Tag Archives: distillate

Dr. Ed Askew
Soapbox

Distillation Of Your Cannabis Extract: Ignorance Is Not Bliss

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

In a previous article I discussed the elephant in the room for clients of laboratory services- the possibility of errors, inaccurate testing and dishonesty.

Now, I will explain how the current “smoke and mirrors” of distillation claims are impacting the cannabis industry in the recreational and medical areas. We have all heard the saying, “ignorance is bliss.” But, the ignorance of how distillation really works is creating misinformation and misleading consumers.

That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.There have been reports of people claiming that “Distilled cannabis productsthat are Category 2 distillate are pesticide free and phosphate free, while Category 1 has pesticides and phosphates, but within acceptable limits”

The problem is that these claims of Category 1 and Category 2 cannot be proven just by saying they are distilled. Ignorance of the physical chemistry rules of distillation will lead to increased concentrations of pesticides and other organic contaminants in the supposedly purified cannabis distillate. That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.

So, let’s look at a basic physical chemistry explanation of the cannabis distillation process.

  • First off, you must have an extract to distill. This extract is produced by butane, carbon dioxide or ethanol extraction of cannabis botanical raw material. This extract is a tarry or waxy solid. It contains cannabinoids, terpenes and other botanical chemicals. It will also contain pesticides, organic chemicals and inorganic chemicals present in the raw material. The extraction process will concentrate all of these chemical compounds in the final extract.
  • Now you are ready to distill the extract. The extract is transferred to the vacuum distillation vessel. Vacuum distillation is typically used so as to prevent the decomposition of the cannabinoid products by thermal reactions or oxidation. Under a vacuum, the cannabinoids turn into a vapor at a lower temperature and oxygen is limited.
  • Part of the vacuum distillation apparatus is the distillation column. The dimensions of this column (length and width) along with the packing or design (theoretical plates) will determine the efficiency of distillation separation of each chemical compound. What this means is that the more theoretical plates in a column, the purer the chemical compound in the distillate. (e.g. Vigreux column = 2-5 theoretical plates, Oldershaw column = 10-15 plates, Sieve plate column = any number you can pay for).
  • The temperature and vacuum controls must be adjustable and accurate for all parts of the distillation apparatus. Failure to control the temperature and vacuum on any part to the apparatus will lead to:
    • Thermal destruction of the distillate
    • Oxidation of the distillate
    • Impure distillate

Now, you can see that a proper distillation apparatus is not something you throw together from a high school chemistry lab. But just having the proper equipment will not produce a pure cannabis product. The physical chemistry that takes place in any distillation is the percentage a chemical compound that occurs in the vapor phase compared to the percentage in liquid phase.So, how can you produce a cannabis distillate that is clean and pure?

For example, let’s look at whiskey distillation. In a simple pot still, alcohol is distilled over with some water to produce a mixture that is 25%-30% ethanol. Transferring this distillate to an additional series of pot stills concentrates this alcohol solution to a higher concentration of 85%-90% ethanol. So, each pot still is like a single theoretical plate in a distillation column.

But, if there are any chemical compounds that are soluble in the vapor produced, they will also be carried over with the vapor during distillation. This means that pesticides or other contaminants that are present in the cannabis extract can be carried over during distillation!

So, how can you produce a cannabis distillate that is clean and pure?

  • Produce a cannabis extract that has lower concentrations of bad chemicals. Since a lot of the cannabis extracts available for distillation are coming from grey-black market cannabis, the chances of contamination are high. So, the first thing to do is to set up an extraction cleanup procedure.
    • An example of this is to wash the raw extract to remove inorganic phosphates. Then recrystallize the washed extract to remove some of the pesticides.
  • Make sure that the distillation apparatus is set up to have proper temperature and vacuum controls. This will limit production of cannabis decomposition products in the final distillate.
  • Make sure your distillation apparatus has more than enough theoretical plates. This will make sure that your cannabis distillate has the purity needed.
  • Finally, make sure that the staff that operates the cannabis distillation processes are well trained and have the experience and knowledge to understand their work.

Inexperienced or under-trained individuals will produce inferior and contaminated product. Additional information of extract cleanup and effective vacuum distillation can be obtained by contacting the author.

Orange Photonics Introduces Terpenes+ Module in Portable Analyzer

By Aaron G. Biros
No Comments

Last week at the National Cannabis Industry Association’s (NCIA) Cannabis Business Summit, Orange Photonics unveiled their newest product added to their suite of testing instruments for quality assurance in the field. The Terpenes+ Module for the LightLab Cannabis Analyzer, which semi-quantitatively measures terpenes, Cannabichromene (CBC) and degraded THC, adds three new chemical analyses to the six cannabinoids it already reports.

CBC, a cannabinoid typically seen in hemp and CBD-rich plants, has been linked to some potentially impactful medical applications, much like the findings regarding the benefits of CBD. The module that tests for it, along with terpenes and degraded THC, can be added to the LightLab without any changes to hardware or sample preparation.

Dylan Wilks, chief technology officer of Orange Photonics
Dylan Wilks, chief technology officer of Orange Photonics

According to Dylan Wilks, chief technology officer of Orange Photonics, this could be a particularly useful tool for distillate producers looking for extra quality controls. Cannabis distillates are some of the most prized cannabis products around, but the heat used to create them can also create undesirable compounds,” says Wilks. “Distillate producers can see potency drop more than 25% if their process isn’t optimized”. With this new Terpenes+ Module, a distillate producer could quantify degraded THC content and get an accurate reading for their QC/QA department.

We spoke with Stephanie McArdle, president of Orange Photonics, to learn more about their instruments designed for quality assurance for growers and extractors alike.

Stephanie McArdle, president of Orange Photonics
Stephanie McArdle, president of Orange Photonics

According to McArdle, this could help cultivators and processors understand and value their product when terpene-rich products are the end goal. “Rather than try to duplicate the laboratory analysis, which would require expensive equipment and difficult sample preparation, we took a different approach. We report all terpenes as a single total terpene number,” says McArdle. “The analyzer only looks for monoterpenes (some common monoterpenes are myrcene, limonene and alpha-pinene), and not sesquiterpenes (the other major group of cannabis terpenes, such as Beta- Caryophyllene and Humulene) so the analysis is semi-quantitative. What we do is measure the monoterpenes and make an assumption that the sesquiterpenes are similar to an average cannabis plant to calculate a total terpene content.” She says because roughly 80% of terpenes found in cannabis are monoterpenes, this should produce accurate results, though some exotic strains may not result in accurate terpene content using this method.

The LIghtLab analyzer on the workbench
The LIghtLab analyzer on the workbench

As growers look to make their product unique in a highly competitive market, many are looking at terpenes as a source of differentiation. There are a variety of areas where growers can target higher terpene production, McArdle says. “During production, a grower may want to select plants for growing based on terpene content, or adjust nutrient levels, lighting, etc. to maximize terpenes,” says McArdle. “During the curing process, adjusting the environmental conditions to maximize terpene content is highly desirable.” Terpenes are also beginning to get recognized for their potential medical and therapeutic values as well, notably as an essential piece in the Entourage Effect. “Ultimately, it comes down to economics – terpene rich products have a higher market value,” says McArdle. “If you’re the grower, you want to prove that your product is superior. If you’re the buyer, you want to ensure the product you buy is high quality before processing it into other products. In both cases, knowing the terpene content is critical to ensuring you’re maximizing profits.”

Orange Photonics’ LightLab operates very similarly to instruments you might find in a cannabis laboratory. Many cannabis testing labs use High Performance Liquid Chromatography (HPLC) to analyze hemp or cannabis samples. “The primary difference between LightLab and an HPLC is that we operate at lower pressures and rely on spectroscopy more heavily than a typical HPLC analysis does,” says McArdle. “Like an HPLC, LightLab pushes an extracted cannabis sample through a column. The column separates the cannabinoids in the sample by slowing down cannabinoids by different amounts based on their affinity to the column.” McArdle says this is what allows each cannabinoid to exit the column at a different time. “For example, CBD may exit the column first, then D9THC and so on,” says McArdle. “Once the column separates the cannabinoids, they are quantified using optical spectroscopy- basically we are using light to do the final quantification.”

Cannabis-Infused Wine Comes to California in 2018

By Aaron G. Biros
No Comments

Rebel Coast Winery announced this week the launch of the world’s first cannabis-infused, alcohol-removed wine. The company’s THC-infused Sauvignon Blanc, available only in California, will hit dispensary shelves in 2018.

Co-founders Alex Howe and Chip Forsythe

According to the press release, they plan to be fully compliant with California’s new regulations for the cannabis industry, hence the lack of alcohol in the product, which is a requirement under the state’s new manufacturing rules. “Rebel Coast’s grapes are grown in Sonoma County – California’s wine capital – and fermented through a traditional winemaking process,” reads the press release. “Rebel Coast removes the wine’s alcohol and infuses each bottle of its premium Sauvignon Blanc with 16 milligrams of organic tetrahydrocannabinol (THC)…” In addition to the THC infusion, they also add terpenes to the final product, giving it the cannabis fragrance.

According to Alex Howe, co-founder of Rebel Coast, the winery is in Sonoma, but they’re waiting to see where they’ll be licensed to extract, infuse and package the final product. “The winery is in Sonoma, we make the wine, and remove the alcohol there,” says Howe. “We’re currently waiting for licensing transfer approval in two locations, one in San Bernardino, the other West Sacramento, and exploring an option to infuse in San Benito County with a currently licensed location.” They plan to co-package under a third party license and seek a Type N license for extraction with non-volatile solvents.

Rebel Coast has partnered with a fully licensed outdoor grower, and is looking for an extractor that will be able to handle their volume needs. With regard to their infusion and extraction process, Howe says they combine clear distillate with a surfactant to make the THC liquid soluble and fast acting.

He expects the full infusion and packaging operations to be up and running by early 2018. “The San Bernardino and West Sacramento locations were previously licensed for infusion, packaging, and manufacturing, but with purchase of the building, the change in ownership has caused us to wait for the license to change ownerships too.”

“We’ve continued our disruptive approach to craft the world’s first cannabis-infused, alcohol-free wine,” says Chip Forsythe, co-founder and chief executive officer of Rebel Coast. “We wanted to excite the rebellious spirit in Americans through innovation, so we took two world-class California products – marijuana and wine – and created a proprietary process that resulted in a delicious, crisp and elegantly crafted Sauvignon Blanc that’s teed up to be a game changer for the wine and cannabis industries.”

They plan to start shipping product in early 2018, as well as distribute to over 500 dispensaries throughout the state, via Green Reef Distributing, a licensed cannabis distributor that represents wine and spirit accounts for other CBD products. Later in 2018, Rebel Coast plans on rolling out cannabis-infused Rosé and champagne, as well as CBD-infused wines. In the press release the company teases their products will be available in other legal states in the coming months.