As the cannabis industry continues to evolve, recent market challenges have created an environment that is more difficult for industry leaders to navigate. To find success in today’s marketplace, company leaders need to adopt a robust, data-driven approach to combat the influx of rising brands, emerging markets and pricing challenges, among other obstacles. By leveraging data, cannabis brands and companies can better make well-informed decisions to refine their business strategies and drive growth.
The Evolution of the U.S. Cannabis Market
The cannabis industry maintains its ranking as one of the fastest growing industries in the U.S. as the legalization of adult-use and medical cannabis continues to expand. When California first legalized medical cannabis in the 1990s, a lack of regulations in the market created space for new cultivation businesses and dispensaries to form. These early cannabis players leveraged capital to expand and grow, developing a business model that has been replicated many times over the years in markets like Washington, Michigan and Arizona.
“Keystone pricing is a common strategy in today’s cannabis retail market, and manufacturers would benefit from reevaluating how wholesale products are priced to determine the ultimate impact on the bottom line to maximize profits.”Some of the strongest cannabis brands today were formed during this time. Today, the U.S. cannabis landscape looks vastly different, and strict government regulations and stagnant federal policies make it more difficult to find success. Brands that are surviving and thriving in today’s landscape have invested heavily in data operations.
Investing in Data Operations
While data wasn’t essential for cannabis operations in the past, today, it can mean the difference between success and failure for a company. Cultivators, processors and dispensaries that analyze data have a broader perspective that allows them to pivot quickly and stay relevant.
Data-driven decision making is critical for cannabis companies looking to meet and exceed revenue goals at every level. For cultivators, data can help create an optimal environment for growth. Manufacturers can utilize data to improve environmental conditions, reduce waste, cost and more. By leveraging data, retailers can benefit significantly from learning precisely which products should have a place on their shelves.
Business leaders in the emerging cannabis industry benefit from embracing the infrastructure and business practices that are already standard practice in other industries. Many top-performing cannabis companies today are structured similarly to other CPG organizations, and those who employ these tried-and-true strategies will be primed to win. One successful approach that many cannabis companies are adopting is a three-tiered system for manufacturing and selling products similar to the one employed in the beverage alcohol industry, providing economic, regulatory and commercial benefits for all.
Unlocking Efficiency with Pricing
Pricing challenges have plagued the cannabis industry for the past 18 months. While an inflationary environment has caused the prices of products in many sectors to rise, cannabis has been largely unaffected. Yet, because cannabis is not yet legal at a federal level, markets have become segmented, and prices are highly dependent upon demand factors in each state. This unique dynamic, combined with increased competition, has forced many producers to accept lower profit margins rather than pass on costs to consumers.
“Outside of point-of-sale and distribution data, consumer insight panels are also important for gaining valuable information about what consumers truly want and need.”These challenging market conditions have made it critical for companies to drive more efficient operations. By implementing data-driven technology, cannabis leaders can operate more precisely to minimize costs and produce high-quality products. Keystone pricing is a common strategy in today’s cannabis retail market, and manufacturers would benefit from reevaluating how wholesale products are priced to determine the ultimate impact on the bottom line to maximize profits.
Leveraging Data for Growth and Innovation
For retailers, running a successful cannabis operation with sustained growth is nearly impossible without leveraging in-depth industry data and analytics. Consumer data offers key insights to guide in-store activations, including promotions and discounting, to boost sales for retailers. By utilizing data, including data from loyalty programs, retailers can optimize their product mix based on what consumers are actually buying, and improve scaling and segmenting. From analyzing a store’s traffic to monitoring product, brand and category performance, data is indispensable when it comes to elevating business performance.
Data is also essential for innovation planning, pipeline building and analyzing location-specific variances. Seasonal trends influencing cannabis products often depend on various geographic and socioeconomic variables. While in the past large retail chains often ran the same shelf assortments at each location, utilizing data allows retailers to account for variances that make a significant impact based on location and consumer set.
While some cannabis industry leaders are accustomed to making business decisions based on their gut instinct, data enables them to quantify predictive levels of success and plan for what sales will look like once products hit shelves. Outside of point-of-sale and distribution data, consumer insight panels are also important for gaining valuable information about what consumers truly want and need. As the cannabis industry continues to expand quickly, an increasing demand for products will encourage innovation that will be powered by data-driven intelligence for years to come.
Cannabis cultivators across the U.S. are confronting plummeting wholesale prices and tighter profit margins. Operators in Pennsylvania say flower prices have fallen from around $4,000 a pound to around $3,000, on average, and prices in the more mature markets of California, Oregon and Colorado have experienced extreme volatility. Prices in those states are averaging around $700 per pound but of course, that’s an average. There are whispers that prices are as low as $150, revealing how bad the situation really is.
Oversaturation of legal cannabis affects commercial growers everywhere. For example, when Oklahoma opened its free-wheeling medical cannabis program with unlimited business licenses, the pipeline of cannabis from legacy markets in California was disrupted and a glut of flower from the gray market began to influence pricing within the state’s legal market. Although cannabis is not federally legal and interstate commerce is banned, what happens in one state definitely affects what happens in another.
Competition in legal markets has also increased dramatically in recent years as multistate operators expand their footprint and consolidation proliferates. Vertically integrated cultivation, manufacturing and retail is becoming unsustainable for many mom-and-pop businesses, while MSOs can leverage their cash and resources to weather the current storm.
Economic Viability Meets High Quality Production
All of this news is not necessarily negative, but it’s a definite cautionary tale: Being complacent opens opportunities for others. Growing cannabis is complex. It is working with a living and breathing machine. Some businesses fail because operators are not able to find the perfect blend of horticulture, plant science and manufacturing efficiency necessary for success. Some see it simply as a manufacturing concern, others a scientific endeavor, and still others as an artform. An understanding of growing cannabis as a blend of all three is paramount.
Squeezing more high-quality product out of existing facilities is essential. Costs for labor and electricity are relatively fixed, so operators must turn to technology to improve yield, quality, consistency and plant health without increasing operating expenses.
Over the years, growers have often resisted change surrounding what they view as “the way” or “the best,” but with the industry in such distress, the time is now to address facility inefficiencies.
Much like the evolution of LED use, there might be an initial skepticism at the cost and real value of new cultivation technology, but the economics are too compelling to ignore. The majority of all indoor grows now use LED. The progression from single-ended bulbs, to double-ended HPS, to LED is analogous to plants on the floor of a grow facility, to rolltop benches, and now to vertical farming using racks.
Vertical Cultivation Science
Crop steering applies plant science directly to commercial production. The methodology is based on the idea that plants can be manipulated to grow and perform a certain way. For cannabis plants, the science really comes into play with inter-canopy airflow.
When airflow occurs under the surface of the leaf of the plant, the stomata opens and gas exchange increases as water vapor and oxygen are released and carbon dioxide is absorbed. The micro-barrier of air trapped against the leaves is broken and the exchange of gasses and energy in the cultivation environment is improved, enabling the entire grow to increase its yield. And while CO2 supplementation is widely used and has been for years with positive effect, the under-canopy airflow provides greater efficiency relative to the operating expense of pumping CO2 into the grow room. Money can be saved by applying science to encourage the plant to uptake the extra CO2 that has been naturally released.
Proper Drainage Is Also Key
Drainage issues like the puddling of water in vertical farming are detrimental to the efficiency of a cultivation facility. Even when growers use precision irrigation techniques to give the plants pinpointed irrigation volumes over different time periods, rack systems can still suffer from drainage issues. That means that affected plants are not receiving the precision irrigation strategy and the entire purpose of the scientific application is defeated.
Precise drainage is critical because standing water opens the door to root born disease, pests, and microbial issues. Spray regimes can address this problem, but they cost money. The key is to reduce dependency on mitigation efforts by better controlling the agricultural space and improving outcomes with a scientifically approached plan.
Greenhouses, warehouses and vertical farming facilities all have potential environmental issues that reduce their economic viability, but with proper vertical air movement, drainage equipment and an understanding of microclimates and how to address them scientifically, efficiency and product quality are enhanced.
Time to Embrace Change
As with any industry, there is resistance to adopting new technology in cannabis cultivation. The original and legacy players will always claim they know how to best grow their plants, but the reality is that the business needs must be addressed.
As canopies increase within a facility, advancements like robotics, LEDs and advanced airflow technology define how the industry operates and continues to improve. Efficiency keeps business alive—cannabis growers must continually assess their operations and make the capital investments that will pay off as wholesale prices continue to decline.
Aeroponic & hydroponic systems grow plants at a highly accelerated rate. A “clean room” type of construction approach is the best way to manage this type of grow operation. Starting with a facility that is completely void of any kind of wood or materials that are porous is a good start. Cellulose materials collect moisture and encourage mold and mildew formation no matter how good the sealant.
We have seen cultivation spaces built out of dry wall over wooden post construction and studs that look sealed and solid on the outside of walls but when repaired for plumbing or other expansion work, they are black inside and covered with nasty mold that no one wants near their grow space.
Panel construction over steel frames or steel studs with skins is a safer, more sterile approach than retrofitting a wooden structure. Panel construction offers the added benefit of rapid assembly and minimal labor costs. We have seen 300 light rooms assembled in a few days so it is both very cost effective and safely sealed for protected growth.
Room Sizes & Count
If you have unlimited space, temperature and humidity management should determine the room sizes in your facility. Room sizes that are square in dimensions tend to be easier to maintain from an environmental standpoint. Long narrow rooms are good for fan airflow but tend to be more expensive from a cooling and dehumidification point of view. The larger the room, the more likely that you will get “microclimates” within the room which can challenge yield optimization.
Now, of course, many grows are retrofits of existing structures so compromises can be necessary. We have found that cultivators that have both very large and mid-size rooms in the same facility (200 lights versus 70 lights) are consistently more successful in the 70 light rooms. These “smaller rooms (~1,500 ft2) out-yielded and out-performed the larger rooms using the same genetics and grow plans. Compartmentalization also minimizes the risk in the case that a calamity (i.e. pest infestation) strikes the room. In a large room scenario, the losses can damage your operation. For this reason, we recommend 70-100 light/tub rooms as a standard.
Rooms should also follow your nursery economics. Structuring your nursery to produce just enough clones/veg plants for your next flower room avoids wasted plant material and resources. Breaking a larger space down into individual rooms means that you need fewer veg plants to fill your flower room that week. The best way to optimize this is to have a number of rooms that are symmetrical with the number 8 (typical 8-week cycle genetics).
With 8 rooms running flower, you are able to plant one room per week for 8 weeks. In the 9th week, you start over on room 1. This continuous harvest process is highly efficient from a labor standpoint and it minimizes the size of your mothers room (cost center). Additional space can be applied to your flower rooms. If you do not have infinite space, even divisors work just as well; 2 or 4 rooms can be planted in sequence for the same optimization (for 2-room structures, harvest and replant 1 room every 4 weeks for example). The optimal structure (8, 16, 24, or more rooms) enables you to optimize your profitability. If any of this needs further explanation, please just ask.
Within your room choice, movable rows or columns of tubs/lights also provides optimal yields. Tubs/plants can be moved together for light usage efficiency and one 3-foot aisle can be opened for plant maintenance. Racking systems or movable trays/tubs make this convenient nowadays.
Floors
Concrete floors offer pockets for bacteria to collect and smolder. As such, they have to be sealed. Proper application of your sealant choice is required so that it does not peal up or crack after sealing. There are many benefits to sealed floors that is discussed in the white paper. Floor drains are the equivalent of a portal to Hell for a sterile grow operation. Avoid them at all costs.
Phased Construction
Tuning or optimizing you grow rooms for ideal flowering operation depends on your location. Our advice is that you build and optimize your facility in phases with the expectation that nothing is perfect and you will learn improvements in every phase of expansion. The immediate benefit is production that you can promote to your sales channels and revenue that starts as soon as possible to improve your profitability. This is also an excellent learning curve to apply to subsequent rooms. Our happiest customers are those that learned construction improvements in early rooms that were able to be applied to following rooms without headache. The ability to focus on one or two rooms also allows you to get the recipe correct rather than just relying on “winging it”.
Don’t Be In A Rush To Go Green
Validate your water supplies and their stability. Verify that the water in your aeroponic or hydroponic feeds that get to your plants are clean and sterile. This is much easier in a step-by-step fashion than in a crisis debug mode once production is in progress. Be very cautious about incoming clone supplies. We will talk about this more in the next chapter on Integrated Pest Management but incoming clones are a top pest vector that can contaminate your entire facility.
Warehouse Versus Greenhouse Cultivation Spaces
As we started out, controlling your environment is your most important concern. We have seen success in both indoor rooms and greenhouses. The defining success factor is controlling humidity and temperature. Modern sealed controlled environment (CEA) greenhouses do this well and CEA is somewhat of a given for indoor grows. More details on this in the white paper.
Packaging these recommendations gets you to the perfect body for your Formula 1 race car. Now, you are ready to look at some of the mechanics of protecting your operation from pesky little critters and biologicals that can derail your operation and weaken your engine.
Before we sign off this week, I wanted to highlight the ultimate build-out that we have seen so far. Of course, there are many challengers that have done this well but at this point, FarmaGrowers in South Africa has the best thought out facility we have seen. They acquired Good Manufacturing Practice (GMP) & Good Agricultural & Collection Practice (GACP) certification early in their operations due to very well-thought-out designs. They are exporting to global markets without irradiation today. Certainly, many successful customers have beautifully thought-out operations and there are several upcoming facilities that offer amazing planning that will challenge for this crown, but for now. FarmaGrowers leads the pack in this aspect. See here for a walkthrough.
Ideal cannabis profits come from high demand/high selling prices and low production costs. The spread between those two, or margin, can determine the life or death of your business. We want to share this series of articles so that your next investment can be highly successful and high margin out-of-the-box.
Regardless of the grow method (soil, coco, rockwool, hydro or aero), every plant performs best in its own ideal environmental conditions. Experienced growers gained success through hard work, and just that, experience. Many have tried more advanced grow technologies, but shied away due to early trial failures or the complexity of maintaining chemistry across a grow facility. The wonderful thing now is that precision sensors and software controls eliminate the risk to robust healthy plants and harvest success. Growers are now able to both manage production while performing research in line with their operations.
We have learned a great deal working with our grow partners over the last 6 years. Every grow facility and location are different due to local weather, business environment and scale. This series of articles and guide, authored by our expert, Christopher Wrenn, will include recommendations of the most successful approaches we have seen here in North America and all over the world.
Building top-quality cultivation facilities is no simple task. Cultivators are also looking for new help as they shift from older soil or media approaches to more efficient grow methods. One powerful method is aeroponics, which is very good at growing any type of plant in air in a sterile environment, with labor, nutrient and water savings.
Where possible, we will share key vendors that support healthy grow operations and (since it is World Series Time), customer examples that are knocking it out of the park. In today’s competitive business environment, it is critical to do what we can to increase profitability and survival in the face of steep headwinds. We want you to crush it and be “the last man standing.”
So, let’s get to it.
Climate: Environmental Control
We begin with a critical leg in your environment. The process of photosynthesis is more than just light, plant and moisture. We want to do more than just grow plants. We want to grow highly profitable plants. That means we have to accelerate photosynthesis so we are growing faster, bigger and more potent than our competitors.
The Vapor Pressure Deficit (VPD) is the amount of “drying power” available in the air surrounding your plants. This is a useful way to understand the amount of moisture your atmosphere can remove from your plants as they digest carbon dioxide and aspirate water and oxygen into the air around your plants. A higher vapor deficit is a good thing for growth; It is also a measurement of how much nutrient you can uptake into the plant roots and convert into size and potency in the canopy. We recommend that you have resources in your grow rooms to maintain your environment to within 5% of both your humidity and temperature targets for ideal results.
In our Top Quality Cultivation Facilitywhite paper, we review environmental settings for temperature and humidity for mother, clone/veg and flower rooms for day and night light cycles from early cuttings through to end of harvest flush. Day temperatures can be up to 20% higher than night temperatures for example.
Cooling
Managing temperature may seem straight-forward but the heat generated by LED lights, HPS lights or the sun will vary across rooms, time exposure and with the distance of the light source from the plants. Measurement sensors should be distributed across rooms to monitor and trigger temperature resources.
Humidification/Dehumidification
This is a topic that can be underappreciated by cultivators. It is important to slowly transition humidity as you move plants from cuttings to clones, to veg and to flower. Beginning in a very humid stage to motivate root start, humidity will be stepped down from an opening near 90% down to an arid 50% in your end of flush flower rooms. We detail the transitions in 5% increments in the white paper.
Relative Humidity (RH) and the related VPD are the key metrics to accelerating growth throughout the stages. Not sizing dehumidifiers correctly is one of the most common mistakes our grow partners learn about as they move to full production. In the first phase of turning cuttings from healthy mothers into rooted clones, hitting your target VPD to motivate root growth is the number one success factor. This will require the addition of humidity into your clone room. It is also typical to require raise the humidity of your flower rooms when you transition clone/veg plants from the high humidity clone/veg room into an initially dry flower room, otherwise the plants may go into shock as a result of the dramatic change.
As flowering begins, if humidity remains high, and the VPD is below target, the plants will not be moving nutrients and transpiring moisture. We have seen lowering the humidity from 70% in a flower room down to 50%, results in a yield increase from 50 grams to 90 grams of dry trim bud per plant, so a smooth transition can both accelerate growth and have a big impact on your margins and profitability.
Plants in aeroponics can truly have explosive growth. This means that they will also transpire moisture at an accelerated rate. Fast automated growth in aeroponics means increased humidity output. Sizing these critical systems for humidification/dehumidification are a critical part of the design process.
Airflow
Fans combined with your cooling/heating/humidity/dehu systems need to mix the air in a room to break the boundary layer at the leaf surface for transpiration. As we covered, VPD is critical to growth success. A dry surface motivates the plants to transpire moisture. We recommend flow rates across the canopy in a 0.5-1.5 meter/second rate to align to your genetics and where you are in the flowering process.
Airflow and flowering means rich beautiful aromas are generated. Every facility has to consider odor control. If you are in a populated area, you will have ordinances and neighbors to satisfy. The best way to do this is to minimize the amount of air that exits a facility. This is also the cheapest approach.
Sterile HEPA filters and scrubbing systems clean air of pathogens and odor but they also need to circulate and “condition” air to the correct temperature and humidity levels before it can be recirculated into a room. Oftentimes, this is a good place to also recapture humidity and reinject it into your pure water cleaning systems.
Key vendors to talk to about sizing air treatment systems are SURNA, Quest, Desert Aire and AGS. Each of these vendors have specialties and tend to be superior partners in different regions of the world. We would be happy to introduce you to excellent support resources for air management systems.
bioMérieux, a leader in the in vitro diagnostics space and a supporter of the cannabis testing market, announced last month that they have achieved the first ever AOAC International approval for PCR Multiplex Detection of STEC and Salmonella in cannabis flower for their GENE-UP® PRO STEC/Salmonella Assay. The performance tested method approval for their new assay accomodates simultaneous enrichment and detection of STEC (Shiga Toxigenic Escherichia coli) and Salmonella spp. in cannabis samples.
The method is aimed at increasing efficiency in cannabis testing labs by reducing sample preparation time for microbiological testing. With the single enrichment and real-time multiplex PCR detection, bioMérieux says their new assay can provide reliable detection of STEC and Salmonella in 24 hours using just a single test.
PCR technology is one of the most widely utilized testing methods for detecting pathogens in a variety of matrices. bioMérieux claims it is easy to use, scientifically robust and reduces costs, time spent testing and errors.
Maria McIntyre, cannabis strategic operations business manager at bioMérieux, says that AOAC performance tested method approval is setting the bar for cannabis testing laboratories and furthering cannabis science. “AOAC International impacts cannabis science by setting analytical method standards that act as the benchmark for method validation,” says McIntyre. “This simplifies the validations needed by cannabis laboratories and assures the utmost confidence in product safety and human health.”
Cannabis has long been considered a green industry by the masses.
As a standalone item, the cannabis plant is very environmentally friendly. This is particularly true when it comes to hemp, a variety of the cannabis plant with a huge range of environmental benefits. An extremely versatile and robust crop, hemp uses far less land and water than other common crops and even captures carbon dioxide and regenerates soil. Approximately 20,000 products can be made from its seed, fiber and flower, from biodegradable plastics to food supplements, meaning all in all – it is an environmentally and economically sustainable crop
Yet as with most things, when cultivated in mass, the cannabis plant isn’t quite so green anymore. With its high demand for water, land and artificial lighting, cannabis cultivation can actually leave a large environmental footprint (this does however, pale in comparison to the food industry).
What’s more, many firms do not properly understand how to correctly treat and apply chemical fertilizers and pesticides, and use a machine gun approach to growing their crops. This can result in unnecessary bleed waste, which in turn can kill micro-organisms and contaminate soil, water and other vegetation. Packaging has also been cited as particularly environmentally unfriendly in the cannabis industry, with several organizations using single use plastic for their products, due to the strict guidelines attached to packaging products of a medical or pharmaceutical nature.
So as the CBD, medical and even adult use cannabis industries become increasingly commercialized across the globe, there is risk cannabis might start moving in the wrong direction when it comes to sustainability.
Still relatively new, the cannabis sector is nascent and exciting, with the global cannabis market size valued at $10.60 billion in 2018 and projected to reach $97.35 billion by the end of 2026. Yet as the industry grows, so too will its footprint.
I’ve seen it first-hand. The industry being hugely competitive, so for companies vying for precious investment and fighting for a spot on the stock market, often, sustainability is the last thing on their minds. In my opinion, this is wrong. Not only morally – we all play a part in looking after our planet – but it’s also a poorly calculated business decision.
It’s no secret sustainability and ESG have become a hot topic when it comes to investing. Just yesterday, Credit Suisse told CNBC that the pandemic has accelerated the trend towards sustainable investments. The bank has even introduced an exclusion strategy whereby those investing can actively exclude controversial sectors.
So with the environment firmly on investors’ minds, cannabis firms need to realize that actually, if they want to secure the support of forward-thinking shareholders, they need to consider more than just the bottom line and truly take the sustainability of their operations into account.
Luckily, there are practices which cannabis cultivators can take on board to reduce their environmental footprint. To start with – growing outdoors. This enables cannabis farmers to harness the sun’s natural power, saving them money on electricity bills and increasing energy efficiency. With cannabis being a rather thirsty plant, water use is also a major concern – although this is nothing compared to the amount of water used by cotton plants. However, it is in fact possible to design indoor operations which recycle close to 100% of the water use, including capturing the perspiration from plants – at AltoVerde this is something we are looking to implement in our upcoming Macedonian sites.
Firms keen to improve on sustainability should also cultivate in a way in which soil is fully replenished and repaired after use – this is called regenerative farming, and it’s extremely effective for maintaining and improving soil quality, biodiversity and crop yields. Another interesting concept is the use of hemp. Some farmers have started using hempcrete – a concrete-like material made from harvested cannabis plants. As if the recycling aspect wasn’t good enough, hempcrete is actually carbon negative, meaning the production of hemp for hempcrete removes more carbon from the atmosphere than it produces.
It’s been incredibly exciting to be a part of the cannabis industry and I am excited to watch its growth in the years to come. It’s taken hard work for the sector to improve its traditionally poor image and to be accepted across the globe, so now, cultivators must lead by example and stop industry from being branded as one which pollutes. By transitioning to more environmentally sustainable practices, firms will be doing their bit for the planet, attracting the investors of tomorrow and ensuring their own success for years to come.
Clean, ecologically sound production methods are the ideal for any cultivation or farming activity. Taking from the earth only what is needed to grow the crop and leaving behind little in the way of chemicals and land/water loss is the goal; with cannabis grow facilities, it can also be a reality.
This type of production does require some capital investment into state-of-the-art equipment and facilities, with standards that are equal to or even surpass current EPA and USDA regulations. While cannabis growing does not yet have access to the organic certification, that doesn’t mean growers can’t abide by and even go beyond the rules, to grow clean, healthy and environmentally sound cannabis.
There are a few essential elements required to make this kind of operation a reality.
Ecologically advanced use of power
For any indoor facility, one of the key elements is lighting. Using as energy efficient a system as possible is key. The best option at the moment is LEC lighting, which provides a spectrum of light that is very close to natural. This makes checking on plant progress more realistic and, with the inclusion of UV-B in the spectrum, can improve yields as well. In addition, the LEC bulbs have a long life—up to 2 years—which means lower maintenance costs as well.
Another aspect of growing that tends to use a lot of power is the cooling system. A standard HVAC system will be power intensive, so alternative ones like water chilled climate control systems are just as effective and 30% more power efficient. These systems are also able to reuse wasted power by feeding it back into the system, creating an additional 10% energy reduction. In addition, when the outdoor air temperature dips below 45 degrees, a water chilled system can switch to using the outside air, creating 60—70% in energy savings.
Efficient management of water resources
Cultivators depend heavily on water to ensure that the plants are hydrated and able to absorb the nutrients they need to grow and thrive. The result for many however is an excessive waste of water. This is a problem when a grow facility is leveraging municipal water resources. A water meter helps to manage and track usage but to ensure that it is used as efficiently as possible, a “top feeding” method of usage ensures minimal water waste (5% or less).
Effective waste management
Wastewater is a byproduct of any water intensive cultivation method but there again, managing the systems to ensure that what water isn’t reused and becomes “gray water” is still as clean as possible is the ideal. A high-quality filtration system keeps sediment, chlorine and other harmful elements out of the water supply — and out of the municipal sewage system. Further, by using organic matter throughout the growing process, the wastewater that is produced will meet every federal standard for organic food production.
All plant waste in a grow facility—for example: stems and fan leaves—is disposed of according to state and local laws. With cannabis plants, that requires a certain level of security, including locked dumpsters that are only unlocked and placed outside when the removal trucks arrive on site.
Organic farming practices
Using OMRI (Organic Materials Review Institute) listed soil is an essential part of clean, environmentally friendly growing. To ensure the proper nutrients are available for each harvest, once a crop is gathered, the soil is transferred to a local landscape company to compost and reuse.
Pesticides need to obviously be avoided and all fertilizers need to be USDA approved as organic and all nutrients need to be certified by OMRI to ensure they don’t contain any synthetic materials.
Considering all of these aspects is essential to creating an ecologically friendly grow facility with tremendous yields that are clean and safe for the end consumer, as well as minimizing the impact to the earth.
The word “audit” evokes various emotions depending on your role in an organization and the context of the audit. While most are familiar with and loathe the IRS’s potential for a tax audit, the audits we are going to discuss today are (or should be) welcomed – proactive internal quality audits. A softer term that is also acceptable is “self-assessment.” These are independent assessments conducted to determine how effective an organization’s risk management, processes and general governance is.
“How do you know where you’re going if you don’t know where you’ve been” – Maya Angelou
Internal quality audits are critical to ensuring the safety of products, workers, consumers and the environment. When planned and performed periodically, these audits provide credible, consistent and objective evidence to inform the organization of its risks, weaknesses and opportunities for improvement. Ask yourself the question: do your clients/vendors rely on you to produce reliable, consistent and safe products? Assuming the answer is yes, what confidence do you have, and where is the documented evidence to support it?
Compliance units within cannabis businesses are typically responsible for ensuring a business stays legally compliant with state and federal regulations. This level of minimum compliance is critical to prevent fines and ensure licenses are not revoked. However, compliance audits rarely include fundamental components that leave cannabis operators exposed to many unnecessary risks.
As a producer of medical and adult-use products that are ingested, inhaled or consumed in other forms by our friends, family and neighbors, how can you be sure that these products are produced safely and consistently? Are you confident that the legal requirements mandated by your state cannabis control board are sufficient? Judging by the number of recalls and frustrations voiced by the industry regarding the myriad of regulations, I would bet the answer is no.
What questions do internal audits address? Some examples include:
Are you operating as management intends?
How effective is your system in meeting specified objectives? These objectives could include quality metrics of your products, on-time delivery rates and other client/customer satisfaction metrics.
Are there opportunities to improve?
Are you doing what you say you do (in your SOPs), and do you have the recorded evidence (records) to prove it?
Are you meeting the requirements of all applicable government regulations?
There are potential drawbacks to internal audits. For one, as impartiality is essential in internal audits, it may be challenging to identify an impartial internal auditor in a small operation. If your team always feels like it is in firefighting mode, it may feel like a luxury to take the time to pull members out of their day-to-day duties and disrupt ongoing operations for an audit. Some fear that as internal assessments are meant to be more thorough than external assessments, a laundry list of to-do items may be uncovered due to the audit. But, these self-assessments often uncover issues that have resulted in operational efficiencies in the first place. This resulting “laundry list” then affords a proactive tool to implement corrective actions in an organized manner that can prevent the recurrence of major issues, as well as prevent new issues. The benefits of internal audits outweigh the drawbacks; not to mention, conducting internal audits is required by nearly every globally-recognized program, both voluntary (e.g. ISO 9001 or ASTM Internationals’s Cannabis Certification Program) and government required programs such as 21 CFR 211 for Pharmaceuticals.
Internal Auditing is a catalyst for improving an organization’s effectiveness and efficiency by providing insight and recommendations based on analyses and assessments of data and business processes. Additional benefits of internal audits include giving your organization the means to:
Ensure compliance to the requirements of internal, international and industry standards as well as regulations and customer requirements
Determine the effectiveness of the implemented system in meeting specified objectives (quality, environmental, financial)
Explore opportunities for improvement
Meet statutory and regulatory requirements
Provide feedback to Top Management
Lower the cost of poor quality
Findings from all audits must be addressed. This is typically done in accordance with a CAPA (Corrective Action Preventive Action) program. To many unfamiliar with Quality Management Systems, this may be a new term. As of Jan 1, 2021, this is now a requirement for all cannabis licensed operators in Colorado. Many other states require a CAPA program or similar. Continuing education units (CEUs) are available through ASTM International’s CAPA training program, which was developed specifically for the cannabis industry.
Examples of common audit findings that require CAPAs include:
Calibration – Production and test equipment must be calibrated to ensure they provide accurate and repeatable results.
Document and record control – Documents and records need to be readily accessible but protected from unintended use.
Supplier management – Most standards have various requirements for supplier management that may include auditing suppliers, monitoring supplier performance, only using suppliers certified to specific standards, etc.
Internal audits – Believe it or not, since internal audits are required by many programs, it’s not uncommon to have a finding related to internal audits! Findings from an internal audit can include not conducting audits on schedule, not addressing audit findings or not having a properly qualified internal auditor. Are you looking for more guidance? Last year, members of ASTM International’s D37 Committee on Cannabis approved a Standard Guide for Cannabis and Hemp Operation Compliance Audits, ASTM D8308-21.
If you are still on the fence about the value of an internal audit, given the option of an inspector uncovering a non-conformance or your own team discovering and then correcting it, which would you prefer? With fines easily exceeding $100,000 by many cannabis enforcement units, the answer should be clear. Internal audits are a valuable tool that should not be feared.
With data forecasting expert BDSA predicting that the global cannabis market will reach $56B by 2026, there is no time to waste. Whether it’s Oklahoma, New York or even Macedonia, the frenzy is on. Investment decisions are immediate, and you have to be correct out of the box. This is where an expert like Andrew Lange and his company, Ascendant Management, come in. Andrew has designed more than 1.5 million square feet of cannabis facilities and moved them into profitable production in North America and Europe. One of his active customers is Onyx Agronomics in Washington. Bailee Syrek is the director of operations at Onyx and this is the story of the key points in designing a precision cannabis facility with state-of-the-art efficiency.
Background
Andrew Lange, a navy veteran, runs a global cannabis consulting business based in Washington. With a “prove it to me” approach, he regularly tests the best new technologies in the facilities he designs. He integrates his knowledge of what works in practice into his subsequent facilities. One of his previous projects, Onyx Agronomics in Washington, started in 2014 and moved quickly into production in a retrofitted warehouse. Many of his best ideas started with Onyx, including some new innovations in the latest expansion there this month. Onyx is a tier 3 cannabis cultivator.
Bailee Syrek’s operation at Onyx currently produces 9,000 lbs. of dry trim bud per year in 8,000 square feet of canopy. She operates the state-of-the-art, clean room style, indoor grow facility around the clock, delivering 2.7 grams/watt from every square foot of canopy in her building. She runs a highly efficient facility.
Onyx has had an ongoing relationship with Ascendant Management and chose to leverage them again with their current expansion to increase their capacity further. Onyx uses a range of advanced technologies including aeroponic cultivation equipment and control software from AEssenseGrows to hit their metrics.
Precision, Quality & Consistency
“I look for ways that my clients can differentiate themselves,” says Lange. Maybe it’s his military background, but Andrew demands precision, quality and consistency in the operations he designs. “Cannabis is a just a plant really so we look for the highest performance grow methodology. I find that to be AEssenseGrows aeroponics,” says Lange. “The AEtrium Systems provides a good foundation to manipulate for grow recipes and business process. I add teamwork, communications, and operations procedures to that foundation.”
At Onyx, Bailee Syrek works closely with her channels. She invites her customers in regularly to review the Onyx cultivars and to cover their ideal requirements. These can range from bud size for their packaging to THC or terpene profiles (Yes, channels do want both higher and lower THC content for different consumers and price points). Based on that feedback, Bailee and Andrew work together to dial in the ideal grow recipe in the AEssenseGrows Guardian Grow Manager central control software. They push their target strains to optimize the results in the direction requested by their customers. For example, “How do you get the highest possible THC out of 9lb Hammer?” You’ll have to ask Andrew and Ascendant Management.
Driven by customer requests, Onyx is adding new strains to build on their innovative brand. Bailee expects to reach new levels of terpene bundles with Cheeseburger Jones, Koffee Breath, Shangri-La and OK Boomer. Utilizing Andrew’s expert knowledge, they can take typical sub-20% cannabinoid bundles and improve them using aeroponics and better controls, into standout aeroponic 30% packages.
The Onyx Vision
Bailee Syrek believes this is the most exciting time yet for Onyx. Delivering premium grade cannabis as a white label flower supplier for years, Onyx is a profitable and successful business. But even with doubling capacity every year, they are still having trouble keeping up with customer demand. Bailee wants to get to the point where she can always say yes and accept an order from their white label customers. With this objective, she again engaged Ascendant and Andrew to get beyond 15,000 lbs. of output in 2021 to make her customers happier. Beyond that basic expansion, she is also ambitious and is preparing plans for additional lines of revenue with their own proprietary flower, oil and derivative products.
“This expansion will be a new challenge,” says Syrek. “Flower production is in our wheelhouse. We have tighter operations, with the most consistent bud size, terpenes and test results in our state. These new products will require that same quality but now in new areas.”
Her Path to Leadership
Bailee started with Onyx in a compliance position that grew out of the constant demands for government licensing and reporting. In that compliance role, she had the opportunity to work a bit in every department, giving her a good understanding of all of the facility operations and workflows. All of that experience led her to eventually take over the operations leadership role. She instills care and effort to maintain the cleanest and most efficient operations possible. “With aeroponics, we don’t have to lug soil from room to room or in and out of the facility. This saves us a ton of work that we can redirect to plant health and maintenance,” says Syrek. “Medical precision and GMP quality is a given. Each room on average is 105 lights and one room manager and one cultivation technician take the room from clone/veg transfer to harvest as a two-person team.”
Bailee prides herself with results. “Medical grade precision is normal for us. We use medical grade SOPs for every aspect of our production.” Bailee has designed these guides into their control system that runs on the Guardian Grow Manager software. From sensor tracking, to performance graphs to time cards; everything is integrated in her performance monitoring.
A quality focus is very apparent in every Onyx flower room. Every watt of light energy is transferred to the pristinely manicured canopy. Naked stems feed nutrients up to the fat buds at the trained canopy surface. Fan leaves are removed and all possible energy turns into bud weight and potency. The room technician has a passion for plant health, table care and plant maintenance all the way through to the harvest bonanza.
What is the biggest challenge for Bailee as she drives the operation? Even at 105-110 grams per square foot per harvest, they are sold out. “Every customer wants to buy beyond our capacity. It is a good problem to have,” Bailee says. “Customers want our quality and love the consistency. This is the most exciting thing about our expansion. We will finally be able to make additional channels happy with high quality supply.”
This is where Andrew credits Onyx’s performance. “Most well running operations deliver 1.1-1.8 grams of dry trim bud per watt of electricity used in powering a grow room,” says Andrew. The Onyx grow formula results leave this in the dust. Running Fluence SPYDR 2i grow lights and the AEtrium System aeroponics, Onyx plants are delivering just shy of 4 lbs. per light with every harvest cycle. At 630 watts max output, that delivers ~2.7 grams/Watt, the most efficient operation he has seen. The Onyx process and execution works.
“Bailee is a great example as a professional. She builds a motivated team that executes better than her competition,” says Andrew.
At the same time, Onyx runs a highly space efficient nursery with just enough mother plants feeding energetic cuttings into the 4-layer stacked AEtrium-2.1 SmartFarms in their environmentally controlled clone room. They produce more than enough healthy clones to jump from veg to flower in the span of a week. Grow time, harvest turn time and no veg space, results in very efficient use of power in the complete operation.
Mirroring Onyx for Medical Grade Cannabis in Europe
Andrew Lange’s current passion is a green-field project in Portugal. Self-funded, Andrew says that this facility will be one of the first that is pure enough in operations to supply non-irradiated clean-room-level-quality cannabis beyond the precise standards required by European regulators. Current importers have not been able to clear the European standards for cleanliness without irradiating their buds. Other companies like Aurora have abandoned efforts to access the market due to the precision requirements. Typical methods used for fruit imports use gamma radiation to get bacterial counts down. This was tried with cannabis to sterilize buds, but the problem with cannabis is this degrades the quality of the flower.
Andrew’s Portugal facility will be using a sterile perimeter surrounding his grow space (mothers, clones/veg, flower rooms) and harvest and processing areas (dry, trim, packaging). Andrew creates a safe environment for healthy production. A steady harvest cleaning regimen is built into his operational designs from the beginning. All operators are trained in procedures to exclude pathogens and limit all possible transmission (airborne, physical/mechanical touching, or water carried). Every area is cleaned during and between harvests. Andrew is confident he will reach a consistent level of accuracy and purity beyond European requirements because it is routine in all of his designs.
Certified Efficiency is the Message
Good Manufacturing Practices (GMP) and Good Agricultural and Collection Practices (GACP) are required for certification and access to European markets. Andrew always builds tight operations, but in this case, his Portugal facility is designed with the fit and finish to be GMP and GACP compliant from day one with advanced air filtration and air management throughout.
Automated aeroponics is a foundation technology that Andrew recommends for his facility designs. The automatic data logging, report generation, cloud access and storage make this a foundational technology. Andrew does get some resistance from cultivators that are used to the classic soil media approaches but he explains that software configurable grow recipes, precision controls, zero soil/no pests and hyper-fast growth makes aeroponics the foundation of competitive advantage. Precisely controlled medical quality precision operations are built on top of this foundation.
The initial phase of the Portugal facility is 630 lights and this facility is Andrew’s latest personal investment. From secure perimeters to modular grow rooms and highly automated equipment, this location will be state-of-the-art in terms of grams/watt yields and renewable energy with an output of 6 metric tons per year. Solar powered electricity from a 4-megawatt farm will use Tesla megapacks for storage and be grid independent.
Technology & Innovation, Onyx & Ascendant
From his first experience with AEssenseGrows aeroponics, Andrew has been able to design complete grow recipes in the Guardian Grow Manager software with very tight precision on dosage. This makes it possible to create ideal recipes for each strain (nutrition, irrigation cycles, lighting and environmental management). This frees up the operations teams to focus on plant health and execution. The nutrients, pH, CO2, temperature and humidity, follow the Guardian directions that he sets.
Working with Bailee at Onyx, Andrew is now consulting on the post-harvesting side of operations (drying, trimming, extracts and packaging). In parallel with his efforts, Bailee is optimizing THC & terpene production on the cultivation side with UV lighting (considering far-right red frequency light recipe enhancements).
That is the Ascendant Management approach to innovation. Trial, test constantly, perfect ideas in practice. Optimize the results for consistent, high-quality results. Even while driving for the personal craft touch, use automation to increase efficiency of mundane, but important tasks. With these methods, Andrew believes that the Onyx labor cost is one third of typical soil media grow operations. Zero soil aeroponics offers many benefits. Bailee’s team is able to give each plant more attention and delivery better quality. Automation is a win-win for them.
Bailee finds that constant testing is useful for two things: one, great results, and two, surface the best talent with their hand’s-on approach.
Always Finish with People
Bailee says that her staff works incredibly hard. “We are a different grow, with better ergonomics on the job, aeroponics for precision and yields, and advanced technology at the leading edge in every part of our grow. No dirt up and down stairs. People are proud to work here. We are not your dad’s grow operation.”
“We promote from within. Everyone starts as a room tech and has the opportunity to move up. Teams are isolated by rooms so there is no contamination between rooms or humans. Put in the work, and you will get promoted with expansions, and grow with the company as we take a bigger share in the market.” Female employees make up almost half of the current staff, and Bailee encourages employees to refer their friends. “Good people invite good people,” she says.
Her training program introduces the technical aspects of their unique operation, the positive expectations and career path for every new employee. The social environment is friendly with good pay and regular raises. Each new employee fills a range of roles during their 1-month training circuit and are assigned to a cultivation space under a lead as an official cultivation tech at the end of 30 days. “One thing that we do more than at other grows is constant cleaning,” says Bailee. “This is an ever-present mantra for the staff.”
National Agriculture Day (March 23, 2021), is an annual event held by the Agriculture Council of America (ACA), a not-for-profit 501-c (6) organization, to increase the public awareness of agriculture’s vital role in our society.
The ACA believes that every American should:
Understand how food and fiber products are produced.
Appreciate the role agriculture plays in providing safe, abundant and affordable products.
Value the essential role of agriculture in maintaining a strong economy.
Acknowledge and consider career opportunities in the agriculture, food and fiber industry.
We investigated how the hemp and cannabis industry is disrupting agriculture in positive ways, from automated trimming, to controlled environment agriculture, to water conservation and beyond. We interviewed Aaron McKellar, CEO and President of Eteros Technologies, parent company of Mobius Trimmer and Triminator, Mark Doherty, Executive Vice President of Operations, urban-gro, Inc. and Derek Smith, Executive Director at Resource Innovation Institute (RII) to get their perspective on agricultural innovation.
Aaron McKellar, CEO and President of Eteros Technologies
Aaron Green: Why is hand-trimming inefficient at scale?
Aaron McKellar: Hand-trimming is inefficient at scale because it is so labor-intensive and time-consuming, not to mention repetitive and frankly boring. It’s hard to stay fully engaged as a worker trimming by hand, so the consistency of your finished product isn’t reliable with a crew of hand-trimmers.
A hand-trimmer can produce good quality trim on about 2 or 3 pounds per day. A scaled-up facility running just one Mobius M108S Trimmer can realize up to 120 pounds per hour, replacing many dozens, or even into the hundreds of hand-trimmers. The HR nightmare this presents, and all the associated costs of paying and facilitating dozens of employees (parking, washrooms, lunchrooms, PPE and gowning, etc) is simply unworkable. And that’s before COVID.
Green: How does automated trimming benefit large producers and how does the quality compare to hand-trimming?
McKellar: Not all automated trimmers are created equal. Any of the machines out there will help to reduce the need for hand-trimmers by taking off the bulk of the leaf, leaving a small team of “hand-polishers” to finish it up. The Mobius Trimmer is the only automated trimmer on the market today that leaves the technology of the original machines in the past and employs next-gen technology to truly mimic hand-trimmed quality with stunning through-put rates.
We have high-end producers using Mobius Trimmers whose own QC department cannot discern Mobius-trimmed flower from hand-trimmed flower. Hand polishing crews tend to be far smaller when using a Mobius vs first-gen machinery, and many Mobius users don’t touch up at all, instead going straight to market right out of the trimmer. For a look at how our technology differs from the rest of the field, check out this look under the hood.
Mark Doherty, Executive Vice President of Operations, urban-gro, Inc.
Aaron Green: What is controlled environment agriculture?
Mark Doherty: Cannabis cultivators understand growing indoors because, prior to legalization, they had been doing it for years in the gray market. It is by way of that experience that cultivators learned how to manipulate a highly-valuable, complex plant in an indoor setting. As cannabis legalization spread across the United States, many government regulators required that it be cultivated indoors according to strict regulatory protocols. Fast forward 10 years, and we have an industry that is keenly aware of the indoor environmental conditions required to be successful. Critical factors like heating, cooling, ventilation, dehumidification, and how to best mimic Mother Nature’s energy through lighting are all deliberately optimized.
With cannabis cultivation driving the advancements of controlled environment agriculture, market and regulatory forces demanded higher efficiency, reduced energy and resource consumption, and clean crops. In most states, cannabis crops have more stringent testing than food crops. For instance, the lettuce in Massachusetts will not pass the standards for cannabis in Massachusetts. It’s through rapid innovation and technology adoptions that the cannabis industry has paved the way for lettuce to be profitably grown indoors.
Green: How can controlled environment agriculture help alleviate supply chain stresses?
Doherty: By growing food closer to the consumer, you reduce food miles; meaning, that link in the food supply chain gets a lot shorter and is less prone to disruption. Whether you have hyper small cultivation facilities on every street corner, or a larger cultivation facility geographically close to consumers, you can grow 24/7/365. Furthermore, growing locally allows for better prediction of facility output—10 boxes of greens on Monday, 50 boxes of greens on Tuesday, and five boxes of greens on Thursday. This eliminates harvesting a large crop before it is ripe and likely requiring cold storage. The controllability of controlled environment ag is that consistent, reliable contribution to the food supply chain and shortening that path to the consumer.
Derek Smith, Executive Director at Resource Innovation Institute (RII)
Derek Smith: Until this report, if you searched for cannabis water usage, you’d basically find one cited statistic. It was “six gallons per plant per day.” We knew this was from a model based on one extreme illicit market scenario. Based on the data we were seeing and the conversations we were having, this number seemed way off. So, we pulled together a multidisciplinary Water Working Group as part of our Technical Advisory Council. The objective of the Water Working Group was to establish a scientific understanding of how, and how much, water is used for cannabis cultivation so that cultivators have confidence in taking steps to be more efficient, and so that industry leaders, governments and media can be accurately informed about the range of water practices of today’s regulated market.
Green: What key points should cannabis cultivators take away from the report? What key points should regulators and policymakers take away from the report?
Smith: As the cannabis industry matures, water use efficiency will become more important, as it has for other agricultural crops. Pressures to use water efficiently will mount from multiple channels including – reducing input and energy cost, protecting the environment, meeting regulatory standards and simply being good stewards. We recommend that industry and regulators focus efforts on the following areas:
When grown outdoors, water for cannabis production should be assessed like any other agricultural crop and be subject to state and local regulations that apply to other crops. Our research indicates that cannabis neither uses a massive share of water nor uses more water than other agricultural crops. Applying the same standards to cannabis as to other agricultural crops will correctly categorize outdoor grown cannabis as an agricultural crop.
In areas where there may be conflict between water use for cannabis and environmental concerns, regulators and the industry should focus (1) on the timing of water use and (2) the potential of storage to mitigate environmental conflict. Our results show that in many parts of the country legal cannabis farmers have ample water storage to satisfy their needs. In areas where storage is insufficient, increasing storage should be a priority for farmers and regulators.
Our research shows there are still massive differences between cannabis production techniques. As farmers continue to experiment and improve, we expect to see water use be a more important part of cannabis farming decisions and expect new plant varieties and growing techniques to be developed that increase water use efficiency. Yet more data from actual farms and facilities are needed to point the way toward the technologies and techniques that drive optimal efficiency and productivity. It is recommended that producers benchmark their performance and governments consider requiring energy and water reporting by producers. The Cannabis PowerScore can assist in these efforts.
As indoor production continues to grow, especially in areas that have unfavorable climatic conditions for outdoor growing, we expect more cannabis users to rely on municipal water sources. Yet, it is unclear if municipal water suppliers are equipped to work with the cannabis industry. We suggest outreach efforts between the cannabis industry and municipal water suppliers to incentivize efficiency where possible.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.