Tag Archives: environmental

Image 2: Temperature display provides quick view of sensor data

10 Questions To Ask Before Installing a Remote Monitoring System

By Rob Fusco
No Comments
Image 2: Temperature display provides quick view of sensor data

No matter the size of your cannabis greenhouse operation, keeping your plants alive and healthy requires the best possible growing environment. This means greenhouse managers and personnel must frequently monitor the status of environmental conditions and equipment. The sooner someone discovers extreme temperature fluctuations, rising humidity or equipment failure, the more inventory you can save.

Image 1: Cloud-based remote monitoring system in protective enclosure
Cloud-based remote monitoring system in protective enclosure

That’s why integrating a remote monitoring system into your greenhouse operation can save you time, money and anxiety. Monitoring systems that use cloud-based technology let you see real-time status of all monitored conditions and receive alerts right on your mobile device.

Installing a monitoring system and sensors can be easier than you might think. Here are answers to ten questions to ask before installing a cloud-based monitoring system:

  1. What is required to use a remote monitoring system?

Most remote monitoring systems require an internet or WiFi connection and access to an electrical outlet. Programming is done through a website, so it’s easiest to use a computer for the initial setup. If you don’t have an internet connection at your location, you’ll want to choose a cellular system. Make sure that there’s sufficient signal strength at your site, and check the signal quality in the area before purchasing a cellular device.

2. How do we determine what kind of monitoring system and sensors we need?

A reputable manufacturer will have a well-trained support team that can assess your needs even without a site visit to determine which products are best for your application. If you feel you need them to check out your greenhouse operation,many companies can set up a video conference or FaceTime chat to substitute for being on site.

You will want to provide details about the scope and purpose of your cannabis growing operation. Important factors to discuss include:

  • Skeletal structure of the greenhouse (metal, plastic, wood, etc.) and the covering material (glass or plastic).
  • Floor space square footage and height of each of your greenhouses.
  • Number of greenhouse structures in your operation.
  • Outdoor climate to determine if you rely more on heating or air conditioning and the level of humidity control needed.
  • Space dedicated to phases of growth (cloning and propagation, vegetative, flowering) and the microclimates needed for each.
  • Types of lighting, ventilation and irrigation systems.
  • Level of technological automation versus manual operation in place.

The monitoring system representative will then determine the type of system that would best serve your operation, the number of base units you will need and the types of sensors required.

Image 2: Temperature display provides quick view of sensor data
Temperature display provides quick view of sensor data

The representative should also be able to provide tips on the placement of the sensors you’re purchasing. For example, to ensure thorough air temperature coverage, place sensors throughout the greenhouse, next to the thermostat controlling the room temperature and in the center of the greenhouse out of direct sunlight.

Note that there shouldn’t be a cost for a demo, consultation or assistance throughout the sales process. Be sure to ask if there are any fees or licenses to keep using the monitoring equipment after you purchase it.

3. Are sensors included with the monitoring system?

In most cases, sensors are sold separately. The sensors you select depend upon the conditions you want to monitor and how many you can connect to your base unit. Certainly, temperature is critical, but there are many other factors to deal with as well, such as humidity, CO2, soil moisture, water pH, power and equipment failure, ventilation and physical security.

For example, humidity has a direct impact on the photosynthesis and transpiration of plants. High humidity can also cause disease and promote the growth of harmful mold, algae and mildew. Sensors can detect changes in humidity levels.

Image 3: Water pH sensor
Water pH sensor

Like any other plant, cannabis needs COto thrive, so it’s a good idea to include a COsensor that will signal to the monitoring device when readings go out of the preset range. There are even sensors that you can place in the soil to measure moisture content to help prevent over- or underwatering, budget water usage costs, promote growth and increase crop yield and quality.

Of course, all the critical systems in your growing facility—from water pumps to irrigation lines to louvers—rely on electrical power. A power outage monitoring sensor detects power failure. It can also monitor equipment for conditions that predict if a problem is looming, such as power fluctuations that occur at specific times.

Ventilation systems not only help control temperature, they also provide fresh air that is critical to plant health. Automated systems include features like vented roofs, side vents and forced fans. Sensors placed on all these systems will send personnel an alert if they stop running or operate outside of preset parameters.

To monitor the physical security of your greenhouses, you can add sensors to entrance doors, windows, supply rooms and equipment sheds. During off hours, when no staff is on duty, you can remain vigilant and be alerted to any unauthorized entry into your facility.

4. Do monitoring systems only work with the manufacturer’s sensors?

Not necessarily. For example, certain monitoring units can connect with most 4-20mA sensors and transmitters regardless of the brand. When selecting sensors, you might have a choice between ones that are designed by the manufacturer to work specifically with the monitoring system or universal components made by a third party. If the components aren’t made by the system manufacturer, you’ll want to find out if they have been tested with the monitor you are choosing and if you need to work with another vendor to purchase the parts.

A humidity sensor mounted in a weatherproof enclosure
A humidity sensor mounted in a weatherproof enclosure

5. Is a monitoring system easy to set up, or do we need to hire an electrician?

Many monitoring systems are quick and easy to install, and users can often set them up without hiring an outside expert. Look for one that requires only a few simple physical installation steps. For example:

  1. Mount the device to the wall or somewhere secure;
  2. Plug it into an electrical outlet and an internet connection;
  3. Connect the sensors.

You connect the sensors to the base unit’s terminal strip using wire, which is included with many sensors. The range of many wired sensors can be extended up to 2,000 feet away from the base unit by adding wire that can be easily purchased at any home store. It’s a good idea to hire an electrician if you need to run wires through walls or ceilings.

Usually, once you plug in the device and connect the sensors, you then create an account on the manufacturer’s designated website and begin using your device. There should be no fee to create an account and use the site.

If the manufacturer doesn’t offer installation services, ask if they can recommend a local representative in your area who can set up your system. If not, make sure they provide free technical support via phone or email to walk you through the installation and answer any questions you might have about programming and daily usage.

6. Is there a monthly fee to access all the functionality of a monitoring device?

Many web- or cloud-based systems provide free functionality with some limitations. You might have to purchase a premium subscription to unlock features such as text messaging, phone call alerts and unlimited data logging access.

 7. Should we get a system that is wired or wireless? Will we need to have a phone line, cable, internet or something else?

Wireless can mean two different things as it relates to monitoring: how the system communicates its data to the outside world and how the sensors communicate with the system.

The most popular systems require an internet or WiFi connection, but if that’s not an option, cellular- and phone-based systems are available.

A hardwired monitoring system connects the sensors to the base device with wires. A wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.

8. Can one system monitor several sensor inputs around the clock?

Once the monitoring system is installed and programmed, it will constantly read the information from the sensors 24/7. Cloud-based systems have data logging capabilities and store limitless amounts of information that you can view from any internet-connected device via a website or app.

If the system detects any sensor readings outside of the preset range, it will send an alarm to all designated personnel. The number of sensors a base unit can monitor varies. Make sure to evaluate your needs and to select one that can accommodate your present situation and future growth.

When a monitoring system identifies a change in status, it immediately sends alerts to people on your contact list. If you don’t want all your personnel to receive notifications at the same time, some devices can be programmed to send alerts in a tiered fashion or on a schedule. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. It’s a good idea to check the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Some systems allow for flexible scheduling, so that off-duty personnel don’t receive alerts.

9. Do monitoring systems have a back-up power system that will ensure the alarming function still works if the power goes out or if someone disconnects the power?

The safest choice is a cloud-based system that comes with a built-in battery backup that will last for hours in the event of a power failure. Cloud-based units constantly communicate a signal to the cloud to validate its online status. If the communication link is interrupted—for example by a power outage or an employee accidently switching off the unit—the system generates an alarm indicating that the internet connection is lost or that there is a cellular communications problem. Users are alerted about the disruption through phone, text or email. All data collected during this time will be stored in the device and will be uploaded to the cloud when the internet connection is restored.

If you opt for a cloud-based monitoring system, make sure the infrastructure used to create the cloud platform is monitored 24/7 by the manufacturer’s team. Ask if they have multiple backups across the country to ensure the system is never down.

10. What should we expect if we need technical support or repairs to the system?

Purchase your system from a reputable manufacturer that provides a warranty and offers full repair services in the event the product stops working as it should. Also, research to make sure their tech support team is knowledgeable and willing to walk you through any questions you have about your monitoring system. Often, support specialists can diagnose and correct unit setup and programming issues over the phone.

It helps to record your observations regarding the problem, so the tech team can look for trends and circumstances concerning the issue and better diagnose the problem. Ideally, the manufacturer can provide loaner units if your problem requires mailing the device to their facility for repair.

Cannabis and the Connected Indoor Farm

By Cannabis Industry Journal Staff
No Comments

Cannabis Cultivation Virtual Conference Part 3

Cannabis and the Connected Indoor Farm- Technology Spotlight Sponsored by VividGro

By David Friedman, President of VividGro

This presentation discusses:

  • SMAA- Sensing, monitoring, alerting & automating
  • Hardware & software integration
  • Protecting & using your data

Refining Techniques for Growing Cannabis

By Cannabis Industry Journal Staff
No Comments

As the cannabis industry in the United States and throughout the world develops, the market is getting more competitive. Markets in a number of states are experiencing disruptions that will have lasting effects for cultivators, including oversupply and supply chain bottlenecks. Now more than ever, growers need to look for ways to differentiate their product or gain a bigger market share. Looking at yield efficiency, quality improvements and analyzing the cost of inputs versus value of the crop can help growers make the right choices in technology for lighting, irrigation and pest control among other technologies.

adamplants
Adam Jacques, co-founder of Growers’ Guild Gardens and Sproutly

A series of free webinars in two weeks can help growers learn about some of the more advanced techniques in improving yield and quality. The Cannabis Cultivation Virtual Conference on May 23rd will explore a variety of tips and tricks for taking their cultivation operation to the next level. This event is free to attendees, made possible by sponsors VividGro and CannaGrow Expo.

Dr. Allison Justice
Dr. Allison Justice, vice president of cultivation at Outco

Attendees will hear from experts in cannabis cultivation on a range of topics, including breeding, drying, curing, environmental monitoring and micropropagation. Adam Jacques, co-founder of Growers’ Guild Gardens and Sproutly, will discuss some of his experience with breeding high-CBD strains in Oregon. His talk will delve into some of the proper breeding procedures, along with how to hunt for particular phenotypes and developing specific cannabinoids and terpenes.

Dr. Allison Justice, vice president of cultivation at Outco, is going to present some of her findings in drying and curing at the company. She plans on sharing her research on how the post-harvest stages can affect and control the chemical makeup of flower. She’ll also discuss some new protocols to monitor the dry and cure of cannabis flowers so we are able to modulate the terpene and cannabinoid profiles.

More information on the other speakers at this event and how to register for free can be found here.

canna grow
Soapbox

CannaGrow Expo Heads to Palm Springs

By Aaron G. Biros
No Comments
canna grow

We’ve covered the CannaGrow Expo previously, but this time around we catch up with Joseph De Palma, founder of CannaGrow, to talk about the genesis of his conference and what makes the event so special. This year’s CannaGrow Expo heads to Palm Springs, California, a new location for the event, on May 19thand 20th.

We’ve watched De Palma’s conference grow over the years, moving around the country and becoming the tight-knit community we know it as today. The meat and potatoes of the show are definitely the educational sessions, panel discussions, roundtables and the expo hall. But covering it year after year we’ve noticed a real sense of community develop, one where genuine idea sharing, collaboration and inclusivity are preached. There are no dumb questions at the CannaGrow Expo.

Tom Lauerman speaks to a room full of attendees at CannaGrow San Diego

According to Joseph De Palma, CannaGrow started in 2014, when the original event was held in Denver. “From the beginning, we wanted to create an event specifically for growers, where the focus was always on education and ‘becoming a better grower’,” says De Palma. “We had experienced the existing events in the marketplace, and almost all fit into two categories at the time, festival, or generic tradeshow. Those were fine for their purpose, but they didn’t foster an environment of education, and that’s what we believed was most important to the emerging cannabis industry.” Back in 2014, their show only had 10 sessions and 30 exhibitors. “Passionate growers from around the country had 2 days of grow-focused sharing and learning, and you could see the energy and excitement,” De Palma says. “Discussions would dive deep, people made new friends, and it really elevated the conversation around cultivation.”

Attendees gather at a lighting exhibit at CannaGrow San Diego

Since the show’s debut, it’s grown substantially. The 7th CannaGrow Expo is fast approaching, and this upcoming conference has four separate tracks and roughly 100 exhibitors. But it still keeps its sense of community, one where you don’t feel crowded, where everyone has time to chat and network, without the overwhelming feeling that can come with larger trade shows. “That inclusivity and open dialog is built in,” says De Palma. “If you go to an event that’s tradeshow dominant, most people are there to walk, shop, and leave. At CannaGrow, growers and extractors come together with a plan for the weekend, remaining in a constant state of engagement with others at the show.”

This year’s show has some exciting additions to look out for. The agenda covers a wide range of topics, including everything from an introduction to growing with living soil to a discussion of cyber security. The Extraction Summit, new to this year’s event and held on Day 2, is their response to the massive rise in popularity and demand of extracts.

Eric Schlissel
Eric Schlissel, president and chief executive officer of GeekTek

Eric Schlissel, cybersecurity specialist, president and chief executive officer of GeekTek, is giving a talk focused on IT infrastructure. “My presentation will center around the actions cannabis businesses need to take right now to repel cybercrime and potential federal seizure,” says Schlissel. “As cannabis operators build their businesses and develop their security strategies, they often focus exclusively on the physical portion of their business – the merchandise and the cash in particular – and overlook the importance of designing and fortifying a secure IT infrastructure. I will discuss the importance of a holistic security strategy that embraces both and how you can both create one and prepare it for expansion into other states or even globally from the very start.” Schlissel’s discussion is one example of just how all-encompassing CannaGrow intends to be.

De Palma and his team leave few stones unturned as the show truly delivers vital information for cannabis cultivators in every area. Some things we are looking forward to? Seeing old friends and learning everything under the sun about cannabis science, growing and extraction. “People get to know each other, and with everyone sharing a core passion for cultivation and extraction, lifelong friendships are made,” says De Palma.


To check out the agenda, speakers and exhibitors, click here.

control the room environment

Environmental Controls: The Basics

By Vince Sebald
No Comments
control the room environment

The outside environment can vary widely depending on where your facility is located. However, the internal environment around any activity can have an effect on that activity and any personnel performing the activity, whether that’s storage, manufacturing, testing, office work, etc. These effects can, in turn, affect the product of such activities. Environmental control strategies aim to ensure that the environment supports efforts to keep product quality high in a manner that is economical and sensible, regardless of the outside weather conditions.

For this article, let us define the “environment” as characteristics related to the room air in which an activity is performed, setting aside construction and procedural conditions that may also affect the activity. Also, let us leave the issue of managing toxins or potent compounds for another time (as well as lighting, noise, vibration, air flow, differential pressures, etc). The intent here is to focus on the basics: temperature, humidity and a little bit on particulate counts.

Temperature and humidity are key because a non-suitable environment can result in the following problems:

  • Operator discomfort
  • Increased operator error
  • Difficulty in managing products (e.g. powders, capsules, etc)
  • Particulate generation
  • Degradation of raw materials
  • Product contamination
  • Product degradation
  • Microbial and mold growth
  • Excessive static

USP <659> “Packaging and Storage Requirements” identifies room temperature as 20-25°C (68-77 °F) and is often used as a guideline for operations. If gowning is required, the temperature may be reduced to improve operator comfort. This is a good guide for human working areas. For areas that require other specific temperatures (e.g. refrigerated storage for raw materials), the temperature of the area should be set to those requirements.

Humidity can affect activities at the high end by allowing mold growth and at the low end by increasing static. Some products (or packaging materials) are hydroscopic, and will take on water from a humid environment. Working with particular products (e.g. powders) can also drive the requirement for better humidity control, since some powders become difficult to manage in either high or low humidity environments. For human operations without other constraints, a typical range for desirable humidity is in the range of 20 to 70% RH in manufacturing areas, allowing for occasional excursions above. As in the case of temperature, other requirements may dictate a different range.

control the room environment
In some cases, a locally controlled environment is a good option to reduce the need to control the room environment as tightly or to protect the operator.

In a typical work environment, it is often sufficient to control the temperature, while allowing the relative humidity to vary. If the humidity does not exceed the limits for the activity, then this approach is preferred, because controlling humidity adds a level of complexity (and cost) to the air handling. If humidity control is required, it can be managed by adding moisture via various humidification systems, or cooling/reheating air to remove moisture. When very low humidity is required, special equipment such as a desiccant system may be required. It should be noted that although you can save money by not implementing humidity control at the beginning, retrofitting your system for humidity control at a later time can be expensive and require a shutdown of the facility.

Good engineering practice can help prevent issues that may be caused by activities performed in inappropriately controlled environments. The following steps can help manage the process:

  • Plan your operations throughout your facility, taking into account the requirements for the temperature and humidity in each area and know what activities are most sensitive to the environment. Plans can change, so plan for contingencies whenever possible.
  • Write down your requirements in a User Requirement Specification (URS) to a level of detail that is sufficient for you to test against once the system is built. This should include specific temperature and RH ranges. You may have additional requirements. Don’t forget to include requirements for instrumentation that will allow you to monitor the temperature and RH of critical areas. This instrumentation should be calibrated.
  • Solicit and select proposals for work based on the URS that you have generated. The contractor will understand the weather in the area and can ensure that the system can meet your requirements. A good contractor can also further assist with other topics that are not within the scope of this article (particulates, differential pressures, managing heating or humidity generating equipment effects, etc).
  • Once work is completed, verify correct operation using the calibrated instrumentation provided, and make sure you add periodic calibration of critical equipment, as well as maintenance of your mechanical system(s), to your calibration and maintenance schedules, to keep everything running smoothly.

The main point is if you plan your facility and know your requirements, then you can avoid significant problems down the road as your company grows and activity in various areas increases. Chances are that a typical facility may not meet your particular requirements, and finding that out after you are operational can take away from your vacation time and peace of mind. Consider the environment, its good business!

Dr. Zacariah Hildenbrand
Soapbox

Cannabis and the Environment: Navigating the Interplay Between Genetics and Transcriptomics

By Dr. Zacariah Hildenbrand
No Comments
Dr. Zacariah Hildenbrand

It is that time of year where the holidays afford us an opportunity for rest, recuperation and introspection. Becoming a new father to a healthy baby girl and having the privilege to make a living as a scientist, fills me with an immeasurable sense of appreciation and indebtedness. I’ve also been extremely fortunate this year to spend significant time with world-renowned cannabis experts, such as Christian West, Adam Jacques and Elton Prince, whom have shared with me a tremendous wealth of their knowledge about cannabis cultivation and the development of unique cannabis genetics. Neither of these gentlemen have formal scientific training in plant genetics; however, through decades of experimentation, observation and implementation, they’ve very elegantly used alchemy and the principles of Mendelian genetics to push the boundaries of cannabis genetics, ultimately modulating the expression of specific cannabinoids and terpenes. Hearing of their successes (and failures) has triggered significant wonderment and curiosity with respect to what can be done beyond the genetic level to keep pushing the equilibrium in this new frontier of medicine.

Lighting conditions can greatly impact the expression of terpenes (and cannabinoids) in cannabis.Of course genetics are the foundation for the production of premium cannabis. Without the proper genetic code, one cannot expect the cannabis plant to express the target constituents of interest. However, what happens when you have an elite genetic code, the holy grail of cannabis nucleotides if you will, and yet your plant does not produce the therapeutic compounds that you want and/or that are reflective of that elite genetic code? This ‘loss in translation’ can be explained by transcriptomics, and more specifically, epigenetics. In order for the genetic code (DNA) to be expressed as a gene product (RNA), it must be transcribed, a process that is modulated by epigenetic processes like DNA methylation and histone modification. In other words, the methylation of the genetic code can dictate whether or not a particular segment of DNA is transcribed into RNA, and ultimately expressed in the plant. To put this into context, if the DNA code for the enzyme THCA synthase is epigenetically silenced, then no THCA synthase is produced, your cannabis cannot convert CBGA into THCA, and now you have hemp that is devoid of THC.So what is the best lighting technology to enhance the expression of terpenes? 

With all of that being said, how do we ensure that our plants thrive under favorable epigenetic conditions? The answer is the environment; and the expression of terpenes is an ideal indicator of favorable environmental conditions. While amazing anti-inflammatories, anti-oxidants and metabolic regulators for humans, terpenes are also extremely powerful anti-microbial agents that act as a robust a line of defense for the plant against bacteria and pests. So, if the threat of microbes can induce the expression of terpenes, then what about other environmental factors? I am of the opinion that the combination of increased exposure to bacteria and natural sunlight enhances the expression of terpenes in outdoor-grown cannabis compared to indoor-grown cannabis. This is strictly my opinion based off of my own qualitative observations, but the point being is that lighting conditions can greatly impact the expression of terpenes (and cannabinoids) in cannabis.

A plant in flowering under an LED fixture

So what is the best lighting technology to enhance the expression of terpenes? Do I use full spectrum lighting or specific frequencies? The answer to these questions is that we don’t fully know at this point. Thanks to the McCree curve we have a fundamental understanding of the various frequencies within the visible light spectrum (400-700nm) that are beneficial to plants, also known as Photosynthetically Active Radiation (PAR). However, little-to-no research has been conducted to determine the impacts that the rest of the electromagnetic spectrum (also categorized as ‘light’) may have on plants. As such, we do not know with 100% certainty what frequencies should be applied, and at what times in the growth cycle, to completely optimize terpene concentrations. This is not to disparage the lighting professionals out there that have significant expertise in this field; however, I’m calling for the execution of peer-reviewed experiments that would transcend the boundaries of company white papers and anecdotal claims. In my opinion, this lack of environmental data provides a real opportunity for the cannabis industry to initiate the required collaborations between cannabis geneticists, technology companies and environmental scientists. This is one field of research that I wish to pursue with tenacity and I also welcome other interested parties to join me in this data quest. Together we can better understand the environmental factors, such as lighting, that are acting as the molecular light switches at the interface of genetics and transcriptomics in cannabis.

Dr. Zacariah Hildenbrand
Soapbox

Sustainability & Quality Go Hand-In-Hand In The Cannabis Industry

By Dr. Zacariah Hildenbrand
No Comments
Dr. Zacariah Hildenbrand

I recently attended the CannaGrow Expo held in Denver, Colorado. It was a fantastic event, per usual, and I was pleasantly surprised to see a number of presentations by industry experts where the central themes were sustainability and environmental stewardship. I was particularly struck by Adam Maher’s presentation, where he discussed the merits of micro grid technologies and the ease in which they can be coupled with renewable energy modalities, such as solar. His sentiments really resonated with me, particularly with respect to the long-term implications of cannabis cultivation sweeping across North America.

Considering that cannabis represents the new frontier of modern medicine and its societal acceptance is rapidly spreading, there is a growing impetus for cannabis professionals to implement technologies that will enhance the sustainability of their operations. These pertain to, but are not limited to, power generation and lighting, both of which are integral components to any indoor cannabis cultivation facility. Not only can the utilization of energy efficient technologies (i.e., solar panels and LED lights) help our planet that is struggling mightily to neutralize the influences of anthropogenic climate change, but it can also add value to the bottom line. That’s right: environmental stewardship, product quality and financial success are not mutually exclusive in the cannabis industry. For example, the utilization of solar panels and/or a micro grid can have a relatively rapid payback (<6 years), while the hardware itself adds inherent value to any cannabis property/operation. This is particularly relevant in an emerging market where acquisitions are common and the management of asset value is a harbinger of success. Secondarily, the use of LED lighting technologies to produce ultra-premium cannabis is another piece of low-hanging fruit that can be picked to add value. For example, 1st and 2nd place in Arizona’s 2017 ERRL Cup were awarded to flower that was grown under LED lights designed by the Tall Trees LED Company, where the total cannabinoid levels exceeded 32% and a wide variety of terpenes were detected. These results, coupled with the fact that LED lights can provide full spectrum light that requires less energy and produces less heat than HPS lights, make the adoption of LED lights a simple choice for the environmentally conscious and financially savvy operator.

As we continue to move towards more states becoming cannabis powerhouses, and a potential federal rescheduling, the industry must continue pushing the operational equilibrium towards more resourceful technologies. Of course there is always going to be a perceived activation energy or threshold that must be transcended before the adoption of new technologies can be successfully accomplished with confidence. This is completely normal and is usually associated with the initial capital that is required to acquire such technologies, and/or fears that such an investment won’t bear fruit. However, there is currently enough data to indicate that technologies like solar panels and LED lights are a smart financial choice for any cultivation facility where there is sunlight and electrical outlets.

In summary, I would strongly encourage any operator to evaluate the sustainability and environmental stewardship of their business, especially if they anticipate spreading the holistic gospel of cannabis medicine for many years to come. You are already doing a tremendous service for those who depend on cannabis medicine and now is the time to continue your noble pursuit while taking care of Mother Earth and paying it forward to our subsequent generations.

How To Select The Best Monitoring System For Your Cannabis Greenhouses

By Rob Fusco
1 Comment

Maintaining an environment that supports cultivation and keeps plants healthy is not an easy task. In cannabis growing, there are a variety of factors that greenhouse managers and personnel must monitor to ensure that their plants are in a healthy environment that fosters growth and development. Temperature, humidity, lighting and CO2 levels are a few of the conditions that need to be tailored to each cannabis greenhouse operation. However, it can be difficult to constantly monitor the status of your equipment and the greenhouse environment, especially after hours or during the off-season.

A remote monitoring system that’s properly selected and installed can help greenhouse managers keep their cannabis plants healthy, multiply their yields and increase return on investment. This type of system also helps operators identify patterns and trends in environmental conditions and get insight into larger issues that can prevent problems before they arise.

Cloud-based monitoring system base unit in weatherproof enclosure

Here are some tips on key conditions to monitor and what you need to consider when selecting a monitoring system for your cannabis greenhouse operation:

Temperature

Temperature plays a crucial role in any cannabis grow operation. The climate in your greenhouse must be warm enough to nurture photosynthesis and the growth of cannabis plants. Setting the incorrect temperature will significantly impact the potential yield of the plant and the rate at which it develops. A temperature too low will slow the growth of the cannabis, but too hot can lead to heat stress for your plants. The ideal temperature for a standard greenhouse is between 70 and 80 degrees Fahrenheit. However, depending on the stage of plant and desired growth densities, the temperature of the greenhouse needs to be adjusted accordingly.

Humidity Levels

Humidity directly affects plant photosynthesis and transpiration, so controlling humidity is vital in greenhouse growing. The ideal relative humidity (RH) for cannabis growth is around 60%. A low humidity level can cause water to evaporate too quickly for photosynthesis, while a humidity level that is too high can cause poor growth and possible mold and fungal disease. Monitoring the moisture content in the air of your greenhouse will help the plants during the transpiration process, increasing absorption of nutrients and overall health of the cannabis. 

Lighting

Your cannabis may be getting an abundance of natural light during the summer months, but maintaining adequate sunlight during the winter months can be a challenge. As a solution to this, many greenhouse managers equip their facilities with additional lights to supplement natural light during off-seasons or off-hours. To achieve the best possible yield, a cannabis plant in the budding stage should receive twelve hours of light each day, while other stages could require additional lighting. For example, the growth stage could require your cannabis to be exposed to sunlight for up to eighteen hours a day.

CO2 Levels

Like any other plant, cannabis requires CO2 to breathe. Greenhouse managers must set and monitor the CO2 levels in their facility to make sure that there is an adequate amount for the plants to develop, grow and be healthy. The amount of carbon dioxide required for your cannabis depends of the size of the facility and the amount of light the plants are receiving. However, a standard grow area for cannabis can maintain a CO2 range from 1000 to 1500 parts per million (PPM). A level below that threshold can result in slower growth of the plants, while a level above would lead to unused and wasted CO2.

Soil moisture sensor

Irrigation and Soil Moisture

One way to ensure a good yield from your cannabis is to water it regularly and monitor your soil moisture. Overwatering your plants can have the same effect, if not worse, than letting the soil become too dry. Plants’ roots need oxygen to survive, unlike leaves that breathe CO2, and when the soil is waterlogged the roots can’t provide their function. The lack of oxygen interferes with the roots’ nutrient uptake and photosynthesis causing the cannabis plant to wilt. The exact moisture content of the soil depends on the size of your greenhouse, temperature and humidity. Whether you hand water or are using a drip irrigation system, being aware of your soil moisture is vital to the long-term health of your cannabis.

Air Circulation

Your greenhouse environment should mimic the ideal conditions in which cannabis plants flourish. With an indoor facility, you have the ability to control air circulation by venting hot air out and blowing fresh air in. Creating a circulation of air inside your greenhouse will increase your cannabis plant’s growth speed and yield. Additionally, an exhaust system helps control the temperature and humidity, while also preventing the invasion of mold and pests that thrive in hot, stagnant air.

Greenhouse Security

When growing something of value, like cannabis, there will always be a threat of intruders. Whether your greenhouse is in a populated area or around hungry wildlife, any intruder could be detrimental to your overall yields and profit. Remote monitoring systems can give you peace of mind and instantly alert you when there is an unwanted presence in your greenhouse.

Knowing all the possible threats to your cannabis greenhouse helps you evaluate your specific needs, and ultimately identify the proper remote monitoring system.

Selecting the Right Monitoring System

Other factors to consider when choosing a monitoring system right for your operation include:

  • Base unit and sensors
  • Wireless or hardwired sensors
  • Communications to your site (Phone, cellular, Wi-Fi, etc.)
  • Alarm notification
  • Programming and status checks
  • Data logging
  • Return on investment

Base Units and Sensors

Each condition in your greenhouse that you want to monitor requires its own input on the base unit of the monitoring system. You must match your needs with the number of inputs available. A good fit for a smaller cannabis greenhouse may be a lower-cost, non-expandable monitoring system. However, larger facilities have many monitoring points and more people to alert when there’s a problem. If your cannabis operation is poised for growth, purchasing an expandable system could add value to the initial purchase because you wouldn’t have to replace your entire system in the future.

Your monitoring system should also have an internal rechargeable battery backup to ensure continuous monitoring and alerts in the event of a power outage. It is also recommended to have each base unit in a sheltered enclosure to protect it from moisture, dirt and other hazards.

Placement of sensors is also crucial. For example, temperature sensors in your greenhouse should be placed throughout the facility. They should be next to your thermostat and in the center of your greenhouse, preferably away from direct sunlight.

Wireless or Hardwired Sensors

Remote monitoring systems offer the option to have sensors hardwired directly to the base unit or sensors wirelessly connected. A hardwired monitoring system connects the sensors to the base device with wires. Generally, trenching long distances for wires is time consuming and costly. So alternatively, a wireless system uses built-in radio transmitters to communicate with the base unit. Some monitoring systems can accommodate a combination of hardwired and wireless sensors.

Communications to Your Site

Monitoring devices that use cellular communications must be registered on a wireless network (like Verizon or AT&T) before you can send or receive messages. Because cellular devices perform all communications over a wireless network, it is important that there be sufficient signal strength at the greenhouse. It is a good idea to check the signal quality in the area before purchasing a cellular product. If the cellular network has less than desirable coverage, it is possible to install an external antenna to help increase cellular signal.

Alarm Notifications

When monitoring systems identify a change in status, they immediately send alerts to people on the contact list. If you don’t want all of your personnel to receive notifications at the same time, certain devices can be programmed to send alerts in a tiered fashion. It is important to consider the reach of the communications, so that you’ll be notified regardless of your locations. Multiple communications methods like phone, email and text provide extra assurance that you’ll get the alert. Also, note of the number of people the system can reach and if the system automatically cycles through the contact list until someone responds. Make sure the system allows for flexible scheduling so that it doesn’t send alarms to off-duty personnel.

Programming and Status Check

If you’re responsible for maintaining a commercial greenhouse facility, you want a system that will provide real-time status of all monitored conditions on demand. There are a few different ways to access your sensor readings. Options include calling to check status, viewing a web page, either on a local network or on the cloud, or accessing the information via an app on your mobile device. With a cloud-based system, the devices supervise themselves. This means if the internet or cellular connection goes down, the device will send an alarm to alert the appropriate personnel.

If you don’t select a cloud-based system, you will be limited to logging in through a local area network, which will allow you to make programming changes, access status conditions and review data logs. If internet connectivity is not available at your location, you will want to choose a cellular or phone system rather than Ethernet-based option.

Data Logging

Sample greenhouse monitoring data log

Data history is valuable in identifying patterns and trends in your cannabis greenhouse conditions. Manually monitoring and recording environmental parameters takes a significant amount of personnel time and detracts from other important workplace demands. However, many monitoring systems automatically save information, recording tens of thousands of data points, dates and times. Cloud-based logging provides an unlimited number of records for users to view, graph, print and export data trends.

Analyzing data samples may lend insight to larger issues and prevent problems before they arise. For example, if the data log shows power fluctuations occurring at a regular time, it could be indicative of a more serious problem. Or, if the data shows signs of a ventilation fan or supplementary lighting beginning to malfunction, they can be repaired or replaced before total failure occurs.

Return On Investment

When deciding how much you should pay for a remote monitoring system, tally up the entire cost, fully installed with additional peripherals and sensors and any labor fees for installation. Then consider the value of your cannabis plant inventory and greenhouse equipment. Finally, factor in the cost of downtime, should an environmental event shut down your operation for a period of time.

Final Thoughts

Choosing the right greenhouse monitoring system and sensors could mean the difference between life and death for your cannabis plants. Understanding the conditions you need to watch and monitoring systems’ capabilities are they best way to protect your investment.

 

Cannabusiness Sustainability

Dear Cannabusiness Community

By Olivia L. Dubreuil, Esq., Brett Giddings
2 Comments

Dear Cannabusiness Community,

You may have read our two recent articles. We received so much positive feedback that Aaron Biros (editor-in-chief of Cannabis Industry Journal) has invited us to continue with our own column at CannabisIndustryJournal.com. We are very happy to launch this column, and we thought we would take this opportunity to introduce our project, our vision and ourselves so you can understand where we are coming from when you read this series of articles.

Brett and I both have a background in business sustainability and corporate responsibility. We both have backgrounds in management consulting, with a specific expertise in sustainability issues along the supply chain. We have been working together for almost nine months now on sustainability issues in the Bay Area. In May, we started to get interested in sustainability in the cannabis industry and before we knew it we were diving deep into research relating to the environmental, social and ethical impacts of the legal cannabis industry. It was actually difficult to find a lot of information, as the reign of prohibition still very much influences what is available.cannabusiness

In June, we attended the National Cannabis Industry Association’s conference in Oakland to open up the conversation with cannabis industry players and to find out about people’s attitudes and approach to sustainability. The results were overwhelmingly positive. Not only were we encouraged to launch a project, but also excited to discover that many of the speakers presenting at the conference referenced sustainability in one way or another when they talked about environmental impact awareness, social justice, ethics or about staying competitive when “big business” enters the market.

What started out as a side project quickly became the center of focus this summer when we decided to incorporate Project Polaris, a California non-profit, to deliver sustainability knowledge and expertise to the cannabis industry.

Our thinking is as follows:

Thinking about sustainability, means thinking strategically about business. As we forge a new and upcoming industry, let’s seize the opportunity to make it a sustainability-focused one! Let’s create generally accepted industry principles that fosters a positive image of the industry and teaches newcomers about best environmental and social practices. Let’s create a voluntary and industry-led socially responsible code of conduct for cannabis business owners and suppliers, helping the regulators, as they will be drafting all of the future regulations of the legalized cannabis market. Let’s do more research on the market and the consumer. Let’s develop clean and green alternatives to dirty processes or practices. Let’s elevate the discussion and create a model industry, one where short-term, large-scale, quality-lowering corporate interests are kept at bay.

With this vision in mind, we created Project Polaris because we believe that this is a real opportunity for the industry to be a role model for other industries (and educate legislators as well as drive public opinion in those states that are still under prohibition laws). We believe there is a real economic opportunity for those businesses that understand how to embed sustainability properly within their business model. Because we know that sustainability influences legislators in a positive way because it sheds a positive light on businesses.

In the upcoming months, we will continue to research and report on sustainability-related issues facing the cannabis industry, such as packaging, edibles, “organic” in cannabis, butane extraction versus CO2 extraction and so on. We also welcome questions from our readers. If you have a question, please post it in the comments section below.

We will also take this opportunity to call out to cannabis industry organizations, cannabis businesses, or cannabis related services and product suppliers to get in touch with us if they wish to find out how to integrate sustainability more concretely into their action plan. We are not planning on doing this alone, we are seeking partners to join us on this journey, and we want to partner with you on your journey to Cannabusiness Sustainability.

PS: We still have one seat open for the board of directors and would love to hear from you if you are interested!

pleabnicrop
Soapbox

Cannabis, Soil Science and Sustainability

By Drew Plebani
5 Comments
pleabnicrop

The average commercial cannabis cultivator seems to be following the modern agricultural paradigm. That model is based on questionable and, one might say, ineffective soil systems management.

In the high-yield cannabis world, amidst decades of prohibition, following the lead of the modern agricultural model has resulted in the adoption of cultural practices that go something like this: Use and destroy the soil, then dispose of it once it is rendered lifeless and useless due to repeated heavy applications of chemical fertilizers, pesticides, and other poisons.

commercialcultivator
(Left) unimproved site soil next to (right) improved site soil. Notice the root mass developing on the right

Certainly conventional agricultural food production and the soil management systems underpinning them are faltering, evidenced by soil systems deteriorating many times faster than they are being improved. This qualifies as a failure in my book.

What will be the fate of profit margins, sustainability and medicine in the cannabis industry if we continue to follow blindly in the footsteps of chemical agriculture? Perhaps it is time to turn over a new leaf.

A little context for the discussion: scientists say the Earth has lost a third of arable land in the past 40 years, and some say soil erosion is the number one challenge facing the world today. Why? How?

Well…world agricultural production accounts for about three-quarters of the soil erosion worldwide. This steep decline in arable soil is occurring during a time when the world’s demand for food is rapidly increasing. It is estimated that the world will need to grow 50% more food by 2050, and it is important to note that, the total volume of food necessary, remains relative to the nutrient density of the food.

Time for a radical solution, and cannabis can lead the way.

Currently, cannabis is the most profitable crop per land area and very likely the most resource-consumptive crop grown (due to the current legal and regulatory climate and thus limited supply vs. demand).

As the cannabis industry continues to grow, now more than ever we have the opportunity, and I believe the responsibility, to cultivate in ecologically mindful ways, improve the end product and it’s positive impacts, increase both short-term and long-term profits, decrease or eliminate waste and lower the carbon footprint of cannabis cultivation operations.

commercialcultivator
A cover crop under trellis’ with cannabis plants

Most importantly, we have the opportunity to fund, implement and lead the way in research and development of sustainable, medical, phytonutrient-dense crop production methodologies.

Only by implementing more rigorous scientific methods to cannabis cultivation can we hope to provide truly meaningful improvements in and contributions to the fields of agriculture, science, medicine and human health.

While dumpsters of potting soil continue to roll off to the landfill, complex health and human science and the cultivators truly engaged in science will continue to provide meaningful data regarding plant compounds and what factors influence the best outcome for the desired end product.

commercialcultivator
The same crop pictured above, now two weeks into flowering, using cover crops

I am willing to bet that what is best will not be coming from the business models employing antiquated, wasteful and destructive cultivation strategies, and that in due time these models will fade into distant memories.

This is the first in a series of articles, in which we will explore topics related to the pursuit of high yield, phytonutrient-dense “high brix” cannabis production.

The next article will provide a historical and geologic context to the cannabis plant, as viewed from the scope of soil biology and the progression of ecosystems and soil types, and how maximized genetic expression, through maximized soil and plant health influence the production of high quality cannabis.