Tag Archives: efficiency

Soapbox

Taking the Guesswork out of Horticultural Lighting

By Leora Radetsky
No Comments

With 33 states and the District of Columbia having passed laws legalizing marijuana in some form, cannabis cultivation is quickly becoming a booming new business across much of the US. From an energy standpoint, unfortunately, it’s not easy being “green”.

New Frontier Data’s 2018 Cannabis Energy Report found that legal cannabis cultivation in the US consumes approximately 1.1 million megawatt hours of electricity annually – enough to power 92,500 homes or a community the size of Newark, NJ, and accounts for carbon emissions equivalent to that of 92,600 cars. And that consumption is forecasted to increase 162 percent from 2017 to 2022. The report recommended that the industry “evaluate energy-efficient and renewable energy technologies” to nip this challenge in the bud.

Growers seeking to reduce their electricity usage through more efficient lighting face a confusing landscape of options, however. It can be difficult to know what will save electricity and work well for their operations. Technology is advancing quickly and questions abound, from how long a fixture will last and whether a manufacturer’s claims about efficacy are accurate to the effectiveness of various wavelengths for growing a particular plant.

Here’s the good news: there are reliable, third-party lighting and safety standards to help indoor growers make the leap from old-school lighting to state-of-the-art light-emitting diodes (LEDs) that use a fraction of the electricity and are increasingly effective for growing crops from cannabis to tomatoes. Here’s a closer look:

Most lighting fixtures in the North American market go through rigorous inspection by certified third-party testing labs. The first part of the check is for safety – an official UL safety standard tailored for the unique challenges of the greenhouse environment was recently released (UL 8800, the Standard for Horticultural Lighting Equipment and Systems). This standard and similar safety certifications at other major labs address wiring, environmental conditions, ingress protection and worker safety related to prolonged photobiological exposure to the eyes and skin. Growers should always ask a fixture manufacturer about safety certification specifically targeted for horticultural environments.

Next on the standards checklist for horticultural fixtures is performance testing. This often happens at the same labs that do safety testing, but is designed to verify efficacy, output, spectrum and other important performance variables. Commercial labs are certified for specific standards, so that a test on a fixture is repeatable at any other lab certified to the same standard. This performance testing results in a report summarizing items like photosynthetic photon flux (PPF), input power (watts), photosynthetic flux efficacy (PPE, measured in μmol/J or micromoles of photosynthetic photons per joule of electrical input power), and spectral content (flux per nanometer (nm) between 400 and 700 nm).

Then, there are flux maintenance standards (such as IES LM-80 and IES TM-21) that help make sure the photosynthetic light output of LED products degrades at an acceptable rate to make a grower’s investment worthwhile. The testing and calculation methods that go into these standards were painstakingly developed through a consensus of knowledgeable lighting stakeholders. A key difference between general lighting and plant lighting, however, is how flux maintenance is measured and benchmarked – the bar is significantly higher for plants compared to people since their metabolism and growth are dependent on the light spectrum and amount.

A plant in flowering under an LED fixture

What’s described above just scratches the surface of the detailed testing used to determine and communicate performance features for commercial horticultural lighting fixtures. There’s a lot of important information to know, but it takes an informed reader to analyze this information and use it to select appropriate horticultural lighting. Our organization, the DesignLights Consortium (DLC), strives to make the vetting process easier for everyone, freeing up growers to focus on their core business.

In the early days of LED lighting, electric utilities had to compare these different lighting factors and reports to inform their energy efficiency rebate/incentive programs. The DLC was founded to fill this need, serving as a central clearinghouse for setting energy efficiency and other product performance minimum standards, and to evaluate products against those standards. Then and now, lighting products that pass review qualify for an online qualified products list (QPL) that utilities use to quickly and accurately incentivize high-performing products.

Credit: ProGrowTech

With its new minimum performance standards for horticultural light fixtures, the DLC seeks to accelerate the adoption of new energy-saving LED fixtures in controlled agriculture environments. To be on the new DLC Horticultural QPL, an LED fixture must be at least 10 percent more efficacious than the best non-LED alternative – a 1,000-watt double-ended high-pressure sodium (HPS) fixture. It also must have a Q90 of 36,000 hours (the number of hours before the photon flux output depreciates to 90 percent), and its driver and fan (if included) must have a rated life of at least 50,000 hours.

Most importantly, every product is listed online in a searchable, filterable database to help growers and facility designers quickly narrow their options. For example, in a retrofit, a grower might know what PPF is needed from each fixture but might also need to stay within a power budget to avoid rewiring circuits. The DLC’s Horticultural QPL can be filtered to quickly find and compare conforming products.

When a new technology is introduced, there is always uncertainty about how to optimally apply it. The horticultural world is no different. We look forward to research supporting additional predictive metrics that allow us to take advantage of the full benefits of high-performance LED and controls technologies. In the meantime, the established standards described here allow for energy efficient and safe cultivation facilities where growers can confidently produce more with less.

Beyond THC: Encouraging Cannabinoid and Terpene Production with LEDs

By Andrew Myers
No Comments

For years, tetrahydrocannabinol (THC) got all the attention. While THC certainly delivers its own benefits (such as relaxation and pain relief), there’s a whole host of other – and often overlooked – compounds found in cannabis with important benefits as well. THC is truly only the tip of the iceberg when it comes to cannabis’s potential.

As the cannabis industry evolves with changing consumer tastes and developing medical research, growers may employ techniques to boost cannabinoid and terpene profiles in their harvests – beyond merely focusing on THC. Advanced LEDs allow growers to elicit specific biological responses in cannabis crops, including increased concentrations of these naturally occurring chemical compounds.

The Foundation of Cannabis’s Effects
Whether used medicinally or otherwise, cannabis has changed our society and many of our lives – and there’s a collection of naturally occurring chemical compounds, known as cannabinoids and terpenes, to thank.

  • The cannabinoids THC and CBD are the most common and well-researched, however they are accompanied by more than 200 additional compounds, including cannabinol (CBN), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), among others.
  • The cannabis plant also contains terpenes. These structures are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.

Both cannabinoids and terpenes are found in the cannabis plant’s glandular structures known as trichomes. Look closely, and you’ll notice trichomes coating the cannabis flowers and leaves, giving the plant an almost frosty appearance.

macropistil/trichome
A macro view of the trichomes and pistils on the plant

Trichomes – which are found across several plant species – are a key aspect of a cannabis plant’s survival. The specific combination of metabolites produced by trichomes may attract certain pollinators and repel plant-eating animals. Moreover, trichomes (and specifically THC) may act as the plant’s form of sunscreen and shield the plant from harmful ultraviolet rays.

While they play an essential part in the cannabis plant’s lifecycle, trichomes are volatile and easily influenced by a range of environmental factors, including light, heat, physical agitation and time. Therefore, environment is a defining variable in the development of these important structures.

How LEDs Support Cannabinoid and Terpene Development in Crops
Spectrally tunable LEDs give indoor cannabis growers unparalleled control over their crops. As research has expanded about plants’ responses to the light spectrum, growers have discovered they are able to elicit certain physiological responses in the plant. This phenomenon is called photomorphogenesis. At its root, photomorphogenesis is a survival tactic – it’s how the plant responds to miniscule changes in its environment to increase the chances of reaching full maturity and, eventually, reproducing. While cultivated cannabis plants won’t reproduce at an indoor setting, growers can still use the light spectrum to encourage strong root and stem development, hasten the flowering process and the development of bigger, brightly colored flowers.

It makes sense that using the proper light spectrums may also have an impact on the production of specific cannabinoids and terpenes – an important factor when responding to highly specific consumer needs and desires, both within medical and adult-use markets.

Here are a few more reasons why utilizing full-spectrum LEDs can lead to higher quality cannabis:

  • Lower Heat, but the Same Intensity.
    When compared to HPS, fluorescent and other conventional lighting technologies, LEDs have a much lower heat output, but provide the same level of intensity (and often improved uniformity). This represents an enormous advantage for cannabis cultivators, as the lights can be hung much closer to the plant canopy without burning trichomes than they would be able to with other lighting technologies.
  • UV Light. Cannabinoids and terpenes are part of the cannabis plant’s natural defense mechanism, so it makes sense that lightly stressing plants can boost cannabinoid and terpene numbers. Some studies illustrate an increase in UV-B and UV-A light can lead to richer cannabinoid and terpene profiles.1 It’s a fine line to walk, though – too much UV can result in burned plants, which leads to a noticeable drop in cannabinoids.
  • Full-Spectrum Capabilities. The cannabis plant evolved over millions of years under the steady and reliable light of the sun. Full-spectrum is the closest thing to natural sunlight that growers will be able to find for indoor growing – and they’ve been shown to perform better in terms of cannabinoid development. A 2018 study titled “The Effect of Light Spectrum on the Morphology and Cannabinoid Content for Cannabis Sativa L.,” explored how an optimized light spectrum resulted in increased expression of cannabinoids CBG and THCV.2

This is the most important tip for indoor growers: your plants’ environment is everything. It can make or break a successful harvest. That means cultivators are responsible for ensuring the plants are kept in ideal conditions. Lights are certainly important at an indoor facility, but there are several other factors to consider that can affect your lights’ performance and the potency of your final product. This includes your temperature regulation, humidity, the density of plants within the space, CO2 concentration and many other variables. For the best results, your lights should be fully aligned with other environmental controls in your space. Nothing sabotages a once-promising crop like recurrent issues in the indoor environment.

solsticegrowop_feb
Indoor cultivation facilities often use high powered lights that can give off heat

Cannabinoids and terpenes take time to develop – so cultivators will want to avoid harvesting their plants too early. On the other hand, these compounds begin to degrade over time, so growers can’t wait too long either.

Cultivators seeking potent cannabinoid and terpene profiles must find a happy medium for the best results – and the best place to look is where cannabinoids and terpenes develop: the trichomes. With a microscope, cultivators can get up close and personal with these sparkly structures. Younger plants begin with clear trichomes, which eventually become opaque and change to amber. Once your plants show amber-hued trichomes, they’re ready for harvest.

The truth here is that there’s no perfect formula to elicit show-stopping cannabinoids and dizzying terpenes with every harvest. A lot of cannabis cultivation is based around trial-and-error, finding what works for your space, your business and your team. But understanding the basics around indoor environmental controls like lighting and temperature – and how they can affect the development of cannabinoids and terpenes – is an excellent place to start. Using high quality equipment, such as full-spectrum LED lighting can boost both cannabinoid and terpene production, resulting in richer, more potent and higher quality strains.


References:

  1. Lyndon, John, Teramura, Alan H., Coffman, Benjamin C. “UV-B Radiation Effects on Photosynthesis, Growth and Cannabinoid Production of Two Cannabis Sativa Chemotypes.” August 1987. Photochemistry and photobiology. Web. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1987.tb04757.x?&sid=nlm%3Apubmed
  2. Magagnini G., Grassi G., Kotiranta, S. “The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.” 2018. Medical Cannabis and Cannabinoids. Web: https://www.karger.com/Article/FullText/489030

A Playbook for Growth: Start with a True Cloud ERP as Your Foundation

By David Stephans
No Comments

Cannabis businesses have become a driving force for economic growth in the United States. We’ve all heard the statistics. In 2018, the industry accounted for approximately $10.4 billion in revenue and is slated to grow to $21 billion by 2021.

But with growth comes pressure to produce more, enhance quality and optimize operations. However, managing a cannabis business without modern, capable tools can hinder growth and leave opportunities on the table. That’s why fast-growing cannabis businesses are looking to the proven benefits of a true cloud Enterprise Resource Planning (ERP) platform to help manage production, provide insights and improve business operations. When we add in the complexity and ever-changing nature of regulation, the need for a robust operational system becomes even more critical.

David Stephans will be speaking during CIJ’s October 9th webinar, “Driving Strategic Advantage for your Cannabusiness through Process Efficiency, Quality & Compliance” Click here to learn more and register for free.Cannabis business leaders may want to develop their own “playbook” to differentiate themselves in the market. But before they start to engineer their forward-thinking approach, they should start with a cloud ERP as their foundation. This can help with everything from the most basic of needs to more sophisticated strategies. In this article, we’ll review some key cannabis business goals and tactics, and how ERP can help lay the groundwork for success.

Drive growth and expansion.

Business growth often translates into operational expansion, meaning more facilities, staff and compliance requirements to manage. A cloud ERP supports these functions, including the launch of new products, expanding pricing schedules and increasing production to meet demand. Having the ability to track and manage growth is crucial, and a cloud ERP can provide the real-time reporting and dashboards for visibility across the entire business. This includes not just operational visibility, but also a look into a company’s sales, finances and supply chain.

Foster exemplary customer experience.

Cannabis companies need to streamline processes from the moment an order is placed to when it arrives at the customer’s door. In the mind of consumers, cannabis businesses compete against the likes of Amazon. They must be able to provide a similar experience and level of service, with customers receiving orders in a couple of business days. Cloud ERP can help automate processes. And when things go wrong, it can also help with resolution, especially when it’s paired with a customer relationship management (CRM) system on the same cloud platform. For the B2B market, cloud ERP empowers account management to review past orders to better meet future customer needs.

Stay a step ahead of the game.

In the industry, change is a constant. The future will likely bring about shifts in products, regulations and suppliers. A cloud ERP can modify workflows, controls and process approvals on the fly, so companies can adapt to new requirements. It offers security against emerging risks and easy integration with other systems cannabusinesses may need. An advanced cloud ERP will also provide cutting-edge capabilities, such as AI insights and data-capture from Internet-of-Things (IoT) devices.

Ensure quality product for raving fans and avoid flags on the field through airtight compliance.

Many cannabis companies are passionate about delivering the highest-quality cannabis products. Auditability is key to both quality and compliance. Complete traceability, with lot and serial number tracking, will record comprehensive audit trails from seed to sale. A cloud ERP will incorporate RFID tags down to the plant, lot and product levels to assist in this process. As cannabis goods move through their lifecycle, the cloud ERP will append appropriate tracking to purchasing receipts, inventory as it moves between locations, products as they’re packaged and sales orders as they’re fulfilled.

As a heavily regulated industry, cannabis business is also subject to burdensome compliance standards. A cloud ERP can support the rigorous testing that’s required to assure potency and safety. It easily facilitates Good Manufacturing Practices (GMP) and Good Production Practices (GPP), which ensures products are consistently produced according to quality standards. Many regulatory agencies require digital reporting; cloud ERP can facilitate this requirement through integration with Metrc, Health Canada and the FDA. Compliance can be a costly endeavor, and this type integration saves time, money, and effort.

As you can see, a cloud ERP helps efficiently balance compliance and regulatory requirements, with operational efficiency and customer service – key strategies in any cannabusiness playbook.

Soapbox

Tips to Shrink your Shrinkage

By Carl Silverberg
No Comments

I had dinner last night with a friend who is a senior executive at one of the largest automobile companies in the world. When I explained the industry-accepted rate of 25-30% shrinkage in horticulture he said, “Are you kidding me? Can you imagine the story in the Wall Street Journal if I gave a press conference and said that we were quite content to throw away three out of every ten cars we manufactured?”

Yet, for all growers, operators and investors who complain about shrinkage, it’s an accepted part of the business. What if it wasn’t; what if you could shrink your shrinkage by 60% and get it down to 10% or less? How much more profitable would your business be and how much easier would your life be?

Let’s take the floriculture industry as our first example. You propagate chrysanthemums in February, they get repotted at the end of April and by the end of June, you might start to see some buds. In a very short time span your job changes from being a grower who manages 10,000 square feet of chrysanthemums to being an order taker. Over a period of eight weeks, you have to unload as many of those mums as possible. The sales team at Macy’s has more time to move their holiday merchandise than you do.

If you’re like most operations, your inventory tracking system consists of Excel spreadsheets and notebooks that tell you what happened in previous years so you can accurately predict what will happen this year. The notebooks give you a pretty accurate idea of where in the greenhouses your six cultivars are, how many you planted and which of the five stages they are in. You already have 30 different sets of data to manage before you add on how many you sell of each cultivar and what stage they were in.

The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.Then your first order comes in and out the window goes any firm control of where the mums are, what stage they’re in and how many of each cultivar you have left. A couple of hours after your first order, a second comes in and by the time you get back in touch, check your inventory, call back the buyer and she’s able to connect with you, those 2837 stage 3 orange mums are moving into stage 4. Only she doesn’t want stage 4 mums she only wants stage 3 so now you frantically call around to see who wants stage 4 orange mums very soon to be stage 5 mums.

And, the answer is often no one. What if you didn’t have your inventory count exact and now you have 242 yellow mums that you just found in a different location in your greenhouse and had you known they were there, you could have sold them along with 2463 other mums that you just located in various parts of your greenhouse.

It doesn’t have to be like that. We had a client in a similar situation, and they are on track to reduce their shrinkage to just a shade over 10%. The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.

And don’t think that shrinkage is an issue only in the purview of floriculture. It’s an even bigger problem for cannabis because of the high value of each crop. The numbers don’t sound as bad because unlike floriculture, you don’t have to throw out cannabis that’s not Grade A. You can always sell it for extract. But extract prices are significantly less per pound than flower in the bag.

Here’s how one grower explained it. “Because of the high value of the crop, and the only other crop I’ve worked with that high is truffles, you’re playing a much higher stakes game with shrinkage. Even if you try and salvage a bad crop by using all of the parts of the cannabis plant. Listen, the difference between Grade A and Grade C could be $1,000 for A while a pound of B/C is less than $400. If you produce a standard 180 to 200 pounds in your grow rooms, you’ve really screwed up. No operator is going to keep you if you just cost them $120,000.”

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 2

By Carl Silverberg
1 Comment

The first article of this series discussed resource management for cannabis growers. In this second piece of the series on how indoor farming has a reduced impact on the environment, we’re going to look at land use & conservation. There are really two aspects and we have to be up front and acknowledge that while our focus is on legal cannabis farming, there’s a significant illegal industry which exists and is not subject to any environmental regulation.

“Streams in Mendocino run dry during the marijuana growing season impacting Coho salmon and steelhead trout who lay their eggs in the region’s waterways.” One biologist reported seeing “dead steelhead and Coho on a regular basis in late August and September, usually due to water reduction or elimination from extensive marijuana farming.” The quotes are from an extensive article on cannabis land use by Jessica Owley in the U.C. Davis Law Review.The concept that land will stay in its natural state is a mixture of idealism and reality.

This is going to continue until it’s more profitable to go legit. For this article, we’re going to focus on the legitimate cannabis grower. On the land use side, we usually hear four main reasons for indoor growing: remaining land can stay in its natural state, fewer space usually translates to fewer waste, you conserve land and natural resources when you don’t use fossil fuels, greenhouses can be placed anywhere.

The concept that land will stay in its natural state is a mixture of idealism and reality. Just because someone only has to farm five acres of land instead of one hundred acres doesn’t necessarily mean they’re going to leave the rest in its pristine natural state. Granted the footprint for automated greenhouses is significantly less but the key is what happens to that extra space. Assuming that it will all be preserved in its natural state isn’t realistic. What is realistic is the fact that a developer may not want to build tract houses abutting a commercial greenhouse operation. If they do, likely there’s going to be more land set aside for green space than if a farm was sold outright and a series of new homes were plunked down as if it were a Monopoly board.

Combined with workforce development program funding, urban indoor farming is getting more attractive every day.That’s not the same kind of issue in urban areas where the situation is different. Despite the economic boom of the past ten years, not every neighborhood benefitted. The smart ones took creative approaches. Gotham Greens started in Greenpoint, Brooklyn and has expanded to Chicago as well. “In early 2014, Gotham Greens opened its second greenhouse, located on the rooftop of Whole Foods Market’s flagship Brooklyn store, which was the first ever commercial scale greenhouse integrated into a supermarket.”

Green City Growers in Cleveland’s Central neighborhood is another example. “Situated on a 10-acre inner-city site that was once urban blight, the greenhouse—with 3.25 acres under glass–now serves as a vibrant anchor for the surrounding neighborhood.”

The beauty of greenhouse systems even those without greenhouse software, is they can be built anywhere because the environmental concerns of potentially contaminated soil don’t exist. The federal government as well as state and local governments offer a myriad of financial assistance programs to encourage growers to develop operations in their areas. Combined with workforce development program funding, urban indoor farming is getting more attractive every day.

As for the argument that greenhouses save energy and fossil fuels, I think we can agree that it’s pretty difficult to operate a thousand-acre farm using solar power. To their credit, last year John Deere unveiled a tractor that will allow farmers to run it as a fully autonomous vehicle to groom their fields while laying out and retracting the 1 kilometer long onboard extension cord along the way. It’s a start although I’ll admit to my own problems operating an electric mower without cutting the power cord.

In a 2017 article, Kurt Benke and Bruce Tomkins stated, “Transportation costs can be eliminated due to proximity to the consumer, all-year-round production can be programmed on a demand basis, and plant-growing conditions can be optimized to maximize yield by fine-tuning temperature, humidity, and lighting conditions. Indoor farming in a controlled environment also requires much less water than outdoor farming because there is recycling of gray water and less evaporation.”

The overall trend on fossil fuel reduction was verified this week when the Department of Energy announced that renewables passed coal for the first time in U.S. history.  And on the water issue, Ms. Owley had a salient point for cannabis growers. “The federal government will not allow federal irrigation water to be used to grow marijuana anywhere, even in states where cultivation is legal.” That’s not a minor detail and it’s why outdoor farming of cannabis is going to be limited in areas where water resources and water rights are hotly debated.

Cannabusiness Sustainability

Climate Change Drives Cannabis Indoors

By Carl Silverberg
1 Comment

This is not a discussion of climate change, it’s a discussion of the impact of weather on the agriculture industry. The question for the cannabis & hemp industry, and basically the entire specialty crop industry, is what will be the impact? According to the U.S. National Climate Assessment, “Climate disruptions to agriculture have been increasing and are projected to become more severe over this century.” I’m sure that’s not much of a shock to anyone who owns a farm, orchard or greenhouse.

Every national newspaper for the past two weeks has published at least one article a day about the flooding in the Midwest, while industry newsletters and blogs have contained more in-depth stories. The question is, what can agriculture professionals do to mitigate these problems?

Relying on state and national legislators, especially heading into a presidential election year is likely to be frustrating and unrewarding. Governments are excellent at reacting to disasters and not so good at preventing them. In short, if we depend on government to take the lead it’s going to be a long wait.Instead, many farmers are looking at the future costs of outdoor farming and concluding that it’s simply cheaper, more efficient and manageable to farm indoors.

Instead, many farmers are looking at the future costs of outdoor farming and concluding that it’s simply cheaper, more efficient and manageable to farm indoors. Gone are the days when people grew hemp and cannabis indoors in an effort to hide from the police. Pineapple Express was a funny movie but not realistic in today’s environment.

Today’s hemp and cannabis growers are every bit as tech savvy as any other consumer-oriented business and one could argue that given the age of their customers (Statista puts usage by 18-49-year-olds at 40%), distributors must be even more tech savvy to compete effectively. Some estimates put the current split of cultivation at about one-third indoors/two-thirds outdoors. To date, the indoor focus has been on efficiency, quality and basically waiting for regulators to allow shipping across state lines.

A major driver in the indoors/outdoors equation is that as the weather becomes more unfriendly and unpredictable, VC’s are factoring climate disruption into their financial projections. When corn prices drop because of export tariffs, politicians lift the ban on using Ethanol during the summer months. It’s going to be a while before we see vehicles running on a combination of gasoline and CBD.

Leaving aside the case that can be made for efficiency, quality control and tracking of crops, climate change alone is going to force many growers to reassess whether they want to move indoors. And, it’s certainly going to weigh heavily in the plans of growers who are about to launch a cannabis or hemp business. Recently, one investment banker put it to me this way: greenhouses are the ultimate hedge against the weather.

Beleave Achieves ISO 9001 Certification

By Aaron G. Biros
No Comments

According to a press release, Beleave Inc. announced recently that their subsidiary, Beleave Kannabis Corporation, received the ISO 9001:2015 certification. The facility that received the certification, based in Hamilton, Ontario, was certified “for the research, development, and production of cannabis products for medicinal and recreational purposes,” reads the press release.

Beleave is a vertically-integrated cannabis business headquartered in Oakville, Ontario that cultivates cannabis as well as producing oils and extracts. The company operates in both medical and recreational sectors of the market. They have been working on developing cannabis food and beverage products, such as infused powders and sugars, expecting that the recreational cannabis market in Canada will soon open its doors to infused products in 2019.

ISO 9001:2015 is an international standard that stipulates requirements for a quality management system (QMS), showing that a facility can provide products that meet customer and regulatory requirements. ISO 9001:2015 is the most up-to-date version for the standard, which can help show a company’s commitment to quality, efficiency and consistency. The 2015 version uses criteria with an emphasis on risk-based thinking to aid in the application of the process approach, improved applicability for services and increased leadership requirements.

“We continue to develop international partnerships and plan to enter global markets”The company’s facility was certified by Bureau Veritas Certification Holding SAS in late January of 2019. According to Roger Ferreira, chief science officer at Beleave, the process of certification was no easy undertaking. “After many months of hard work and preparation, we are extremely proud to be one of the few licensed producers of cannabis to have received ISO 9001:2015 accreditation,” says Ferreira. “This certification reflects Beleave’s ongoing commitment to quality across key elements of our business, which includes research, innovation, and production of cannabis products.”

Going beyond Canada, Ferreira says they are building the foundation of a company preparing to expand internationally. “Further, this internationally recognized certification for our quality management system positions us well as we continue to develop international partnerships and plan to enter global markets,” says Ferreira. Through their ownership in Procannmed S.A.S., they are licensed to cultivate and produce medical cannabis products out of Colombia, with the goal to export products to the Latin American market. They have also partnered with Canymed GmbH, based in Germany, to further explore opportunities in the European medical cannabis market.

Seven Steps To Avoid the Green Rush Blues: Investigate Water Supplies Before Planting Cannabis

By Amy M. Steinfeld
2 Comments

A clean, reliable water supply lies at the heart of every successful cannabis farm. It’s no surprise that the stakes for finding land with ideal growing conditions, including adequate water, are high. But new buyers (and lessees) caught up in the green rush often gloss over water rights or are unaware of California’s byzantine rules governing the irrigation of cannabis.

Water rights are complex. Water regulations applicable to cannabis cultivation are even more complex. And our new climate reality convolutes things further. Longer droughts, more volatile weather, political uncertainties, increased groundwater regulation and water quality concerns are exacerbating tensions over local and statewide water supplies. In many areas of California, landowners can no longer rely on local water districts to meet their needs.

A robust investigation of the property must consider water supplies. Because a property’s water supply is dependent on water rights, local ordinances, state regulations, politics and hydrology, it’s important to consult a water lawyer (and in some instances a hydrologist) before closing. A bit of foresight can prevent a grower from being left high and dry.

The following checklist provides a roadmap to conduct water rights’ due diligence. While many of these details are California-specific, this type of due diligence applies throughout the West.

Step 1: Identify Available Water Supplies and Consider Potential Limitations On Irrigation, Including Potential Future Changes

Conduct a site visit to identify existing water infrastructure, natural water features and existing or potential water service options. Next, determine if the property is served by a public water supplier. If that’s the case, the California State Water Resources Control Board (“State Water Board”) does not require any specific documentation to irrigate cannabis, but the water supply must be disclosed in the CalCannabis license application.

Groundwater is generally the best supply for cannabis, but the era of unregulated groundwater pumping is over. Many groundwater basins in California are now governed by the Sustainable Groundwater Management Act (“SGMA”), which requires water agencies to halt overdraft and restore balanced levels of groundwater pumping from certain basins. As a result, SGMA may result in future pumping cutbacks or pumping assessments. It’s imperative to identify the local groundwater basin via the Department of Water Resources’ Bulletin 118, and determine whether the groundwater basin is adjudicated or governed by a groundwater sustainability agency. Growers should also test the local water supply’s pH and salt levels because cannabis plants are finicky and water treatment can be cost prohibitive. If a new well is needed, growers should consult with their local county before drilling a new well. In some areas, moratoriums and restrictions on drilling new wells are on the rise.

As a rule of thumb, cannabis cultivators should avoid using surface water to irrigate cannabis. Surface diversions are subject to the California Department of Fish and Wildlife’s permitting authority. And under the interim State Water Board Cannabis Policy, commercial cannabis cultivators cannot divert anysurface water during the dry season (April 1 through Oct. 31), even if they have a riparian right that can be used to irrigate other crops. During the dry season, cultivators may only irrigate using water that has been stored off-stream. And even during the wet season, cannabis cultivators must comply with instream flow requirements and check in with the state daily to ensure adequate water supplies are available. Cannabis cultivators are also required to install measuring devices and track surface water diversions daily. And buyer beware, a groundwater well that extracts water from a subterranean stream may be considered a surface-water diversion. So be especially cautious if the well is located close to a creek or river.Develop a water use plan to optimize water efficiency 

Step 2: Identify Water Supplies Used On the Property, Including the Basis of Right, and Quantify Historical Use

Review information on historic and existing water use. This may include past water bills and assessments. If there is a well on the property, the seller or lessor may have metering data, electrical records and crop data that can establish historic groundwater use. Cultivators must submit a well log to CalCannabis as part of the cannabis cultivation application. If surface water is available, the purchaser should review the State Water Board eWRIMs database for water rights permits, licenses, stock pond registrations and certificates, decisions and orders. The purchaser should also identify surface water diversion structures and review annual filings to determine compliance with all terms and conditions of the water right. Lastly, the purchaser should request all documents and contracts pertaining to water rights.

Realistically estimate water demand for irrigation and other on-site purposes.Step 3: Confirm Ownership of Right and Assess Any Limitations On Water Right

Determine whether the right has been abandoned, lost to prescription or forfeited. Evaluate the seniority of the water right, availability of the right, adequacy of place of use, purpose of use (must include irrigation), season of use, and quantity of any permitted or licensed post-1914 right. Determine whether historical diversions pursuant to an appropriative right support the full amount of the claimed right, and whether any changes to the water right are needed to support the proposed new use. Cultivators in California who plan to utilize surface water also need to file for a “Cannabis Small Irrigation Use Registration” to store water during the wet season for use during the dry season.

Step 4: Reconcile Water Demand With Available Supply

Realistically estimate water demand for irrigation and other on-site purposes. Develop a water use plan to optimize water efficiency (drip irrigation, rainwater harvesting, water monitoring, hoop structures) regardless of supply sufficiency. Many counties, such as Santa Barbara County, require that cannabis growers meet certain irrigation efficiency standards. Determine whether available supplies can meet all proposed demands, including plans for full buildout. If not, consider whether additional supplies are available for use on the property.

Step 5: Determine Water Supply Compliance Obligations

 The rights associated with water supplies are defined by their source, the time frame during which supplies can be taken, the quantity of water to which the right attaches, and any limitations on the purpose of use of the water supply. There may also be reporting requirements associated with taking and using the supply—these can include requirements to report the quantity of water used as well as information regarding the end use of the water. Failure to timely report can have serious consequences. Cannabis cultivators are also subject to additional water quality regulations and restrictions, including waste discharge requirements pursuant to the State Water Board’s Cannabis General Order.

Step 6: Negotiate Deal and Draft Conveyance Documents

After obtaining an understanding of the water supply associated with the property, the property conveyance documents may be drafted to incorporate the transfer of rights associated with the property’s water supplies. These may include the assignment of contracts pursuant to which water supplies are obtained, the transfer of permits or licenses as to the water supplies, or the transfer of water rights arising out of a judgment or decree.

Step 7: Consider Unused Water Supply Assets That Could Be Monetized 

To the extent the water supply rights associated with the property exceed the cannabis plants’ water demand, it may be possible to monetize unused or excess water supply assets through transfer of the rights to a third party.

If you have any questions about water rights related to cannabis cultivation it’s always in your best interest to contact an experienced water attorney early on in the process.

Dr. Ed Askew
Soapbox

Distillation Of Your Cannabis Extract: Ignorance Is Not Bliss

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

In a previous article I discussed the elephant in the room for clients of laboratory services- the possibility of errors, inaccurate testing and dishonesty.

Now, I will explain how the current “smoke and mirrors” of distillation claims are impacting the cannabis industry in the recreational and medical areas. We have all heard the saying, “ignorance is bliss.” But, the ignorance of how distillation really works is creating misinformation and misleading consumers.

That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.There have been reports of people claiming that “Distilled cannabis productsthat are Category 2 distillate are pesticide free and phosphate free, while Category 1 has pesticides and phosphates, but within acceptable limits”

The problem is that these claims of Category 1 and Category 2 cannot be proven just by saying they are distilled. Ignorance of the physical chemistry rules of distillation will lead to increased concentrations of pesticides and other organic contaminants in the supposedly purified cannabis distillate. That is, just because a cannabis extract has been distilled, doesn’t mean it is safer.

So, let’s look at a basic physical chemistry explanation of the cannabis distillation process.

  • First off, you must have an extract to distill. This extract is produced by butane, carbon dioxide or ethanol extraction of cannabis botanical raw material. This extract is a tarry or waxy solid. It contains cannabinoids, terpenes and other botanical chemicals. It will also contain pesticides, organic chemicals and inorganic chemicals present in the raw material. The extraction process will concentrate all of these chemical compounds in the final extract.
  • Now you are ready to distill the extract. The extract is transferred to the vacuum distillation vessel. Vacuum distillation is typically used so as to prevent the decomposition of the cannabinoid products by thermal reactions or oxidation. Under a vacuum, the cannabinoids turn into a vapor at a lower temperature and oxygen is limited.
  • Part of the vacuum distillation apparatus is the distillation column. The dimensions of this column (length and width) along with the packing or design (theoretical plates) will determine the efficiency of distillation separation of each chemical compound. What this means is that the more theoretical plates in a column, the purer the chemical compound in the distillate. (e.g. Vigreux column = 2-5 theoretical plates, Oldershaw column = 10-15 plates, Sieve plate column = any number you can pay for).
  • The temperature and vacuum controls must be adjustable and accurate for all parts of the distillation apparatus. Failure to control the temperature and vacuum on any part to the apparatus will lead to:
    • Thermal destruction of the distillate
    • Oxidation of the distillate
    • Impure distillate

Now, you can see that a proper distillation apparatus is not something you throw together from a high school chemistry lab. But just having the proper equipment will not produce a pure cannabis product. The physical chemistry that takes place in any distillation is the percentage a chemical compound that occurs in the vapor phase compared to the percentage in liquid phase.So, how can you produce a cannabis distillate that is clean and pure?

For example, let’s look at whiskey distillation. In a simple pot still, alcohol is distilled over with some water to produce a mixture that is 25%-30% ethanol. Transferring this distillate to an additional series of pot stills concentrates this alcohol solution to a higher concentration of 85%-90% ethanol. So, each pot still is like a single theoretical plate in a distillation column.

But, if there are any chemical compounds that are soluble in the vapor produced, they will also be carried over with the vapor during distillation. This means that pesticides or other contaminants that are present in the cannabis extract can be carried over during distillation!

So, how can you produce a cannabis distillate that is clean and pure?

  • Produce a cannabis extract that has lower concentrations of bad chemicals. Since a lot of the cannabis extracts available for distillation are coming from grey-black market cannabis, the chances of contamination are high. So, the first thing to do is to set up an extraction cleanup procedure.
    • An example of this is to wash the raw extract to remove inorganic phosphates. Then recrystallize the washed extract to remove some of the pesticides.
  • Make sure that the distillation apparatus is set up to have proper temperature and vacuum controls. This will limit production of cannabis decomposition products in the final distillate.
  • Make sure your distillation apparatus has more than enough theoretical plates. This will make sure that your cannabis distillate has the purity needed.
  • Finally, make sure that the staff that operates the cannabis distillation processes are well trained and have the experience and knowledge to understand their work.

Inexperienced or under-trained individuals will produce inferior and contaminated product. Additional information of extract cleanup and effective vacuum distillation can be obtained by contacting the author.

VinceSebald
Soapbox

Automation – Planning is Everything

By Vince Sebald
No Comments
VinceSebald

Automation of processes can provide great benefits including improved quality, improved throughput, more consistency, more available production data, notifications of significant events and reduced costs. However, automation can also be expensive, overwhelm your workforce, cause future integration problems and magnify issues that you are currently experiencing. After all, if a machine can do work 100 times faster than a human, it can also produce problems 100 times faster than a human. Whether it is a benefit or a scourge depends largely on the implementation process.

There are thousands of possible technology solutions for just about any production problem. The trick to getting results that will work for your company is to use good engineering practices starting from the beginning. Good engineering practices are documented in various publications including ISPE Baseline Guides, but there are common threads among all such guides. What will the system be used for and what problem is it intended to solve?

The key is implementing a system that is fit for your intended use. As obvious as it sounds, this is often the most overlooked challenge of the process. In the grand scheme of things, it is a MUCH better proposition to spend more time planning and have a smooth operation than implement a system quickly and fight it because it isn’t a good fit for the intended use. The industry is littered with systems that were prematurely implemented and complicate rather than simplify operations. Planning is cheap, but fixing is expensive.

The most important step to getting an automated system that will work for you is also the first:

Defining “what” you need the system to do: User Requirements

Automation Runaway
Once automation is in place, it can be a boon to production, but don’t let your systems get ahead of your planning! It can be difficult to catch up.

With decades of experience in the automation industry, I have seen systems in many industries and applications and it is universally true that the definition of requirements is key to the success of the automation adventure. To clarify, the user requirements are intended to define “what” the system is required to do, rather than “how” it will do it. This means that persons that may not be familiar with the automation technologies can still be (and usually are) among the most important contributors to the user requirements document. Often, the people most familiar with the task that you wish to automate can contribute the most to the User Requirements document.

Some of the components of a User Requirements document typically include:

  • Purpose: What will the system be used for and what problem is it intended to solve?
  • Users: Who will be the users of the system and what is their relevant experience?
  • Integration: Is the system required to integrate into any existing or anticipated systems?
  • Regulatory Requirements: Is the system required to meet any regulatory requirements?
  • Functions: What is the system required to do? This may include operating ranges, operator interface information, records generation and storage, security, etc.
  • Performance: How many units per hour are required to process?  What percent non-conforming product is acceptable?
  • Environment: What environment is the system required to operate in? Indoor, outdoor, flammable, etc.
  • Documentation: What documentation is required with the system to support ongoing maintenance, calibration, etc.?
  • Warranties/Support: Will you perform work in-house, or will the manufacturer support the system?

The level of detail in the User Requirements should be scaled to the intended use. More critical operations may require more detailed and formal User Requirements. At a minimum, the User Requirements could be a punch list of items, but a detailed User Requirements may fill binders. The important thing is that you have one, and that the stakeholders in the operation have been involved in its production and approval.Once completed, the User Requirements can be a very good document to have for prospective providers of solutions to focus their attention on what is important to you, the customer.

Equally important to the process is the idea of not over-constraining the potential solutions by including “how” the system will meet the requirements within the User Requirements. If it is required to use specific technologies for integration with other existing systems, it is appropriate to include that information in the User Requirements. However, if use of a particular technology (e.g. “wireless”) is not required, the inclusion may unnecessarily eliminate viable design options for systems that may address the requirements.

Once completed, the User Requirements can be a very good document to have for prospective providers of solutions to focus their attention on what is important to you, the customer. This helps to ensure that they focus their efforts in the areas that match your needs and they don’t waste resources (which translate to your costs) in areas that don’t have tangible benefits to you, the customer. It also gives you a great tool to “value engineer”, meaning that you can consider cutting design options that do not support the User Requirements, which can reduce project costs and timelines, keeping things lean and on track.

Further steps in the project are built around the User Requirements including system specifications provided by vendors, testing documentation and the overall turnover package. An appropriately scaled User Requirements document is a low cost, easy way to ensure that your automated system will serve you well for years to come. Alternatively, the lack of a User Requirements document is an all-too-common indicator that there may be challenges ahead including scope creep, missed deadlines and unacceptable long term performance.


Feel free to reach Vince at vjs@sebaldconsulting.com with any questions you might have.