Tag Archives: environmental

Quality in Manufacturing CBD Products: Q&A with the CEO of Medterra

By Cannabis Industry Journal Staff
2 Comments

The Center for Food Safety is a non-profit public interest and environmental advocacy organization. They work to protect public health and the environment by helping curb the use of harmful food production and promoting organic production and other sustainable agriculture practices. Earlier this month, the Center for Food Safety launched a new campaign in the hemp and CBD space: their Hemp CBD Scorecard evaluates some of the widely-known hemp and CBD companies on their production and processing methods, testing protocols and transparency to consumers.

Medterra is a CBD products company founded in 2017. They are one of a handful of companies to receive an ‘A’ letter grade on the Center for Food Safety’s Hemp CBD Scorecard. Jay Hartenbach, CEO of Medterra, says 3rd party testing, validation and strict quality standards are the key to earning recognition from organizations like the Center for Food Safety. We sat down with Jay to hear more about how his company is leading the industry in the space of self-regulation, transparency and sustainability.

Jay Hartenbach, CEO of Medterra

Cannabis Industry Journal: Tell us a bit about the history of Medterra – how did it become the brand it is today?

Jay Hartenbach: I’ve always had a passion for entrepreneurship and science. At Duke, I focused on Engineering Management and earned my B.S. in Biomedical Engineering from Miami University in 2012.

In 2016, I received a call from my former college mate J.P. Larsen who pitched me the idea to start a CBD company. After recognizing the potential of CBD to help a variety of issues, we set up shop in my living room and started building out Medterra in 2017.

With this growing need for trusted products without THC at affordable pricing, our startup of two expanded to nearly 100 employees in less than three years. We currently operate out of our headquarters in Irvine, California as one of today’s leading global CBD brands.

From the beginning, we recognized the power of CBD to help all walks of life. With so many companies prioritizing profits over their consumers, we saw an opportunity to stand out with world class customer service, affordable pricing, and efficacious amounts of CBD.

These priorities have remained unchanged for us as a company and it makes decision making easy for us. If you focus on prioritizing your customers, there is not any ability to cut corners or be content with the status quo of the industry. Consumers know they can trust the Medterra brand and we are continually pushing ourselves to make more effective products.

CIJ: Tell us about your quality standards – what do you do to ensure safety, quality and transparency with consumers?

Jay: We are consistently recognized in the industry for adhering to only the strictest standards for quality. From cultivation to finished product, we test our products multiple times to ensure quality standards are met and there are no unwanted compounds. Medterra CBD has always committed itself to manufacturing CBD products consumers can feel confident in.

In addition, Medterra is proud to be one the first 13 CBD companies to be given the U.S. Hemp Authority’s Certification Seal. This is currently the most stringent 3rd party certification in Hemp. With audits on cultivation, manufacturing and final products, the US Hemp Authority Seal signifies that we as a company meet the highest standards in the industry.

Furthermore, our partnership with Baylor College of Medicine was the first of its kind. Focused on testing both current products as well as validating new products, our partnership with Baylor allows us to provide the most efficacious products to our consumers.

CIJ: Tell us about your farming, processing and testing practices.

Jay: Medterra provides customers with true seed-to-sale purchases. Our industrial hemp is grown and extracted in accordance with the strict guidelines of the Kentucky Department of Agriculture. Each and every product that leaves the facility must be third-party tested to ensure consistency, quality and safety.

CIJ: How do you think the Hemp CBD Scorecard helps move the industry forward?

Jay: Given the unclear federal regulatory landscape, this is an important step in the right direction for CBD companies, because it allows consumers to be confident in the products they use. The more 3rd party testing and verification of CBD companies the better. With these presented to the public, CBD companies are less likely to cut corners and are forced to act in their consumer’s best interest. The Hemp CBD Scorecard helps move the industry forward because it forces accountability.

CIJ: How do you think the hemp/CBD industry will evolve with respect to product safety and transparency without government regulation?

Jay: We at Medterra will continue to go the extra mile and take steps to ensure consumers are getting only quality ingredients. Through these efforts, we hope to remove the stigma associated with cannabis cultivation and educate consumers on the efficacy and sustainability of hemp-derived CBD.

Comparable to Organic: How This California Company Aims to Certify Cannabis

By Aaron G. Biros
No Comments

Cannabis that contains more than 0.3% THC is not eligible for USDA organic certification, due to the crop’s Schedule I status. While some hemp farmers are currently on the path to obtain a USDA organic certification, the rest of the cannabis industry is left without that ability.

Growers, producers, manufacturers and dispensaries that utilize the same practices as the national organic program should be able to use that to their advantage in their marketing. Ian Rice, CEO of Envirocann, wants to help cannabis companies tap into that potential with what he likes to call, “comparable to organic.”

Ian Rice, CEO of Envirocann & co-founder of SC Labs

Rice co-founded SC Laboratories in 2010, one of the first cannabis testing labs in the world, and helped develop the cannabis industry’s first testing standards. In 2016, Rice and his partners at SC Labs launched Envirocann, a third-party certification organization, focused on the quality assurance and quality control of cannabis products. Through on-site inspections and lab testing, Envirocann verifies and subsequently certifies that best practices are used to grow and process cannabis, while confirming environmental sustainability and regulatory compliance.

“Our backyard in Santa Cruz and the central coast is the birthplace of the organic movement,” says Rice. California Certified Organic Farms (CCOF), founded in Santa Cruz more than 40 years ago, was one of the first organizations in the early 1990s that helped write the national organic program.

“What we came to realize in the lab testing space and as the cannabis market grew, was that a lot of cannabis companies were making the organic claims on their products,” says Rice. “At the time, only one or two organizations in the cannabis space were making an attempt to qualify best practices or create an organic-type feel of confidence among consumers.” What Rice saw in their lab was not cannabis that could be considered organic: “We saw products being labeled as organic, or with certain claims of best practices, that were regularly failing tests and testing positive for banned chemicals. That really didn’t sit well with us.”

Coastal Sun Farms, Enviroganic-certified

At the time, there was no real pathway to certify cannabis products and qualify best practices. “We met with a few people at the CCOF that were very encouraging for us to adopt the national organic program’s standards for cannabis. We followed their lead in how to adopt the standards and apply a certification, building a vehicle intended to certify cannabis producers.”

Because of their background in lab testing they added the requirement for every crop that gets certified to undergo a site inspection, sampling, as well as a pesticide residue test to confirm no pesticides were used at all during the production cycle. One of their clients is Coastal Sun Farms, a greenhouse and outdoor cannabis producer. “They grow incredible products at a high-level, commercial scale at the Enviroganic standard,” says Rice. “They have been able to prove that organic cannabis is economically viable.”

The Envirocann certification goes a bit beyond the USDA’s organic program in helping their clients with downstream supply chain risk management tools (SCRM). “Because of the rigorous testing of products to get certified and go to market, we are getting way ahead of supply chain or production issues,” says Rice. “That includes greater oversight and transparency, not just for marketing the final product.”

A good example of using SCRM to a client’s advantage is in the extraction business. A common scenario recently in the cannabis market involves flower or trim passing the pesticide tests at the lab. But when that flower makes it down the supply chain to a manufacturer, the extraction process concentrates chemical levels along with cannabinoid levels that might have previously been acceptable for flower. “I’ve witnessed millions and millions of dollars evaporate because flower passed, but the concentrated final product did not,” says Rice. “We’ve introduced a tool to get ahead of that decision-making process, looking beyond just a pass/fail. With our partner labs, we look at the chromatograms in greater detail beyond regulatory requirements, which gives us information on trace levels of chemicals we may be looking for. It’s a really rigorous audit on these sites and it’s all for the benefit of our clients.”

Envirocann has also recently added a processing certification for the manufacturing sector and a retail certification for dispensaries. That retail certification is intended to provide consumers with transparency, truth in labeling and legitimate education. The retail certification includes an assessment and audit of their management plan, which goes into details like procurement and budtender education, as well as basic considerations like energy usage and waste management.

Fog City Farms, Envirocann-certified

While Envirocann has essentially adopted the USDA’s organic program’s set of standards for what qualifies organic producers, which they call “Enviroganic,” they also certify more conventional producers with their “Envirocann” certification. “While these producers might not be considered organic farmers, they use conventional methods of production that are responsible and deserve recognition,” says Rice. “A great example for that tier would be Fog City Farms: They are growing indoor with LED lighting and have multiple levels in their indoor environment to optimize efficiency and minimize their impact with waste and energy usage, including overall considerations for sustainability in their business.”

Looking to the future, Ian Rice is using the term “comparable to organic” very intentionally, preparing for California’s roll out of their own organic cannabis program. The California Department of Food and Agriculture (CDFA) is launching the “OCal Comparable-to-Organic Cannabis Program.” Envirocann is obviously using the same language as the CDFA. That’s because Envirocann aims to be one of the verifying agents under the CDFA’s new program. That program will begin on January 1, 2021.

plantsjacques

Optimizing Your LED Spectrum for Leaf Surface Temperature

By Andrew Myers
5 Comments
plantsjacques

Every detail counts at an indoor grow facility. Indoor growers have complete control over nearly every aspect of their crop, ranging from light intensity to air circulation. Among the most important factors to regulate is temperature. While ambient air temperature is critical, growers will also want to measure leaf surface temperature (LST).

To illustrate, let’s say you keep your living room at a cozy 76 degrees. Then, if you place a thermometer under your tongue – your body is (hopefully) not at 76 degrees but is likely between a healthy temperature of 97 to 99 degrees.

A similar story can be told for cannabis plants grown indoors. A grow facility’s ambient air is often different than the plants’ LST. Finding an ideal LST for plant growth can be complex, but modern technology, including spectrally tunable LED grow lights, can simplify monitoring and maintaining this critical aspect.

Why Should Growers Care About LST?

Temperature plays a pivotal role in plant health. Many biochemical reactions contributing to growth and survival only occur within an ideal temperature range. If temperatures dip or spike dramatically, growers may witness inhibited growth, plant stress or irreversible damage to their crops.

The leaf is among the most important plant structures as it’s where most metabolic processes happen. Therefore, finding an optimum LST can improve growth rate and the production of metabolites such as pigments, terpenes, resins and vitamins.

Because many plants rely on their leaves for survival, it makes sense that leaves have their own temperature regulation system. Evaporation through pores in the leaf – known as stomata – can cool the plant through a process called transpiration. Up to 90% of water absorbed is used for transpiration, while 10% is used for growth.

The efficacy of transpiration is determined by the vapor pressure deficit (VPD), which refers to the relative humidity in the ambient air compared to the relative humidity in the leaf. If relative humidity is low, the VPD can be too high, which may cause plants to have withered, leathery leaves and stunted growth. On the other hand, a low VPD correlates to high relative humidity, and can quickly result in disease and mineral deficiencies. Higher humidity often results in a higher LST as transpiration may not be as effective.

When it comes to LST, growers should follow these basic guidelines:

  • Most cannabis plants’ LST should fall between 72 and 86 degrees – generally warmer than the ambient air.
  • LST varies depending on individual cultivar. For example, plants that have evolved in colder climates can generally tolerate cooler temperatures. The same can be said for those evolved in equatorial or temperate climates.
  • CO2 availability also plays a role in LST; CO2 generally raises the target temperature for photosynthesis.

How Does Light Spectrum Affect LST?

We know that CO2 concentration, specific genetic markers and ambient temperature all play an important role in moderating LST. But another important factor at an indoor grow is light spectrum – especially for those using spectrally tunable LEDs. Growers will want to optimize their light spectrum to provide their crop with ideal conditions.

A combination of red and blue wavelengths is shown to have the greatest impact on photosynthesis and, thus, LST. Photons found along the green and yellow wavelengths may not be absorbed as efficiently and instead create heat.

solsticegrowop_feb
Indoor cultivator facilities often use high powered lights that can give off heat

Optimized light spectrums – those with an appropriate balance between red and blue light – create more chemical energy instead of heat, thereby resulting in a lower LST. Using fixtures that are not spectrally tuned for plant growth, on the other hand, can waste energy and ultimately contribute to a higher LST and ambient temperature, negatively affecting plant growth. Consequently, measuring LST doesn’t only indicate ideal growing conditions but also indirectly illustrates the efficiency of your grow lights.

LED fixtures already run at a lower temperature than other lighting technologies, so indoor growers may need to raise the ambient temperature at their grow facilities to maintain ideal LST. Switching to spectrally tuned LEDs may help growers cut down on cooling and dehumidifying costs, while simultaneously improving crop health and productivity.

What’s the Best Way to Measure LST?

There are several tools available for growers to measure LST, ranging from advanced probes to specialty cameras. However, many of these tools provide a reading at a specific point, rather than the whole leaf, leading to some inaccuracies. Temperature can dramatically vary across the leaf, depending if parts are fully exposed to the light or in the shadows.

Investing in a forward-looking infrared camera (FLIR) gives indoor growers a more accurate picture of LST and light efficiency. That being said, growers should not only measure leaves at the top of the plant, but across the middle and bottom of the plant as well. That way, growers receive a complete snapshot of growing conditions and can make changes as needed.

At an indoor grow facility, it’s not enough to only measure ambient room temperature. Of course, this aspect is important, but it will paint an incomplete picture of plant health. Measuring LST gives growers nuanced insights as to how plants respond to their environment and how they can better encourage resilient, healthy growth.

Using spectrally tunable LEDs makes achieving LST easier and more cost-effective. Lights with optimized spectrums for plant growth ensure no energy is wasted – resulting in superior performance and efficiency.

The Power of Prevention: Pathogen Monitoring in Cannabis Cultivation and Processing Facilities

By Nathan Libbey
2 Comments

As the cannabis market matures and the value chain becomes modernized, it’s important to address product safety in a comprehensive way. In other areas of manufacturing, Hazard Analysis & Critical Control Points (HACCP) has been the standard for reducing hazards both for employees and for the products themselves. A Critical Control Point (CCP) is any spot from conception to consumption where a loss of control can potentially result in risk (Unnevehr, 1996). In the food realm, HACCP has been used to drive quality enhancements since the 1980s (Cichy, 1982).

In a nutshell, HACCP seeks to help identify where a problem may enter a product or environment and how that problem may be addressed before it escalates. In cannabis, these hazards include many of the same problems that food products have: specifically molds, yeasts, and pathogenic bacteria (Listeria, E. coli, etc.). While the current industry standard is to test products at the end stage for these contaminants, this late-stage pass/fail regimen leads to huge lots of destroyed product and a risk for consumer distrust (Yamashiro, 2019). HACCP, therefore, should be applied at every stage of the production process.

Pathogen Environmental Monitoring (PEM) is a tool that can be used to identify CCPs in a cannabis cultivation or processing facility. The main goal of a PEM program is to find a contaminant before it reaches a surface that touches the product or the product itself. PEM is conducted using a pre-moistened swab or a sponge to collect a sample from the cannabis environment. The swab can then be sent to a lab for microbial testing. Keys to an effective PEM are:

1. Start with a broad stroke – When the FDA comes to a facility suspected of producing pathogen-laced food products, they conduct what is known as a Swab-a-thon. A Swab-a-thon is a top to bottom collection of samples, usually totaling 100 or more. Similarly, preemptively swabbing should be the first step in any PEM—swab everything to see what exists as a baseline.

2. Map your scene – identify on a map of your facility the following:

  • Cannabis contact surfaces (CCS) (belts, clippers, tables, etc)
  • Non-cannabis contact surfaces (Non-CCS) (floors, lighting, drains, etc)
  • Flow of air and people (where do air and people enter and where do they go?

Identifying the above zones will help deepen your understanding of where contaminants may come into contact with cannabis and how they may migrate from a Non-CCS to a CCS. 

3. Plan and execute:

  • Based on the results of mapping, and Swab-a-thon, identify where and when you will be collecting samples on a consistent and repeatable basis. Emphasis should be placed on areas that are deemed a risk based on 1) and 2). Samples should be collected at random in all zones to ensure comprehensive screening.

4. Remediate and modify:

  • If you get a positive result during PEM, don’t panic—pathogens are ubiquitous.
  • Remediate any trouble spots with deep cleaning, remediation devices or other protocols.
  • Re-test areas that were positive for pathogens to ensure remediation is successful.
  • Revisit and modify the plan at least once a year and each time a new piece of equipment is added or production flow is otherwise changed.

The steps above are a good starting point for a grower or processor to begin a PEM. Remember that this is not a one-size-fits-all approach to safety; each facility has its own unique set of hazards and control points.

Comprehensive guides for PEM can be found at the links below, many of the concepts can be applied to cannabis production.


https://affifoodsafety.org/lcp/advanced-search/

http://www.centerforproducesafety.org/amass/documents/document/263/Listeria%20Guidance%20UFPA%202013.pdf

Cichy, R. (1982). HACCP as a quality assurance tool in a commissary food-service system. International Journal of Hospitality Management, 1(2), 103-106.

Unnevehr, L., & Jensen, H. (1996). HACCP as a Regulatory Innovation to Improve Food Safety in the Meat Industry. American Journal of Agricultural Economics, 78(3), 764-769.

Yamashiro, C, & Baca, Y. (2019).  Prevent high-value cannabis crop loss with innovative environmental monitoring tool.

Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

Rapid Pathogen Detection for the 21st Century: A Look at PathogenDx

By Aaron G. Biros
No Comments

In 1887, Julius Petri invented a couple of glass dishes, designed to grow bacteria in a reproducible, consistent environment. The Petri dish, as it came to be known, birthed the scientific practice of agar cultures, allowing scientists to study bacteria and viruses. The field of microbiology was able to flourish with this handy new tool. The Petri dish, along with advancements in our understanding of microbiology, later developed into the modern field of microbial testing, allowing scientists to understand and measure microbial colonies to detect harmful pathogens in our food and water, like E. coli and Salmonella, for example.

The global food supply chain moves much faster today than it did in the late 19th century. According to Milan Patel, CEO of PathogenDx, this calls for something a little quicker. “Traditional microbial testing is tedious and lengthy,” says Patel. “We need 21st century pathogen detection solutions.”

Milan Patel first joined the parent company of PathogenDx back in 2012, when they were more focused on clinical diagnostics. “The company was predominantly built on grant funding [a $12 million grant from the National Institute of Health] and focused on a niche market that was very specialized and small in terms of market size and opportunity,” says Patel. “I realized that the technology had a much greater opportunity in a larger market.”

Milan Patel, CEO of PathogenDx
Photo: Michael Chansley

He thought that other markets could benefit from that technology greatly, so the parent company licensed the technology and that is how PathogenDx was formed. Him and his team wanted to bring the product to market without having to obtain FDA regulatory approval, so they looked to the cannabis market. “What we realized was we were solving a ‘massive’ bottleneck issue where the microbial test was the ‘longest test’ out of all the tests required in that industry, taking 3-6 days,” says Patel. “We ultimately realized that this challenge was endemic in every market – food, agriculture, water, etc. – and that the world was using a 140-year-old solution in the form of petri dish testing for microbial organisms to address challenges of industries and markets demanding faster turnaround of results, better accuracy, and lower cost- and that is the technology PathogenDx has invented and developed.”

While originally a spinoff technology designed for clinical diagnostics, they deployed the technology in cannabis testing labs early on. The purpose was to simplify the process of testing in an easy approach, with an ultra-low cost and higher throughput. Their technology delivers microbial results in less than 6 hours compared to 24-36 hours for next best option.

The PathogenDx Microarray

Out of all the tests performed in a licensed cannabis testing laboratory, microbial tests are the longest, sometimes taking up to a few days. “Other tests in the laboratory can usually be done in 2-4 hours, so growers would never get their microbial testing results on time,” says Patel. “We developed this technology that gets results in 6 hours. The FDA has never seen something like this. It is a very disruptive technology.”

When it comes to microbial contamination, timing is everything. “By the time Petri dish results are in, the supply chain is already in motion and products are moving downstream to distributors and retailers,” Patel says. “With a 6-hour turnaround time, we can identify where exactly in the supply chain contaminant is occurring and spreading.”

The technology is easy to use for a lab technician, which allows for a standard process on one platform that is accurate, consistent and reproduceable. The technology can deliver results with essentially just 12 steps:

  1. Take 1 gram of cannabis flower or non-flower sample. Or take environmental swab
  2. Drop sample in solution. Swab should already be in solution
  3. Vortex
  4. Transfer 1ml of solution into 1.5ml tube

    A look at how the sample is added to the microarray
  5. Conduct two 3-minute centrifugation steps to separate leaf material, free-floating DNA and create a small pellet with live cells
  6. Conduct cell lysis by adding digestion buffer to sample on heat blocks for 1 hour
  7. Conduct Loci enhancement PCR of sample for 1 hour
  8. Conduct Labelling PCR which essentially attaches a fluorescent tag on the analyte DNA for 1 hour
  9. Pipette into the Multiplex microarray well where hybridization of sample to probes for 30 minutes
  10. Conduct wash cycle for 15 minutes
  11. Dry and image the slide in imager
  12. The imager will create a TIFF file where software will analyze and deliver results and a report

Their DetectX product can test for a number of pathogens in parallel in the same sample at the same time down to 1 colony forming unit (CFU) per gram. For bacteria, the bacterial kit can detect E. coli, E. coli/Shigella spp., Salmonella enterica, Listeria and Staph aureus, Stec 1 and Stec 2 E.coli. For yeast and mold, the fungal kit can test for Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus.

Their QuantX is the world’s first and only multiplex quantification microarray product that can quantify the microbial contamination load for key organisms such as total aerobic bacteria, total yeast & mold, bile tolerant gram negative, total coliform and total Enterobacteriaceae over a dynamic range from 100 CFU/mL up to 1,000,000 CFU/mL.

Not all of the PathogenDx technology is designed for just microbial testing of cannabis or food products. Their EnviroX technology is designed to help growers, processors or producers across any industry identify areas of microbial contamination, being used as a tool for quality assurance and hazard analysis. They conducted industry-wide surveys of the pathogens that are creating problems for cultivators and came up with a list of more than 50 bacterial and fungal pathogens that the EnviroX assay can test for to help growers identify contamination hotspots in their facilities.

Using the EnviroX assay, growers can swab surfaces like vents, fans, racks, workbenches and other potential areas of contamination where plants come in contact. This helps growers identify potential areas of contamination and remediate those locations. Patel says the tool could help growers employ more efficient standard operating procedures with sanitation and sterilization, reducing the facility’s incidence of pathogens winding up on crops, as well as reduction in use of pesticides and fungicides on the product.

Deploying this technology in the cannabis industry allowed Milan Patel and the PathogenDx team to bring something new to the world of microbial testing. Their products are now in more than 90 laboratories throughout the country. The success of this technology provides another shining example of how the cannabis market produces innovative and disruptive ideas that have a major impact on the world, far beyond cannabis itself.

Soapbox

The Stress of a Grower

By Carl Silverberg
2 Comments

Tell me that you can’t relate to this story.

You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”

You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.

adamJgrow
Monitoring a large grow room can be a stressful task.

“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”

You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.

This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.

“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”

You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.

The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” 

“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”

Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.

This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.

“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”

As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 1

By Carl Silverberg
4 Comments

Core values often get wrapped into buzzwords such as sustainability, locally sourced and organic. In the first part of a series of four articles exploring greenhouses and the environment, we’re going to take a look at indoor vs. outdoor farming in terms of resource management.

Full disclosure; I love the fact that I can eat fresh blueberries in February when my bushes outside are just sticks. Is there a better way to do it than trucking the berries from the farm to a distribution plant to the airport, where they’re flown from the airport to a distribution center, to the grocery store and finally to my kitchen table? That’s a lot of trucking and a lot of energy being wasted for my $3.99 pint of blueberries.The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. 

If those same blueberries were grown at a local greenhouse then trucked from the greenhouse directly to the grocery store, that would save diesel fuel and a lot of carbon emissions. People who can only afford to live near a highway, a port or an airport don’t need to ask a pulmonary specialist why their family has a higher rate of COPD than a family who lives on a cul-de-sac in the suburbs.

Fact: 55% of vegetables in the U.S. are grown under cover. The same energy saving principles apply to indoor cannabis and the reasons are consumer driven and producer driven. The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. They want it for themselves and they want it for their kids.

The rapid proliferation of greenhouses over the past ten years is no coincidence. Millennials are forcing changes: organic fruit and vegetables now account for almost 15% of the produce market. A CNN poll last month revealed that 8 of 10 of registered Democrats listed climate change as a “very important” priority for presidential candidates. The issue is not party I.D.; the issue is that a large chunk of Americans are saying they’re worried about the direct and indirect impacts of climate change, such as increased flooding and wildfires.

So how does the consumer side tie into the cannabis industry? Consumers like doing business with companies who share their values. The hard part is balancing consumer values with investor values, which is why many indoor growers are turning to cultivation management platforms to help them satisfy both constituencies. They get the efficiency and they get to show their customers that they are good stewards of their environment. The goal is to catch things before it’s too late to save the plants. If you do that, you save the labor it costs to fix the problem, the labor and the expense of throwing away plants and you reduce pesticide and chemical usage. When that happens, your greenhouse makes more money and shows your customers you care about their values.

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers.Let’s add some more facts to the indoor-outdoor argument. According to an NCBI study of lettuce growing, “hydroponic lettuce production had an estimated water demand of 20 liters/kg, while conventional lettuce production had an estimated water demand of 250 liters/kg.”  Even if the ratio is only 10:1, that’s a huge impact on a precious resource.

Looking at the pesticide issue, people often forget about the direct impact on people who farm. “Rates in the agricultural industry are the highest of any industrial sector and pesticide-related skin conditions represent between 15 and 25% of pesticide illness reports,” a 2016 article in The Journal of Cogent Medicine states. Given the recent reports about the chemicals in Roundup, do we even need to continue the conversation and talk about the effects of fertilizer?

I’ll finish up with a quote from a former grower. “The estimates I saw were in the range of between 25%-40% of produce being lost with outdoor farming while most greenhouse growers operate with a 10% loss ratio.”

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers. Lastly, most Americans simply have a moral aversion to seeing farms throw away food when so many other people are lined up at food banks.

Heavy Metals Testing: Methods, Strategies & Sampling

By Charles Deibel
3 Comments

Editor’s Note: The following is based on research and studies performed in their Santa Cruz Lab, with contributions from Mikhail Gadomski, Lab Manager, Ryan Maus Technical Services Analyst, Laurie Post, Director of Food Safety & Compliance, and Charles Deibel, President Deibel Cannabis Labs.


Heavy metals are common environmental contaminants resulting from human industrial activities such as mining operations, industrial waste, automotive emissions, coal fired power plants and farm/house hold water run-off. They affect the water and soil, and become concentrated in plants, animals, pesticides and the sediments used to make fertilizers. They can also be present in low quality glass or plastic packaging materials that can leach into the final cannabis product upon contact. The inputs used by cultivators that can be contaminated with heavy metals include fertilizers, growing media, air, water and even the clone/plant itself.

The four heavy metals tested in the cannabis industry are lead, arsenic, mercury and cadmium. The California Bureau of Cannabis Control (BCC) mandates heavy metals testing for all three categories of cannabis products (inhalable cannabis, inhalable cannabis products and other cannabis and cannabis products) starting December 31, 2018. On an ongoing basis, we recommend cultivators test for the regulated heavy metals in R&D samples any time there are changes in a growing process including changes to growing media, cannabis strains, a water system or source, packaging materials and fertilizers or pesticides. Cultivators should test the soil, nutrient medium, water and any new clones or plants for heavy metals. Pre-qualifying a new packaging material supplier or a water source prior to use is a proactive approach that could bypass issues with finished product.

Testing Strategies

The best approach to heavy metal detection is the use of an instrument called an Inductively Coupled Plasma Mass Spectrometry (ICP-MS). There are many other instruments that can test for heavy metals, but in order to achieve the very low detection limits imposed by most states including California, the detector must be the ICP-MS. Prior to detection using ICP-MS, cannabis and cannabis related products go through a sample preparation stage consisting of some form of digestion to completely break down the complex matrix and extract the heavy metals for analysis. This two-step process is relatively fast and can be done in a single day, however, the instruments used to perform the digestion are usually the limiting step as the digesters run in a batch of 8-16 samples over a 2-hour period.

Only trace amounts of heavy metals are allowed by California’s BCC in cannabis and cannabis products. A highly sensitive detection system finds these trace amounts and also allows troubleshooting when a product is found to be out of specification.

For example, during the course of testing, we have seen lead levels exceed the BCC’s allowable limit of 0.5 ppm in resin from plastic vape cartridges. An investigation determined that the plastic used to make the vape cartridge was the source of the excessive lead levels. Even if a concentrate passes the limits at the time of sampling, the concern is that over time, the lead leached from the plastic into the resin, increasing the concentration of heavy metals to unsafe levels.

Getting a Representative Sample

The ability to detect trace levels of heavy metals is based on the sample size and how well the sample represents the entire batch. The current California recommended amount of sample is 1 gram of product per batch.  Batch sizes can vary but cannot be larger than 50 pounds of flower. There is no upper limit to the batch sizes for other inhalable cannabis products (Category II).

It is entirely likely that two different 1 gram samples of flower can have two different results for heavy metals because of how small a sample is collected compared to an entire batch. In addition, has the entire plant evenly collected and concentrated the heavy metals into every square inch of it’s leaves? No, probably not. In fact, preliminary research in leafy greens shows that heavy metals are not evenly distributed in a plant. Results from soil testing can also be inconsistent due to clumping or granularity. Heavy metals are not equally distributed within a lot of soil and the one small sample that is taken may not represent the entire batch. That is why it is imperative to take a “random” sample by collecting several smaller samples from different areas of the entire batch, combining them, and taking a 1 g sample from this composite for analysis.


References

California Cannabis CPA. 12/18/2018.  “What to Know About California’s Cannabis Testing Requirements”. https://www.californiacannabiscpa.com/blog/what-to-know-about-californias-cannabis-testing-requirements. Accessed January 10, 2019.

Citterio, S., A. Santagostino, P. Fumagalli, N. Prato, P. Ranalli and S. Sgorbati. 2003.  Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L.. Plant and Soil 256: 243–252.

Handwerk, B. 2015.  “Modern Marijuana Is Often Laced With Heavy Metals and Fungus.” Smithsonian.com. https://www.smithsonianmag.com/science-nature/modern-marijuana-more-potent-often-laced-heavy-metals-and-fungus-180954696/

Linger, P.  J. Mussig, H. Fischer, J. Kobert. 2002.  Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind. Crops Prod. 11, 73–84.

McPartland, J. and K. J McKernan. 2017.  “Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides”.  In: S. Chandra et al. (Eds.) Cannabis sativa L. – Botany and Biotechnology.  Springer International Publishing AG. P. 466-467.  https://www.researchgate.net/publication/318020615_Contaminants_of_Concern_in_Cannabis_Microbes_Heavy_Metals_and_Pesticides.  Accessed January 10, 2019.

Sidhu, G.P.S.  2016.  Heavy metal toxicity in soils: sources, remediation technologies and challenges.   Adv Plants AgricRes. 5(1):445‒446.

5 Compliance Reporting and Notification Requirements That You May Not Know About

By Anne Conn
1 Comment

New cannabis businesses must demonstrate proof of compliance to myriad laws and regulations as part of the initial license application process. And once a license is issued, it is easy to prioritize day-to-day business operations over ongoing compliance reporting requirements especially when sales are booming and compliance requirements are multi-layered, vague or obscured in non-cannabis specific programs and regulations.

But seemingly benign neglect of some minor reporting requirements can have major consequences to new and established businesses alike.

This article explores five compliance reporting requirements that cannabis businesses may not know about, and suggests ways to maintain a strong compliance posture across all regulatory agencies.

Pesticide Reporting

All licensed growers are required to prove compliance to state pesticide usage regulations. However, expectations on how and when to provide that proof of compliance vary greatly from state to state.  Furthermore, the responsibility of education and enforcement for pesticide usage in the cannabis industry often falls to non-cannabis specific agencies such as state departments of agriculture or environmental compliance.

For example in California, cultivators must report detailed monthly pesticide use reports via the State’s Agriculture Weights/Measures Division reporting portal, while Washington State regulators simply expect cultivators to keep records locally on site and provide them when requested.

With so many places to look, the best place to start your pesticide reporting requirement search is with your local agriculture department. They should be able to answer your questions and provide you with a list of resources to help you better understand how to comply with state pesticide usage and reporting regulations.

Hazardous Materials Reporting

Like pesticide use and reporting, hazardous waste handling and reporting requirements are complex and vary state to state. In fact, there may even be nuanced variations in handling requirements at the county level. The best approach to ensure compliance with a complicated set of regulations is to start by consulting your local county fire department. They will have the most specific set of rules for hazardous materials handling and reporting and can help you develop a site-specific compliance plan.

Two OSHA reporting requirements

Depending on how your cannabis business is classified, you may be required to keep injury and illness incident records and provide reports to the Occupational Health and Safety Organization (OSHA) for specific time periods.

Contact your business insurance provider’s loss prevention representative for more information about how your business is classified, which specific OSHA reporting requirements apply to you, and how to stay in compliance with applicable OSHA requirements.

Click here to learn more about how OSHA organizes reporting requirements by business type.

A note of caution here: OSHA non-compliance penalties can be steep and “I didn’t know I was supposed to do that” is not an acceptable defense when it comes to explaining any OSHA violations.

Labor Law Notification Requirements

Federal labor law requires that you notify employees of their rights. At a minimum, you post information regarding wages and hours, child labor, unemployment benefits, safety and health/workers’ compensation and discrimination in a conspicuous place where they are easily visible to all employees. Some states requires additional information be posted in a similar manner, so it’s important to be sure that those notices are posted along with the federal requirements.

This is a simple, yet easily overlooked, requirement for all businesses, regardless of industry. Ask your insurance provider for a copy of the notice to print and post right away (if you have not already) for a quick compliance win!

These five reporting and notification requirements may seem tedious, overly complicated and burdensome in the face of day-to-day business operations, but compliance to these requirements not only protects your business and employees, it also enhances the overall reputation of the industry. The good news is that regulatory agencies welcome a proactive approach and are happy to work with cannabis businesses to provide guidance and information for developing compliance plans.