infection prevention products including the ChloraPrep first-in-the-US sterile solution patient preoperative topical antiseptic. She was previously the Vice President of R&D, Strategy and Innovation at Cardinal Health. She’s also held roles at Medtronic, 3M Drug Delivery Systems and 3M Skin Health Division and she has a number of patents in drug delivery and medical devices.

Jennifer Raeder-Devens, Chief Scientific Officer at Project Yosemite

In November of 2018, Project Yosemite launched their first product, OLO, which is an infused, controlled-release sublingual strip. Part of Raeder-Devens’ new role at the company is the continued development and expansion of the OLO sublingual strip technology platform. Andrew Mack, CEO and founder of Project Yosemite, says he’s thrilled to have Raeder-Devens on the team. “Jennifer is an extremely accomplished scientist and engineer with extensive experience driving innovation and R&D in the pharmaceutical and medical device industries,” says Mack.

We caught up with Jennifer over the phone to talk about her background in the MedTech space, why she decided to jump ship to join the cannabis industry and what she’s excited to work on now.

Cannabis Industry Journal: Can you tell us about your background, including your work with 3M and Medtronic? 

Jennifer Raeder-Devens: I’m coming directly from Becton Dickinson, a global med tech company, where I supervised the development of drug-device combination products for topical antiseptics. I spent about 10 years there, mostly in topical drug and combination product development. Prior to that, I was at 3M and Medtronic working in drug-device combination products. At 3M, I was supervising a team of technology developers for the 3M Drug Delivery Systems business. I had experience working with designing and manufacturing transdermal, nasal, buccal and inhalation drug delivery mechanisms for pharmaceutical partners.

I worked on implantable drug delivery systems at Medtronic, which included working on the biocompatibility of things like pacemakers and drug infusion pumps and optimizing them to reduce infection and enhance healing after the implantation procedure.

CIJ: What made you consider joining the cannabis industry? 

Jennifer: With my work in topicals, transdermal and inhalation drug delivery, I had an easy understanding of the different routes of administration we see today in the cannabis industry. And so, from the technology standpoint, I thought this was a place I could contribute to immediately. And then what got me really excited about it was thinking about cannabis, and just like any other drug, with oral drug delivery, you’ve got first class metabolism and side effects from the 11-Hydroxy-THC that are undesirable and you’d rather not have delivered through the gut.

OLO sublingual strips have a 10-minute onset time

I got excited when I saw the development of things like sublingual strips that were focusing on alternatives to smoking that would preserve that relatively fast onset and mitigate some of the side effects of edibles.

The other thing I really like about the cannabis industry: Previously I have been very focused on known drugs that are already approved and repurposing them into a new delivery system. What really interests me about the cannabis industry is the active cannabinoids and terpenes are somewhat known and somewhat unknown, so there is this really interesting challenge there of trying to separate the wheat from the chaff in terms of producing therapeutic effects.

It is a really interesting space where the indications of certain molecules are evolving along with the delivery technology. So, it is a really exciting and eye-opening way to take the next step in my career and have this wide-open space in front of me, both in terms of the different cannabinoids, their effects and the delivery systems we can use.

CIJ: How might you be prepared, given your background, for some of the challenges in the cannabis space?

Jennifer: I think the challenges in cannabis delivery are not different from the challenges in pharmaceutical drug delivery. It’s just that we have this additional complexity of the entourage effect. We can be engineering not just the main ingredient of THC, but also all the other cannabinoids and terpenes. So, for example, with my background in infection prevention, we build a product that we know reduces the risk of infection, but we are really challenged to actually prove it reduces the risk of infection. We have a similar situation in the cannabis industry, where we can get the THC, or CBG or CBN where we want it to go, but then we are really challenged to figure out how we can find, what we call in the pharmaceutical industry, a surrogate end point for efficacy, so that we can test that product and really believe that when we put the product on the market, even though we haven’t tested thousands of users or conducted large randomized clinical trials, that the effect will be shown. We are networking and partnering with a good scientific community to build the right product and do some testing at a small scale that really demonstrates the product achieves the effect that we are really looking for.

CIJ: Can you tell us a little about your new role with Project Yosemite?

Jennifer: My job description falls into three buckets: The first part is that we are forming a scientific advisory board and we are working with some of the leading cannabinoid researchers around the country and around the world. These are the people identifying whether or not certain cannabinoids could reduce cancer cell metabolism or whether cannabinoids contribute to weight loss or diabetes control and other things of that nature. We are trying to reach as far upstream as we can to grasp the emerging understanding of the performance of cannabinoids and terpenes in the endocannabinoid system. So, part of my job is to chair that scientific advisory board, get the thought leaders together in the room and have them bring their knowledge and explore with our own knowledge what cannabis can really do.

The OLO sublingual strips

I have worked in topical, transdermal, buccal, nasal, inhalation drug delivery. In the second bucket of my job, we are trying to understand a given indication or experience that our users want to have, what would be the right route for them. We are challenging our sublingual delivery mechanism to see how fast of an onset we can really get. Right now, we are at 10 minutes for drug delivery in sublingual and we are still trying to get an even faster onset time for the sublingual strip.

For other indications, like chronic pain, we may want to think about a sustained release, so sort of aligning the different indications with which different cannabinoids and terpenes will work for it and see which delivery platform will work for what we are trying to accomplish in each indication.  So, we do not plan to remain solely a sublingual strip company, but will build out additional delivery platforms as we develop new indications.

Right now, we are working upstream with the growers and the processors to get cannabis oil and extracts. Some of the growers are working on different genetics in their cultivars to grow plants that have different ratios of different cannabinoids that we know from the emerging research will have an impact on people’s experience. Now we are working with growers to really get ahead of the curve on how to formulate products with various cannabinoids.

We have an R&D team in house that I supervise. We are always working with our production team to make small improvements such as the faster onset and the dissolution rate and things like flavors, which covers a downstream focus as well.

Cannabis Reform Comes To Africa

By Marguerite Arnold
No Comments

For those familiar with the tragic history of apartheid in South Africa up until the end of the 1980’s, Lesotho is a country long associated with terrible political and economic repression. Also known as the “Kingdom in the Sky” because of its stunning geography, the tiny, landlocked country is literally inside and completely surrounded by South Africa. During the apartheid regime, Lesotho was a place where “vice industries” like prostitution and gambling were allowed to flourish by a much more conservative surrounding political regime. Much like Indian reservations in the U.S., in fact.

Even today, diamonds and water are the country’s top exports although tourism, including skiing, is still a major underpinning of the country’s domestic economy.

Moving forward into the 21st century and much like American Indians, the mountainous, impoverished country is looking at the cannabis trade to create a national income of global worth. In 2017, the country became the first on the African continent to actually legalize cultivation for medical purposes, as well as export. Illicit cultivation, mostly bound for the black market, however, has boomed since the end of the apartheid regime.

The country’s high altitude and fertile soils untainted with pesticides, makes Lesotho an ideal place to grow even outdoor crops. And as a result, the country has also begun to attract foreign capital interested in the production and export of finished products rather than the raw plant material. Several big Canadian producers, in fact, have already established commercial operations.

2018 Was The “Year For Cannabis” In South Africa

As a result of Lesotho’s lead, neighboring countries are now also following suit on the legalization front. Zimbabwe, just to the north of South Africa, has also legalized cultivation for medical purposes although local farmers have been slow to seize the opportunity. Malawi is also moving towards some kind of cannabis reform along with NigeriaGhana and Swaziland. And of course, to the north, Morocco, already established globally for illicit cannabis and hashish production (much of it making its way into Europe as it has for literally hundreds of years at this point) is also teetering on some kind of reform.

In South Africa itself, the economic powerhouse of the continent, the personal cultivation and smoking of cannabis (for both medicinal and recreational reasons) was enshrined as a constitutional right as of September 2018. That said, commercial production and sales for recreational use remains illegal. As in other places, the licensing process in South Africa has held up the medicinal and recreational market already on the table if not in the room. And most locals cannot afford the licensing fees.

That said, there is already a commercial cannabis beer brewing company called Durban Poison which rushed into the space as soon as the constitutional question changed in South Africa. The country is the biggest beer market in Africa. And there are competitors already lining up for similar opportunities of both the medical and recreational kind.

Including South Africa, according to estimates, there are already 10,000 tons of product produced (mostly illicitly) across the continent. Much as in other places, this “green gold” has financed many of the regional wars of the last sixty years. For this reason, apart from the economic benefits that legalization brings, it may well be that the first big continental competition on the cannabis front that enters first world markets, will be African rather than Latin American (or even Chinese).

Legalization and regulation will help stamp out the illicit financing of guerrilla wars and devastation, bringing more political and economic stability. It may also provide one of the best regional economic incentives to stop rare wildlife poaching.

Medical and Recreational Opportunities Loom Large- But So Do Liabilities

But for all the potential of the future, now comes the hard part (as in other regions of the world where reform has come). Stamping out the black market and establishing licencing and other regulations (of all kinds, starting with GMP). Plus of course, because this is Africa, attracting capital at reasonable rates, and establishing legitimate distribution domestically, plus trade routes for global export. Including of course, both to Europe and Australia.

Medical research in Africa is also likely to be an interesting question especially given the impact of cannabis on infection. Africa is home to some of the more dire contagious natural diseases known to man. This plant, in other words, produced locally, might also be applied locally to help manage everything from Malaria to Ebola. If not become a staple in the medical kits distributed by foreign aid organizations. That of course, will take reform at the UN level. But even this conversation, at this point, is now moving.

That said, as 2019 gets underway, there is not a single continent of the world, much less a region, where cannabis reform has not touched.

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 1

By Kathy Knutson, Ph.D.
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) Defined

Farm-to-fork is a concept to describe the control of food safety starting in the fields of a farm and ending with deliciousness in my mouth. The more that is optimized at every step, the more food safety and quality are realized. Farm-to-fork is not a concept reserved for foodies or “eat local” food campaigns and applies to all scales of food manufacture. HACCP is like putting the last piece of a huge puzzle in the middle and seeing the whole picture develop. HACCP is a program to control food safety at the step of food processing. In states where cannabis is legal, the state department of public health or state department of agriculture may require food manufacturers to have a HACCP plan. The HACCP plan is a written document identifying food safety hazards and how those hazards are controlled by the manufacturer. While there are many resources available for writing a HACCP plan, like solving that puzzle, it is a do-it-yourself project. You can’t use someone else’s “puzzle,” and you can’t put the box on a shelf and say you have a “puzzle.”

HACCP is pronounced “ha” as in “hat” plus “sip.”

(Say it aloud.)

3-2-1 We have liftoff.

The history of HACCP starts not with Adam eating in the garden of Eden but with the development of manned missions to the moon, the race to space in the 1950s. Sorry to be gross, but imagine an astronaut with vomiting and diarrhea as a result of foodborne illness. In the 1950s, the food industry relied on finished product testing to determine safety. Testing is destructive of product, and there is no amount of finished product testing that will determine food is safe enough for astronauts. Instead, the food industry built safety into the process. Temperature was monitored and recorded. Acidity measured by pH is an easy test. Rather than waiting to test the finished product in its sealed package, the food industry writes specifications for ingredients, ensures equipment is clean and sanitized, and monitors processing and packaging. HACCP was born first for astronauts and now for everyone.HACCP

HACCP is not the only food safety program.

If you are just learning about HACCP, it is a great place to start! There is a big world of food safety programs. HACCP is required by the United States Department of Agriculture for meat processors. The Food and Drug Administration (FDA) requires HACCP for seafood processing and 100% juice manufacture. For all foods beyond meat, seafood and juice, FDA has the Food Safety Modernization Act (FSMA) to enforce food safety. FSMA was signed in 2011 and became enforceable for companies with more than 500 employees in September of 2016; all food companies are under enforcement in September 2018. FSMA requires all food companies with an annual revenue greater than $1 million to follow a written food safety plan. Both FDA inspectors and industry professionals are working to meet the requirements of FSMA. There are also national and international guidelines for food safety with elements of HACCP which do not carry the letter of law.

The first step in HACCP is a hazard analysis.

Traditionally HACCP has focused on processing and packaging. Your organization may call that manufacturing or operations. In a large facility there is metering of ingredients by weight or volume and mixing. A recipe or batch sheet is followed. Most, but not all, products have a kill step where high heat is applied through roasting, baking, frying or canning. The food is sealed in packaging, labeled, boxed and heads out for distribution. For your hazard analysis, you identify the potential hazards that could cause injury or illness, if not controlled during processing. Think about all the potential hazards:

  • Biological: What pathogens are you killing in the kill step? What pathogens could get in to the product before packaging is sealed?
  • Chemical: Pesticides, industrial chemicals, mycotoxins and allergens are concerns.
  • Physical: Evaluate the potential for choking hazards and glass, wood, hard plastic and metal.

The hazards analysis drives everything you do for food safety.

I cannot emphasize too much the importance of the hazard analysis. Every food safety decision is grounded in the hazard analysis. Procedures will be developed and capital will be purchased based on the hazard analysis and control of food safety in your product. There is no one form for the completion of a hazard analysis.

HACCP risk matrix
A risk severity matrix. Many HACCP training programs have these.

So where do you start? Create a flow diagram naming all the steps in processing and packaging. If your flow diagram starts with Receiving of ingredients, then the next step is Storage of ingredients; include packaging with Receiving and Storage. From Storage, ingredients and packaging are gathered for a batch. Draw out the processing steps in order and through to Packaging. After Packaging, there is finished product Storage and Distribution. Remember HACCP focuses on the processing and packaging steps. It is not necessary to detail each step on the flow diagram, just name the step, e.g. Mixing, Filling, Baking, etc. Other supporting documents have the details of each step.

For every step on the flow diagram, identify hazards.

Transfer the name of the step to the hazard analysis form of your choice. Focus on one step at a time. Identify biological, chemical and physical hazards, if any, at that step. The next part is tricky. For each hazard identified, determine the probability of the hazard occurring and severity of illness or injury. Some hazards are easy like allergens. If you have an ingredient that contains an allergen, the probability is high. Because people can die from ingestion of allergens when allergic, the severity is high. Allergens are a hazard you must control. What about pesticides? What is the probability and severity? I can hear you say that you are going to control pesticides through your purchasing agreements. Great! Pesticides are still a hazard to identify in your hazard analysis. What you do about the hazard is up to you.

The First Map of the Cannabis Genome

By Aaron G. Biros
2 Comments

Sunrise Genetics, Inc., the parent company for Hempgene and Marigene, announced last week they have successfully mapped the cannabis genome. The genome map was presented at the 26th Annual Plant and Animal Genome Conference in San Diego, CA during the panel “Cannabis Genomics: Advances and Applications.”

According to CJ Schwartz, chief executive officer of Sunrise Genetics, the full genome map will allow breeders to develop strains using DNA sequence information to complement phenotyping. “In this way a breeding program can be guided by the breeder versus blindly as it is for just pheno-hunting,” says Schwartz. “At the DNA level, we can identify what version of a set of genes a plant contains, and make predictions as to the phenotype, without ever growing the plant. As we make more and more gene markers, we have more genes to track, and breeding becomes more rapid, efficient and precise.” Schwartz says this is essential for breeding stable, repeatable plants. “A commercial strain will be grown in different environments, with solid genetics, the phenotype will mostly stay true, a term we call Genetic Penetrance.”

Ancestry-painted chromosomes for marijuana Image: Chris Grassa / Sunrise Genetics

Determining a plant’s DNA can be extremely valuable and completing the map of the genome now makes this more precise. It can serve as a point of proof, according to Schwartz, providing evidence of lineage in a breeding project and confirming the uniqueness and identity of a strain. The genome map can also allow breeders to select specific genes to develop custom strains. And in addition to all that, it provides legal protection. “Knowing your plants DNA code is the first step to being able take action so no one else can protect it,” says Schwartz. “Well documented evidence in the development of a customized strains is essential to maintaining control of your plant and keeping those you distrust (big pharma) away, many of which have minimal interest in the whole plant anyhow.”

CJ Schwartz, chief executive officer of Sunrise Genetics

Schwartz says this project took them roughly 18 months to wrap up. “One of the biggest problems was just finding the right plants to grow,” says Schwartz. “In addition we used some emerging technologies and those had some challenges of their own.” According to Schwartz, a key aspect in all this was finding the right collaborators. They ended up working with CBDRx and the plant biology department at the University of Minnesota, where a DEA-licensed lab has been researching cannabis since 2002. “George Weiblen’s group at UM has been working on Cannabis for over a decade,” says Schwartz. “During that time they did repeated selfing to make highly inbred marijuana and hemp lines. The lines were instrumental in deterring the physical order of the genes.”

Ancestry-painted chromosomes for hemp Image: Chris Grassa / Sunrise Genetics

After finishing up some experiments, they expect to get the genome map published on public domain in less than a year, opening up their research to the general public and allowing breeders and growers to use their data. “This will be a very significant publication,” says Schwartz. “The genome assembly allows for the assimilation of all the currently incompatible Cannabis genome sequence datasets from academia and private companies,” says Schwartz. “Joining datasets from 1000s of strains, and from every continent, will generate an essential public resource for cannabis researchers and aficionados alike.” With a tool like this, we can discover the genes that help produce desirable traits. “This project is a major accomplishment for cannabis, bringing it on par with other important crops, providing a scientific tool to unravel the secrets of this incredibly versatile plant,” says Schwartz.

Sunrise Genetics is assisting cannabis businesses in evaluating strains and developing breeding programs, working with a number of customers currently to develop strains for many different specific traits. “We have the expertise to help select parental strains and guide the selection process at each generation using genotype and phenotype information,” says Schwartz. “Essentially we are bringing all the tools any modern plant breeder would use for improving strawberries to cannabis.”