Tag Archives: grow

Top 3 Ways Cultivation Methods Must Change with Regulations

By David Perkins
No Comments

There are obvious upsides and downsides to cannabis regulation. Gone are the days when it was a free for all, for outlaws growing in California’s hills, under the limited protections California’s medical cannabis laws provided. While there is no longer the threat of arrest and incarceration, for the most part, there are also a lot of hoops to jump through, and new rules and standards to contend with. This article highlights three areas in which your cultivation plan must necessarily change due to the new regulations.

1. Integrated Pest Management (IPM) is limited

In the new regulated market, products that were once widely used are now no longer allowed. Prior to regulation, in the days of Prop 215, you could spray your plants with just about anything, since there was no testing mandated for the products that were being sold. However, people unfortunately got sick and experienced negative reactions, with products like Eagle 20, which contains mycobutinol, and Avid, which contains bifenthrin. Accordingly, under new regulations there are thankfully much more stringent standards dictating what pesticides can be used. It’s ironic that for most of the “medical marijuana” era in California there were no mandatory testing requirements for the THC content of your cannabis, let alone testing for toxins, including pesticides, molds or heavy metals.

You need to have a very thorough pest management plan to make sure your bug populations are always in check. Given that there are a small number of allowable products for pest control in the regulated market, this can be tricky. You need to be extremely familiar with what is and isn’t allowed in today’s regulations. You must also make sure that someone who is certified to apply pesticides is applying them.

Photo: Michelle Tribe, Flickr

As a word of caution, there have been instances where approved pesticides were found to have old unused chemicals (that are not approved for use) from the manufacturing process in them. They may have only occurred in very small amounts, but they are harmful to humans and there is no lawful way to dispose of them.

Further, the presence of these harmful chemicals can cause your finished product to fail when undergoing mandated testing.

Rather than using risky chemicals, the best solution for (early detected) control of pests is the use of beneficial insects. Although they may not be the best solution for an infestation, predator bugs like Neoseiulus Californicus can efficiently control small populations of spider mites while ladybugs are good to limit aphids. Strategic planning of your IPM is one of the best ways to keep pest levels in check.

2. Plant size and plant count matter more than ever

Despite widespread legalization in the past few years for both the medical and recreational markets in the United States, the black market is still rampant and most cannabis is still being produced illegally in the US and internationally.

Maximizing plant canopy space is essential to a profitable business in today’s market

Generally speaking, in the black market, the less plants you have the better, as high plant counts lead to longer sentences of incarceration. With the passage of prop 215 in 1996, many growers, especially outdoor, started growing their plants as big as they possibly could because most limitations were based on plant counts. Some outdoor growers were able to cultivate plants that yielded over 10 pounds per plant. These days regulations are based on canopy measurements, meaning you can grow as many plants as you want within a defined, limited square footage area. This is where “light deprivation,” a method used to force plants into flowering, becomes favorable as it allows 2-4 harvests per year instead of just one. It is a much more intensive way of growing when you have tens of thousands of plants. While it is easier to plant, cultivate and harvest a larger number of smaller plants, it also requires a much more detailed level of planning and organization.

In order to achieve 4 harvests per year, you must have a well thought out cultivation plan and an all-star staff, but if you are able to accomplish this, you can increase your revenue significantly. Maximizing plant canopy space is essential to a profitable business in today’s market, and to do that will require more detailed planning, better organization and proper crop management.

3. How you grow and what equipment you use

With regulation comes liability for defects or injury. It is essential that all equipment used is approved for its intended use. Traditionally, cannabis was cultivated in secrecy in the black market. This led to many unsafe grow rooms being built by people who did not have the proper skills to be undertaking projects such as converting a garage into a grow room or handling the electrical and plumbing running into them. Accordingly, there were many instances of damages to property or injuries to people because of this. Now that counties and states permit cannabis cultivation facilities, the infrastructure and labor that is done must meet regulated building codes and general safety requirements. It is therefore imperative to know the codes and regulations and hire a professional that does, to ensure you meet the standards in order to avoid potential liability.

Larger scale cultivation requires bigger and more expensive equipment. Cultivation facilities are more likely to have sophisticated equipment, such as chiller systems, that are designed to control the grow room environment. While very efficient, some are not intended to be used specifically for cannabis cultivation, and can therefore be difficult to control and maintain. They perform very specific functions, and when not properly tuned to your conditions, can malfunction by prioritizing dehumidification over cooling. This can be a real challenge in warmer climates when temperatures rise, requiring cooling, but also necessitate removal of moisture from the cultivation space.

Larger scale cultivation requires bigger and more expensive equipment.

On the other hand, there is new technology that can make a huge difference in the success of your cultivation. I recently worked with two different companies that specialize in root zone heating systems. One manufactured equipment for root zone heating and cooling of 10k sq ft raised beds that had never been used in California previously. The other company specialized in root zone heating using radiant floor heat. They both worked as intended to maintain a constant root zone temperature, which increased plant health, and ultimately increased yield.

Many counties require data collection from your cultivation, requiring you to track the amount of water and nutrients used. Therefore, another useful tool you can use to increase efficiency, is data collection software that will allow you to collect different information about the amount of water and nutrients used, as well as specific information about the conditions in your grow medium. You can also record and display temperature and humidity readings in your grow room, in real time remotely through Wi-Fi, that you can then access from your phone or computer from anywhere in the world. This can be a useful tool when documenting information that your county, state or investors may require from you. Further, the ability to collect and analyze data will allow you to identify areas of inefficiency in order to correct and optimize your grow room’s potential. While you can achieve these same goals with simple in-line water meters, keeping track of nutrients and pesticides is not as easy. Data collection in the most basic form, using a pen and paper, can be an inaccurate and an inefficient use of time, and can easily be misplaced or ruined. Therefore, simple data software collection programs are the best solution to make the process simple and hassle free.

While it is nice to have state of the art equipment, if it does not work properly, or cannot be easily maintained, it will not be worth it in the long run and you will never see a return on your investment. Innovation comes with a price; using equipment that is cutting edge can be risky, but on the flip side, when done properly it can give you a big advantage over your competitors.

In switching from the black market to the regulated market, these three areas have proven to be the biggest areas of change and have presented the biggest challenges. It is important you consider these necessary changes, and make a solid plan before you begin your cultivation. This is where a cultivation consultant can help.

plantsjacques

Optimizing Your LED Spectrum for Leaf Surface Temperature

By Andrew Myers
1 Comment
plantsjacques

Every detail counts at an indoor grow facility. Indoor growers have complete control over nearly every aspect of their crop, ranging from light intensity to air circulation. Among the most important factors to regulate is temperature. While ambient air temperature is critical, growers will also want to measure leaf surface temperature (LST).

To illustrate, let’s say you keep your living room at a cozy 76 degrees. Then, if you place a thermometer under your tongue – your body is (hopefully) not at 76 degrees but is likely between a healthy temperature of 97 to 99 degrees.

A similar story can be told for cannabis plants grown indoors. A grow facility’s ambient air is often different than the plants’ LST. Finding an ideal LST for plant growth can be complex, but modern technology, including spectrally tunable LED grow lights, can simplify monitoring and maintaining this critical aspect.

Why Should Growers Care About LST?

Temperature plays a pivotal role in plant health. Many biochemical reactions contributing to growth and survival only occur within an ideal temperature range. If temperatures dip or spike dramatically, growers may witness inhibited growth, plant stress or irreversible damage to their crops.

The leaf is among the most important plant structures as it’s where most metabolic processes happen. Therefore, finding an optimum LST can improve growth rate and the production of metabolites such as pigments, terpenes, resins and vitamins.

Because many plants rely on their leaves for survival, it makes sense that leaves have their own temperature regulation system. Evaporation through pores in the leaf – known as stomata – can cool the plant through a process called transpiration. Up to 90% of water absorbed is used for transpiration, while 10% is used for growth.

The efficacy of transpiration is determined by the vapor pressure deficit (VPD), which refers to the relative humidity in the ambient air compared to the relative humidity in the leaf. If relative humidity is low, the VPD can be too high, which may cause plants to have withered, leathery leaves and stunted growth. On the other hand, a low VPD correlates to high relative humidity, and can quickly result in disease and mineral deficiencies. Higher humidity often results in a higher LST as transpiration may not be as effective.

When it comes to LST, growers should follow these basic guidelines:

  • Most cannabis plants’ LST should fall between 72 and 86 degrees – generally warmer than the ambient air.
  • LST varies depending on individual cultivar. For example, plants that have evolved in colder climates can generally tolerate cooler temperatures. The same can be said for those evolved in equatorial or temperate climates.
  • CO2 availability also plays a role in LST; CO2 generally raises the target temperature for photosynthesis.

How Does Light Spectrum Affect LST?

We know that CO2 concentration, specific genetic markers and ambient temperature all play an important role in moderating LST. But another important factor at an indoor grow is light spectrum – especially for those using spectrally tunable LEDs. Growers will want to optimize their light spectrum to provide their crop with ideal conditions.

A combination of red and blue wavelengths is shown to have the greatest impact on photosynthesis and, thus, LST. Photons found along the green and yellow wavelengths may not be absorbed as efficiently and instead create heat.

solsticegrowop_feb
Indoor cultivator facilities often use high powered lights that can give off heat

Optimized light spectrums – those with an appropriate balance between red and blue light – create more chemical energy instead of heat, thereby resulting in a lower LST. Using fixtures that are not spectrally tuned for plant growth, on the other hand, can waste energy and ultimately contribute to a higher LST and ambient temperature, negatively affecting plant growth. Consequently, measuring LST doesn’t only indicate ideal growing conditions but also indirectly illustrates the efficiency of your grow lights.

LED fixtures already run at a lower temperature than other lighting technologies, so indoor growers may need to raise the ambient temperature at their grow facilities to maintain ideal LST. Switching to spectrally tuned LEDs may help growers cut down on cooling and dehumidifying costs, while simultaneously improving crop health and productivity.

What’s the Best Way to Measure LST?

There are several tools available for growers to measure LST, ranging from advanced probes to specialty cameras. However, many of these tools provide a reading at a specific point, rather than the whole leaf, leading to some inaccuracies. Temperature can dramatically vary across the leaf, depending if parts are fully exposed to the light or in the shadows.

Investing in a forward-looking infrared camera (FLIR) gives indoor growers a more accurate picture of LST and light efficiency. That being said, growers should not only measure leaves at the top of the plant, but across the middle and bottom of the plant as well. That way, growers receive a complete snapshot of growing conditions and can make changes as needed.

At an indoor grow facility, it’s not enough to only measure ambient room temperature. Of course, this aspect is important, but it will paint an incomplete picture of plant health. Measuring LST gives growers nuanced insights as to how plants respond to their environment and how they can better encourage resilient, healthy growth.

Using spectrally tunable LEDs makes achieving LST easier and more cost-effective. Lights with optimized spectrums for plant growth ensure no energy is wasted – resulting in superior performance and efficiency.

dry cannabis plants

How to Grow Cannabis Plants for Concentrate Production

By Andrew Myers
No Comments
dry cannabis plants

While flower is still the most popular way to consume cannabis, the concentrates market is booming. Some predict concentrates will be nearly as popular as flower by 2022, with an estimated $8.5 billion in retail sales. That’s a lot of concentrates and, chances are, cannabis producers are already feeling the pressure to keep up.

Concentrates refer to products made from processing cannabis – often resulting in much higher THC or CBD percentages. The category includes oils, wax, dabs, shatter, live resin and hash. Consumers are increasingly drawn to these cannabis products for their near-immediate and intense effects. They’re often consumed through vaporization, dabbing or sublingual absorption and are sometimes favored by those who want to avoid smoking. Cannabis growers who have traditionally focused on flower yields may decide to prioritize quality and potency levels in order to tap into these changing consumer tastes.

What Growers Should Focus on to Produce High Quality Concentrates
We’ll let you in on a little secret: making good concentrates starts with good flower. If you’re starting with low-quality flower, it’s impossible to create a high-quality concentrate. Whatever qualities inherent to the flower you’re starting with will be amplified post-processing. So, really, the concentrate-making process starts at the seedling level, requiring the right care and attention to coax out the results you’re looking for.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

But what makes good flower? While this can be a subjective question, those producing concentrates generally look for flowers with big, abundant trichomes. Trichomes are the small, dewy structures found across the cannabis plant on buds, leaves and even the stem. They’re responsible for producing the plant’s cannabinoids and terpenes – the chemical compounds that give a strain its unique benefits, aroma and taste. Evolutionarily, trichomes attract pollinators, deter hungry herbivores and provide some defense against wind, cold and UV radiation.

Generally, trichomes indicate how potent the flower is. Plus, what we’re most often looking for when making concentrates is higher cannabinoid and terpene profiles, while also ensuring absolute safety.

What measures can growers take to produce crops that are ideal for concentrate production? Start with the following:

Avoiding Contaminants
Just like you would wash your fruits and vegetables before consumption, consumers want to be sure there’s no dangerous residuals in the concentrate they are ingesting. Growers can avoid any post-process residuals by taking a few key steps, including:

  • Photo: Michelle Tribe, Flickr

    Cutting out the pesticides. Any pesticides that are on your flowers before they go through processing will show up in your concentrates, often even more – you guessed it – concentrated. This is a serious health concern for consumers who might be sensitive to certain chemicals or have compromised immune systems. It’s dangerous to healthy consumers, too. Rather than spraying hazardous chemicals, growers could consider integrated pest management techniques, such as releasing predatory insects.

  • Limiting foliar spraying. Some growers will use foliar spraying to address nutrient deficiency or pest-related issues through delivering nutrients straight to the leaves. However, this can also result in contaminated concentrates. If you really need to spray, do it during the vegetative stage or investigate organic options.
  • Taking the time to flush the crop. This is a critical step in reducing potential contaminants in your concentrate, especially if you’re using a non-organic nutrient solution or fertilizer. Flushing simply means only giving your plants water during the final two weeks of flowering before harvest, resulting in a cleaner, non-contaminated flower and therefore a cleaner concentrate.

Perfecting the Indoor Environment
When cultivating cannabis indoors, growers are given ultimate control over their crop. They control how much light the plants receive, the lighting schedule, temperature and humidity levels. Creating the ideal environment for your cannabis crop is the number one way to ensure healthy plants and quality concentrates. There are many factors to consider when maintaining an indoor grow:

  • Temperature regulation. Trichomes are sensitive to temperature changes and start to degrade if they’re too hot or too cold. To maintain the best trichome structure, you’ll want to maintain an ideal temperature – for most strains, this falls between an idyllic 68 and 77 degrees.
  • Adequate light. For plants to perform photosynthesis indoors, they’ll need an appropriate light source – preferably one that is full-spectrum. Full-spectrum LEDs are able to closely replicate the sun and provide ample, uniform light to your crop. Another selling point for LEDs is their low heat output, making it much easier for growers to regulate ambient heat.

    dry cannabis plants
    Rows of cannabis plants drying and curing following harvest
  • CO2. Another necessary ingredient for photosynthesis is CO2. Providing your indoor crops with CO2 can boost plant size and yields and, therefore, provides more surface area for trichomes to develop and thrive.
  • Cold snap prior to harvest. Some growers rely on this age-old tactic for one last push before harvest – lowering their temperature for a few days right at the end of the flower cycle. They believe this puts the plants into a defense mode and will produce more trichomes in order to protect themselves.

Following Best Practices Post-Harvest
You made it to harvest – you’re almost done!

When harvesting and storing your plants, handle them with care to reduce damage to trichomes. If you’re planning on immediately making concentrates, you can move forward to the drying and curing process. If you’re going to wait a few weeks before processing, freeze your plants. This will preserve the cannabinoid and terpene profiles at their peak.

As the cannabis industry continues to expand, more consumers are likely to reach for concentrates at their local dispensaries. It makes sense that businesses want to diversify their offerings to satisfy customers looking for the most effective way to consume cannabis. As with any cannabis-derived product, producers will want to prioritize quality and safety – especially in the concentrate market.

Strengthen Supply Chain Management with an Integrated ERP & CMS

By Daniel Erickson
1 Comment

Success in the cannabis industry is driven by a company’s ability to adapt to an ever-changing market and meet the demands of the evolving consumer. Selecting the right business management solution to handle the complexities of the growing cycle as well as daily operations and compliance requirements necessitates diligent research. Ensuring that the selected technology solution has a centralized database in a secure platform designed to reinforce quality throughout company operations is essential in today’s competitive industry. An ERP solution with integrated CMS capabilities helps businesses strengthen supply chain management by seamlessly incorporating cannabis cultivation with day-to-day company operations to efficiently deliver seed to sale capabilities and meet marketplace demands.

What are ERP & CMS?

Enterprise resource planning (ERP) is a business system in which all data is centralized – including finances, human resources, quality, manufacturing, inventory, sales and reporting. A cultivation management system (CMS) is an extension of an ERP solution to manage cannabis greenhouse operations, including growing, inventory and labor needs. A CMS maintains a detailed level of tracking to account for continuous cannabis growth periods that require extensive monitoring and incur a multitude of expenses. In an integrated solution, both the ERP and CMS data are managed under the same secure database to provide a forward and backward audit trail of all business processes. This visibility encompasses the entire supply chain from the management of supplier relationships to distribution – including growing, cultivating, extracting, manufacturing and shipping.

How do ERP & CMS strengthen supply chain processes?

Tracks individual plants and growth stages – By tracking plant inventories at the individual plant level in real-time with a unique plant identifier, greenhouse operations are optimized – monitoring the entire lifecycle of the plant throughout the germination, seedling, vegetative and flowering stages. Audit trails maintain regulatory compliance, including information such as terpene profiles and THC and CBD potency. Monitoring genealogy, mother and cloning, crossbreeding, plant genetics and clone propagation are key to success in this industry. Strain tracking is equally important, including identifying which strains are performing best, producing the most yield and how they are received by the marketplace. Tracking of the entire supply chain includes the recording of plant health, harvesting techniques, production, growth, costs, lab testing and batch yields – without any gaps in information.

PlantTag
A plant tagged with a barcode and date for tracking

Optimizes growing conditions to increase yields – By automatically documenting and analyzing data, insights into plant and greenhouse activities create streamlined processes for an optimal cannabis cultivation environment. This includes the monitoring of all growing activities such as space, climate, light cycles, moisture content, nutrient applications, fertilizer and other resources, which all have an effect on plant growth and yields. Most importantly, labor costs are monitored, as it is the highest expense incurred by growers. In an industry for which many companies have limited budgets, enabling efficient greenhouse planning, automation and workflows reduces overhead costs.

Integrates with regulatory compliance systems – Compliance is a mandatory part of the cannabis business, and many companies haven’t expended the effort to ensure their processes are meeting regulations. This has placed their licensing and business at risk. An integration that automates the transfer of required reporting information from the ERP to state government approved software such as METRC, Biotrack THC and Leaf Data Systems to ensure regulatory compliance is imperative. This streamlined process assures that reporting is accurate, timely and meets changing requirements in this complex industry.

Facilitates safety and quality control – With an ERP solution tracking all aspects of growing, manufacturing, packaging, distribution and sales, safety and quality are effectively secured throughout the supply chain. Despite the lack of federal legality and regulatory guidelines, proactive cannabis producers can utilize an ERP’s automated processes and best practices to ensure safe and consistent products. By standardizing and documenting food safety procedures, manufacturers mitigate the risk of cannabis-specific concerns (such as aflatoxins, plant pesticide residue, pest contamination and inconsistent levels of THC/CBD potency) as well as dangers common to traditional food manufacturers (such as improper employee procedures and training) for those in the edibles marketplace. Food safety initiatives and quality control measures documented within the ERP strengthen the entire supply chain.

Maintains recipes and formulations – In manufacturing, to achieve product consistency in regards to taste, texture, appearance, potency and expected results, complex recipe and formula management is a necessity – including monitoring of THC and CBD percentages. The calculation of specific nutritional values to provide accurate labeling and product packaging provides necessary information for consumers. Cannabis businesses have to evolve with the consumer buying habits and marketplace saturation by getting creative with their product offerings. With integrated R&D functionality, the expansion of new and innovative edibles, beverages and forms of delivery, as well as new extractions, tinctures, concentrates and other derivatives, helps to meet consumer demands.

Handles inventory efficiently – Established inventory control measures such as tracking stock levels, expiration dates and product loss are effectively managed in an ERP solution across multiple warehouses and locations. Cannabis manufacturers are able to maintain raw material and product levels, reduce waste, facilitate rotation methods and avoid overproduction to control costs. With the use of plant tag IDs and serial and lot numbers with forward and backward traceability, barcode scanning automatically links product information to batch tickets, shipping documents and labels – providing the ability to locate goods quickly in the supply chain if necessary in the event of contamination or recall. The real-time and integrated information available helps mitigate the risk of unsafe products entering the marketplace.

Food processing and sanitation
By standardizing and documenting food safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

Utilizes user-based software permissions – Access to data and ability to execute transactions throughout the growing stages, production and distribution are restricted to designated employees with proper authorization – ensuring security and accountability throughout the inventory chain.

Manages supplier approvals – Assurance of safety is enhanced with the maintenance of detailed supplier information lists with test results to meet in-house quality and product standards. Quality control testing ensures that critical control points are monitored and only approved materials and finished products are released – keeping undeclared substances, harmful chemicals and impure ingredients from infiltrating the supply chain. When standards are not met, the system alerts stakeholders and alternate vendors can be sought.

Delivers recall preparedness – As part of an edible company’s food safety plan, recall plans that include the practice of performing mock recalls ensures that cannabis businesses are implementing food safety procedures within their facilities. With seed to sale traceability in an ERP solution, mitigating the risk of inconsistent, unsafe or contaminated products is readily maintained. Integrated data from the CMS solution provides greater insight into contamination issues in the growth stages.

An ERP solution developed for the cannabis industry with supporting CMS functionality embodies the inventory and quality-driven system that growers, processors, manufacturers and distributors seek to strengthen supply chain management. Offering a centralized, secure database, seed to sale traceability, integration to compliance systems, in-application quality and inventory control, formula and recipe management functionality and the ability to conduct mock recalls, these robust business management solutions meet the needs of a demanding industry. With a variety of additional features designed to enhance processes in all aspects of your cannabis operation the solution provides a framework to deliver truly supportive supply chain management capabilities.

Soapbox

Increase Density in your Canopy

By Carl Silverberg
No Comments

One goal all growers seem to agree on is the need to increase density in their houses. How that gets done, well, there are a variety of ways and here’s one way a grower chose to do it:

With 45,000 square feet of greenhouse space, Nathan Fumia, a cannabis grower and consultant for a commercial operation in California, wasn’t pleased with what he was seeing. “If I put my hand inside the canopy and I can see sunlight on it, I’m losing money,” was how he described the situation. Unfortunately, the operators and staff of the greenhouse disagreed. They thought increasing density would rob the leaves of needed light.

He chose to test his theory by increasing the number of plants on one of his benches from 140 to 150 plants. To ensure the validity of the research, Nathan grew the same strain on Bench 1 as Bench 2, and to make sure all the metrics were equal, he even processed the crops separately. After weighing, Bench 2 (his research bench) showed an 8% higher yield than Bench 1.

“The post-harvest data from the weight, yield confirmed my decision to maximize density by increasing the total number of plants per bench,” says Fumia. “Whenever I saw red on the canopy heat map from LUNA, I knew there was room for improvement and I knew that I wasn’t making the money that I should have from those areas.”

His next challenge was where to place the extra ten plants? Did it make a difference or could he just shove 150 plants in a space that was originally planned for 140? Again, his greenhouse system was able to pinpoint the best sub-sections on the benches and Nathan was able to see exactly which plants were growing the fastest. That also gave him the ability to understand why certain quadrants of the bench were doing better than others.

“We were able to determine which quadrant on which bench was already at 100% density, and determine which quadrant wasn’t. Without that data, it would have been pure guesswork.”

He dialed down even further to find out which cultivars grew the best on a particular bench in the greenhouse. “Some cannabis cultivars need more light, some need less, some need warmer climates, and some need cooler climates,” Fumia noted. “Additionally, in order to increase the density of flowering points/buds, we began focusing on better pruning techniques in the vegetative phase, directly increasing branches for flowering.”

With optimization even more important now than it was 12-18 months ago, Nathan summed up the impact on his bottom line. “With a crop cycle averaging just over six a year, at that time we were averaging $600-$800 a pound depending on the strain. Some were even more. Ten extra plants per bench per cycle was a nice bounce for us.”

Obviously, this isn’t the only way to increase density. What’s your suggestion? Share your ideas with the rest of us by posting your comments below.

dry cannabis plants

Moisture Matters: Why Humidity Can Make or Break a Cannabis Cultivator’s Bottom Line

By Sean Knutsen
1 Comment
dry cannabis plants

Vintners have known for centuries that every step in the winemaking process—from cultivation and harvest techniques to fermentation, aging and bottling—has immense impact on the quality and value of the final product.

And that same level of scrutiny is now being applied to cannabis production.

As someone who has worked in the consumer-packaged goods (CPG) space for decades, I’ve been interested in finding out how post-harvest storage and packaging affect the quality and value of cannabis flower. After digging into the issue some more, storage conditions and humidity levels have indeed come into focus as major factors, beyond just the challenges of preventing mold.

Weighty Matters

I enlisted my research team at Boveda, which has studied moisture control in all manner of manufactured and natural CPG products, to look closer at what’s happening with cannabis once it leaves the cultivation room. There’s not a lot of research on cannabis storage—we checked—and so we explored this aspect further. We were frankly surprised by what a big effect evaporation has on quality and how this is playing out on the retail level.

We suspected moisture loss could affect the bottom line too, and so we did some number-crunching.

It’s well understood that the weight of cannabis flower directly correlates with its profitability—the heavier the yield, the higher the market value. Here’s what our analysis found: A mere 5% dip below the optimal relative humidity (RH) storage environment eliminates six pounds per every 1,000 pounds of cannabis flower. At $5 per gram wholesale, that works out to upwards of $13,500 in lost revenue—and that’s with just a 5% drop in RH below the target range of 55-65% established by ASTM International, an independent industry standards organization.

We also purchased flower at retailers in multiple state markets and commissioned a lab to test the samples, which revealed that most strains sold today are well below the optimal RH range (55-65%). Regardless of fluctuating wholesale prices, when you do the math it’s clear that tens of thousands of dollars in revenue are simply evaporating into thin air.

Why So Dry?

Historically, cultivators, processors and packagers have emphasized keeping flower below a particular humidity “ceiling” for a reason: Flower that’s too moist is prone to hazardous mold and microbial growth, so it’s understandable that many operators err on the side of being overly dry.

The misconception that cannabis flower can be “rehydrated” is another cause of dryness damage. But this method irrevocably damages the quality of the flower through trichome damage.

trichome close up
The fine outgrowths, referred to as trichomes, house the majority of the plant’s resin

Those delicate plant structures that house the all-important cannabinoids and terpenes become brittle and fragile when stored in an overly dry environment, and are prone to breaking off from the flower; they cannot not be recovered even if the flower is later rehydrated.

When trichomes are compromised, terpenes responsible for the aroma, taste and scent of cannabis also can evaporate. Overly dried-out cannabis doesn’t just lose weight and efficacy—it loses shelf appeal, which is particularly risky in today’s market.

Today’s consumers have an appreciation for how premium flower should look, smell and taste. Rehydration cannot put terpenes back in the flower, nor can it re-attach trichomes to the flower, which is why preservation of these elements is so key.

Cannabis Humidity Control

Cured cannabis flower can remain in storage potentially for months prior to sale or consumption. By the time it reaches the end consumer, much of the cannabis sold in regulated environments in the U.S. and Canada has suffered from dry damage.

dry cannabis plants
Rows of cannabis plants drying and curing following harvest

There are various humidity controls available for cannabis cultivators: desiccants that absorb water vapor; mechanical equipment that alters RH on a larger scale; or two-way humidity-control packets designed for storage containers.

In the CPG sector, with other moisture-sensitive products such as foods and electronics, we’ve seen that employing humidity controls will preserve quality, and cannabis flower is no different.

Saltwater-based humidity control solutions with two-way vapor-phase osmosis technology automatically add or remove water vapor as needed to maintain a constant, predetermined RH level and ensures a consistent level of moisture weight inside the cannabis flower.

Here’s one more notable finding we discovered in our storage research: Third-party lab tests commissioned by Boveda showed cannabis stored with humidity control had terpene and cannabinoid levels that were 15% higher than cannabis stored without.

Cannabis stored within the optimal humidity range maximizes all the qualities that attract and retain customers. Similar to wine-making, when cannabis cultivators focus on quality control they need to look beyond the harvest.

Beyond THC: Encouraging Cannabinoid and Terpene Production with LEDs

By Andrew Myers
No Comments

For years, tetrahydrocannabinol (THC) got all the attention. While THC certainly delivers its own benefits (such as relaxation and pain relief), there’s a whole host of other – and often overlooked – compounds found in cannabis with important benefits as well. THC is truly only the tip of the iceberg when it comes to cannabis’s potential.

As the cannabis industry evolves with changing consumer tastes and developing medical research, growers may employ techniques to boost cannabinoid and terpene profiles in their harvests – beyond merely focusing on THC. Advanced LEDs allow growers to elicit specific biological responses in cannabis crops, including increased concentrations of these naturally occurring chemical compounds.

The Foundation of Cannabis’s Effects
Whether used medicinally or otherwise, cannabis has changed our society and many of our lives – and there’s a collection of naturally occurring chemical compounds, known as cannabinoids and terpenes, to thank.

  • The cannabinoids THC and CBD are the most common and well-researched, however they are accompanied by more than 200 additional compounds, including cannabinol (CBN), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), among others.
  • The cannabis plant also contains terpenes. These structures are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.

Both cannabinoids and terpenes are found in the cannabis plant’s glandular structures known as trichomes. Look closely, and you’ll notice trichomes coating the cannabis flowers and leaves, giving the plant an almost frosty appearance.

macropistil/trichome
A macro view of the trichomes and pistils on the plant

Trichomes – which are found across several plant species – are a key aspect of a cannabis plant’s survival. The specific combination of metabolites produced by trichomes may attract certain pollinators and repel plant-eating animals. Moreover, trichomes (and specifically THC) may act as the plant’s form of sunscreen and shield the plant from harmful ultraviolet rays.

While they play an essential part in the cannabis plant’s lifecycle, trichomes are volatile and easily influenced by a range of environmental factors, including light, heat, physical agitation and time. Therefore, environment is a defining variable in the development of these important structures.

How LEDs Support Cannabinoid and Terpene Development in Crops
Spectrally tunable LEDs give indoor cannabis growers unparalleled control over their crops. As research has expanded about plants’ responses to the light spectrum, growers have discovered they are able to elicit certain physiological responses in the plant. This phenomenon is called photomorphogenesis. At its root, photomorphogenesis is a survival tactic – it’s how the plant responds to miniscule changes in its environment to increase the chances of reaching full maturity and, eventually, reproducing. While cultivated cannabis plants won’t reproduce at an indoor setting, growers can still use the light spectrum to encourage strong root and stem development, hasten the flowering process and the development of bigger, brightly colored flowers.

It makes sense that using the proper light spectrums may also have an impact on the production of specific cannabinoids and terpenes – an important factor when responding to highly specific consumer needs and desires, both within medical and adult-use markets.

Here are a few more reasons why utilizing full-spectrum LEDs can lead to higher quality cannabis:

  • Lower Heat, but the Same Intensity.
    When compared to HPS, fluorescent and other conventional lighting technologies, LEDs have a much lower heat output, but provide the same level of intensity (and often improved uniformity). This represents an enormous advantage for cannabis cultivators, as the lights can be hung much closer to the plant canopy without burning trichomes than they would be able to with other lighting technologies.
  • UV Light. Cannabinoids and terpenes are part of the cannabis plant’s natural defense mechanism, so it makes sense that lightly stressing plants can boost cannabinoid and terpene numbers. Some studies illustrate an increase in UV-B and UV-A light can lead to richer cannabinoid and terpene profiles.1 It’s a fine line to walk, though – too much UV can result in burned plants, which leads to a noticeable drop in cannabinoids.
  • Full-Spectrum Capabilities. The cannabis plant evolved over millions of years under the steady and reliable light of the sun. Full-spectrum is the closest thing to natural sunlight that growers will be able to find for indoor growing – and they’ve been shown to perform better in terms of cannabinoid development. A 2018 study titled “The Effect of Light Spectrum on the Morphology and Cannabinoid Content for Cannabis Sativa L.,” explored how an optimized light spectrum resulted in increased expression of cannabinoids CBG and THCV.2

This is the most important tip for indoor growers: your plants’ environment is everything. It can make or break a successful harvest. That means cultivators are responsible for ensuring the plants are kept in ideal conditions. Lights are certainly important at an indoor facility, but there are several other factors to consider that can affect your lights’ performance and the potency of your final product. This includes your temperature regulation, humidity, the density of plants within the space, CO2 concentration and many other variables. For the best results, your lights should be fully aligned with other environmental controls in your space. Nothing sabotages a once-promising crop like recurrent issues in the indoor environment.

solsticegrowop_feb
Indoor cultivation facilities often use high powered lights that can give off heat

Cannabinoids and terpenes take time to develop – so cultivators will want to avoid harvesting their plants too early. On the other hand, these compounds begin to degrade over time, so growers can’t wait too long either.

Cultivators seeking potent cannabinoid and terpene profiles must find a happy medium for the best results – and the best place to look is where cannabinoids and terpenes develop: the trichomes. With a microscope, cultivators can get up close and personal with these sparkly structures. Younger plants begin with clear trichomes, which eventually become opaque and change to amber. Once your plants show amber-hued trichomes, they’re ready for harvest.

The truth here is that there’s no perfect formula to elicit show-stopping cannabinoids and dizzying terpenes with every harvest. A lot of cannabis cultivation is based around trial-and-error, finding what works for your space, your business and your team. But understanding the basics around indoor environmental controls like lighting and temperature – and how they can affect the development of cannabinoids and terpenes – is an excellent place to start. Using high quality equipment, such as full-spectrum LED lighting can boost both cannabinoid and terpene production, resulting in richer, more potent and higher quality strains.


References:

  1. Lyndon, John, Teramura, Alan H., Coffman, Benjamin C. “UV-B Radiation Effects on Photosynthesis, Growth and Cannabinoid Production of Two Cannabis Sativa Chemotypes.” August 1987. Photochemistry and photobiology. Web. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1987.tb04757.x?&sid=nlm%3Apubmed
  2. Magagnini G., Grassi G., Kotiranta, S. “The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.” 2018. Medical Cannabis and Cannabinoids. Web: https://www.karger.com/Article/FullText/489030
Cannabusiness Sustainability

Designing More Sustainable Cannabis Facilities

By Sophia Daukus
1 Comment

The topic of sustainability has grown in importance and priority for both consumers and regulators. From reducing emissions to lowering energy and water consumption, cannabis growing facilities face unique challenges when it comes to designing sustainable operations. Moreover, as the cannabis market grows and usage becomes more accepted, regulatory bodies will continue to increase the number of directives to help ensure the safety and quality of cannabis products.

Non-porous flooring options are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.

Ubiquitous throughout cannabis grow rooms and greenhouses, flooring can be easily overlooked, yet offers an economical way to create more sustainable facilities. Many of today’s grow rooms are located in old retrofitted warehouses or former industrial buildings that were designed without sustainability or environmental concerns in mind.

Combined with energy efficient lighting and more thoughtful water usage, flooring can help create a more efficient facility that not only improves business operations, but also contributes to a better bottom line.

Sustainability Challenges Facing Cannabis Facilities

Whether in an old warehouse space or a new structure designed from the ground up, cannabis businesses face unique operational challenges when it comes to sustainable best practices.

  • Energy Consumption: Like any indoor farm, lighting plays an important role in cannabis growing facilities. Traditional grow lights can utilize a large amount of electricity, putting a strain on the company budget as well as regional energy resources. Switching to highly-efficient LED lighting can help facilities reduce their consumption, while still maximizing crop yield.
  • Water Consumption: Among the thirstiest of flora, cannabis plants require consistent and plentiful watering for healthy and fruitful crop production.
  • Carbon Dioxide (CO2) Enrichment: In many cases, carbon dioxide is introduced into facilities to help enhance the growth of crops. However, this practice may pose safety and health risks for workers, the surrounding community and the planet at large. CO2 is a greenhouse gas known to contribute to climate change.

In order to head off upcoming regulatory restrictions, as well as to alleviate the mounting safety and health concerns, it behooves cannabis grow room managers and owners to explore alternatives for improving sustainability in their facilities.

Flooring Requirements for More Sustainable Cannabis Facilities

Spanning thousands or even hundreds of thousands of square feet throughout a facility, flooring can be a unique way to introduce and support sustainable practices in any grow room or greenhouse.

When seeking to improve operational efficiency and implementing the use of sustainable practices in cannabis facilities, look for flooring systems with the following characteristics:

  • Impervious Surfaces— Fertilizers, fungicides, and other chemicals can infiltrate porous unprotected concrete to leach through the slab matrix and into the soil and groundwater below. Non-porous flooring options, such as industrial-grade, fluid-applied epoxies and urethanes, are impervious in nature, helping to isolate contaminants on the surface, thus enabling proper cleanup and disposal.
  • Light-Reflective Finishes— Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms. By mirroring overhead lighting back upward, bright, light-reflective flooring can help minimize facilities’ reliance on expensive ceiling fixtures and electricity usage.
  • USDA, FDA, EPA, OSHA and ADA Compliancy— With cannabis industry regulations currently in flux, grow facilities that select food- and pharmaceutical-compliant flooring will be ahead of the game. Governing bodies in some states have already begun expanding the facility requirements of these sectors to the cannabis market.
  • Durable and Easy Care— Having to replace flooring every couple of years imposes high costs on businesses as well as the environment. Installation of many traditional types of flooring produces cut-off waste and requires landfill disposal of the old floor material. In contrast, by installing industrial-grade flooring systems that are highly durable and easy-to-maintain, facilities can count on long-term performance and value, while helping to minimize disposal costs and concerns.
Light-colored white or pastel floor surfaces in glossy finishes can help reduce the amount of energy needed to properly illuminate grow rooms.

Optimal flooring can help cultivation facilities reduce waste, improve the efficacy of existing lighting and lengthen floor replacement cycles for a better bottom line and a healthier environment. Additionally, having the right grow room floor can assist facilities in meeting regulatory requirements, help ensure production of quality products and improve the safety for consumers and staff.

Flooring Benefits for Employees and Consumers

Safety is paramount in any workplace. When it comes to the manufacture of foodstuffs and other consumed products, government oversight can be especially stringent. With the right compliant flooring in place, cultivation facilities can focus on the rest of their business, knowing that what’s underfoot is contributing to the safety of employees and their customers.

Here’s how:

  • Chemical Resistance— Floors can be exposed to a high concentration of chemicals, acids and alkalis in the form of fertilizers, soil enhancers and other substances. In processing locations, the proper disinfecting and sanitizing of equipment can require harsh solvents, detergents and chemical solutions, which can drip or spill onto the floor, damaging traditional flooring materials. It pays to select cannabis facility flooring with high chemical resistance to help ensure floors can perform as designed over the long term.
  • Thermal Shock Resistance— Optimal cannabis facility flooring should be capable of withstanding repeated temperature cycling. Slab-on-grade structures in colder climates may be especially vulnerable to floor damage caused by drastic temperature differences between a freezing cold concrete slab and the tropical grow room above. This extreme contrast can cause certain floor materials to crack, delaminate and curl away from the concrete substrate. The resulting crevices and uneven surfaces present trip and fall hazards to employees and leave the slab unprotected from further degradation. As an alternative, thermal shock-resistant floors, such as urethane mortar systems, furnish long-lived functionality even when regularly exposed to extreme temperature swings.
  • Humidity and Moisture Resistance— Traditional floor surfaces tend to break down in ongoing damp, humid environments. Cannabis facility flooring must be capable of withstanding this stress and more.
  • Pathogen Resistance— Undesirable microbes, fungi and bacteria can thrive in the moist, warm environments found in grow rooms. Floors with extensive grout lines and gaps provide additional dark, damp locations for pathogen growth. Fluid-applied flooring results in a virtually seamless surface that’s directly bonded to the concrete. Integral floor-to-wall cove bases can further improve wash down and sanitation.
  • Proper Slope and Drainage— Where food and/or pharmaceutical facility regulations have already been extended to cannabis operations, flooring is required to slope properly toward a floor drain. This prevents puddling, which can be a slip hazard as well as a microbe breeding ground. Unlike more typical materials, resinous flooring offers an economical solution for correcting floor slope wherever needed.

The Problems Presented by Traditional Flooring Options

Previously, cannabis growers often relied on traditional greenhouse-type flooring, including tamped down dirt floors, gravel or bare concrete. However, current and upcoming regulations are curtailing the use of these simple flooring options.

Growers often compare and contrast the benefits and value of traditional greenhouse flooring with more modern solutions, such as fluid-applied epoxy and urethane floors.

Dirt and gravel flooring offers little opportunity to properly sanitize, thus potentially inviting microorganism and pathogen invasion, contamination and costly damage. Growers who have turned to bare concrete floors face other concerns, including:

  • Unprotected concrete is inherently porous and therefore able to quickly absorb spilled liquids and moisture from the air. In addition, organic and synthetic fertilizers, fungicides, and chemicals can leach through the concrete floors, contaminating the groundwater, injuring the surrounding environment and wildlife.
  • Older slabs often lack an under-slab vapor barrier. Even in new construction, a single nail hole can render an under-slab barrier ineffective. In these situations, moisture from underneath the floor slab can move upward osmotically through the alkaline slab, leading to blistering and damage to standard commercial floor coverings.
  • Bare concrete floors can stain easily. These dark stains tend to absorb light instead of reflecting it, contributing to a potential increase in energy usage and cost.
  • The mold proliferation encouraged by the warmth and humidity of grow rooms can easily penetrate into the depths of unprotected slab surfaces, eventually damaging its structural integrity and shortening the usable life of the concrete.

While traditional greenhouse flooring options can initially seem less expensive, they frequently present long-term risks to the health of cannabis grow businesses. In addition, the performance of dirt, gravel and bare concrete floors runs counter to the industry’s commitment to reducing the carbon footprint of growing facilities.

Choosing Sustainable Grow Room Flooring

It’s no secret that the cannabis industry is undergoing enormous change and faces numerous environmental challenges. Luckily, optimal flooring options are now available to help growers economically increase their eco-friendly practices on many fronts. By focusing on quality resinous flooring, cannabis growers can get closer to meeting their sustainability goals, while simultaneously contributing to improved operation efficiency, enhanced yields and an increased bottom line.

The Best Way to Remediate Moldy Cannabis is No Remediation at All

By Ingo Mueller
2 Comments

Consumers are largely unaware that most commercial cannabis grown today undergoes some form of decontamination to treat the industry’s growing problem of mold, yeast and other microbial pathogens. As more cannabis brands fail regulatory testing for contaminants, businesses are increasingly turning to radiation, ozone gas, hydrogen peroxide or other damaging remediation methods to ensure compliance and avoid product recalls. It has made cannabis cultivation and extraction more challenging and more expensive than ever, not to mention inflaming the industry’s ongoing supply problem.

The problem is only going to get worse as states like Nevada and California are beginning to implement more regulations including even tougher microbial contamination limits. The technological and economic burdens are becoming too much for some cultivators, driving some of them out of business. It’s also putting an even greater strain on them to meet product demand.

It’s critical that the industry establishes new product standards to reassure consumers that the cannabis products they buy are safe. But it is even more critical that the industry look beyond traditional agricultural remediation methods to solve the microbial problems.

Compounding Risks

Mold and other microbial pathogens are found everywhere in the environment, including the air, food and water that people consume. While there is no consensus yet on the health consequences of consuming these contaminants through cannabis, risks are certainly emerging. According to a 2015 study by the Cannabis Safety Institutei, molds are generally harmless in the environment, but some may present a health threat when inhaled, particularly to immunocompromised individuals. Mycotoxins resulting from molds such as Aspergillus can cause illnesses such as allergic bronchopulmonary aspergillosis. Even when killed with treatment, the dead pathogens could trigger allergies or asthma.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

There is an abundance of pathogens that can affect cannabis cultivation, but the most common types are Botrytis (bud rot, sometimes called gray mold) and Powdery Mildew. They are also among the most devastating blights to cannabis crops. Numerous chemical controls are available to help prevent or stem an outbreak, ranging from fungicides and horticultural oils to bicarbonates and biological controls. While these controls may save an otherwise doomed crop, they introduce their own potential health risks through the overexposure and consumption of chemical residues.

The issue is further compounded by the fact that the states in which cannabis is legal can’t agree on which microbial pathogens to test for, nor how to test. Colorado, for instance, requires only three pathogen tests (for salmonella, E. coli, and mycotoxins from mold), while Massachusetts has exceedingly strict testing regulations for clean products. Massachusetts-based testing lab, ProVerde Laboratories, reports that approximately 30% of the cannabis flowers it tests have some kind of mold or yeast contamination.

If a cannabis product fails required microbial testing and can’t be remedied in a compliant way, the grower will inevitably experience a severe – and potentially crippling – financial hit to a lost crop. Willow Industries, a microbial remediation company, says that cannabis microbial contamination is projected to be a $3 billion problem by 2020ii.

Remediation Falls Short
With the financial stakes so high, the cannabis industry has taken cues from the food industry and adopted a variety of ways to remediate cannabis harvests contaminated with pathogens. Ketch DeGabrielle of Qloris Consulting spent two years studying cannabis microbial remediation methods and summarized their pros and consiii.

He found that some common sterilization approaches like autoclaves, steam and dry heat are impractical for cannabis due the decarboxylation and harsh damage they inflict on the product. Some growers spray or immerse cannabis flowers in hydrogen peroxide, but the resulting moisture can actually cause more spores to germinate, while the chemical reduces the terpene content in the flowers.

Powdery mildew starts with white/grey spots seen on the upper leaves surface

The more favored, technologically advanced remediation approaches include ozone or similar gas treatment, which is relatively inexpensive and treats the entire plant. However, it’s difficult to gas products on a large scale, and gas results in terpene loss. Microwaves can kill pathogens effectively through cellular rupture, but can burn the product. Ionizing radiation kills microbial life by destroying their DNA, but the process can create carcinogenic chemical compounds and harmful free radicals. Radio frequency (which DeGabrielle considers the best method) effectively kills yeast and mold by oscillating the water in them, but it can result in moisture and terpene loss.

The bottom line: no remediation method is perfect. Prevention of microbial contamination is a better approach. But all three conventional approaches to cannabis cultivation – outdoors, greenhouses and indoor grow operations – make it extremely difficult to control contamination. Mold spores can easily gain a foothold both indoors and out through air, water, food and human contact, quickly spreading into an epidemic.

The industry needs to establish new quality standards for product purity and employ new growing practices to meet them. Advanced technologies can help create near perfect growing ecosystems and microclimates for growing cannabis free of mold contamination. Internet of Things sensors combined with AI-driven robotics and automation can dramatically reduce human intervention in the growing process, along with human-induced contamination. Natural sunlight supplemented with new lighting technologies that provide near full-light and UV spectrum can stimulate robust growth more resistant to disease. Computational fluid dynamic models can help growers achieve optimal temperature, humidity, velocity, filtration and sanitation of air flow. And tissue culture micropropagation of plant stock can eliminate virus and pathogen threats, to name just a few of the latest innovations.

Growing legal cannabis today is a risky business that can cost growers millions of dollars if pathogens contaminate a crop. Remediation methods to remove microbial contamination may work to varying degrees, but they introduce another set of problems that can impact consumer health and comprise product quality.


References

i. Holmes M, Vyas JM, Steinbach W, McPartland J. 2015. Microbiological Safety Testing of Cannabis. Cannabis Safety Institute. http://cannabissafetyinstitute.org/wp-content/uploads/2015/06/Microbiological-Safety-Testing-of-Cannabis.pdf

ii. Jill Ellsworth, June 2019, Eliminating Microbials in Marijuana, Willow Industries, https://willowindustries.com/eliminating-microbials-in-marijuana/#

iii. Ketch DeGabrielle, April 2018, Largest U.S. Cannabis Farm Shares Two Years of Mold Remediation Research, Analytical Cannabis, https://www.analyticalcannabis.com/articles/largest-us-cannabis-farm-shares-two-years-of-mold-remediation-research-299842

 

Integrated Labeling Helps This Ohio Cannabis Company Grow

By Mike Barker
No Comments

Since medical cannabis was legalized in Ohio in 2016, companies that cultivate and process medical cannabis, as well as the plants themselves, have been popping up around the state.

Grow Ohio, a dual-licensed Level 1 cultivator and processor, was the first licensed processor in Ohio and the first to successfully bring product to market. From plant material to edibles, tinctures, oils, lotions and capsules, the company seeks to ensure that medical cannabis is cultivated and processed under the same strict standards as any pharmaceutical medication. As first to market, Grow Ohio found themselves navigating a complicated process by themselves.

As their first product was ready to be packaged, Executive Vice President (EVP) Justin Hunt and the team at Grow Ohio were focused on marketing, packaging and distributing their product. With the sheer number of items that required attention, it is easy to see how something like labelling can slip under the radar. With a variety of products and dosages, and the first delivery of the product slated for late April of 2019, Grow Ohio needed a consistent way to ensure their product complied with state law, and also satisfied their own brand standards.

As their April product launch date grew closer, Grow Ohio realized they needed help with executing on Ohio’s labeling requirements for medical cannabis products.

They turned to Adaptive Data Inc., a barcode and labeling systems supplier to provide labels, printers, and software. ADI’s task was to specify the right label materials for their branding and compliance needs and provide software and equipment to print compliance labels on demand. ADI’s proposed solution would slash the waste associated with printing and applying labels and create a lean process.

Compliance

Compliance labels must contain specific information and must be prominently visible and clearly legible. Containers have to be labeled with details including the specific quantity of product, dosage, THC levels, license #, testing lab name and ID #, and other details. Different sizes and shapes are required for the various packaging form factors.

Due to the large amount of content and a relatively small label area, ADI specified 300 dpi printer resolution so that 4 or 5 point fonts would be legible.

Hunt had all the information needed to comply with state regulations, but didn’t have a way to get that information, properly formatted, onto a finished label at the point of packaging. “It’s all about how you get the data from one source to the other in a way that is easily repeatable,” says Hunt. The solution provides the capability to handle all compliance requirements, for all types of product and all sizes/shapes of labels. The system is designed to minimize key entry of data, a typical source of content errors. All of Grow Ohio’s products contain THC and require the red THC compliance logo. Early on this requirement was met using a separate, hand-applied THC logo label, which was very costly. The labels now include the THC logo, all required compliance data, and the capability to include a 2d barcode.

At the time the products are packaged all compliance information is printed on demand with label printers. As retail expansion continues, the barcode on the plant material compliance label can be used with the POS systems of the dispensaries, to keep their systems fast and accurate.

Until the system is ready to receive data automatically from METRC, the State approved inventory system which tracks all medical cannabis plants and products grown or produced in Ohio, they used user interfaces that reduce the amount of data that is key entered to an absolute minimum. Using drop down lists, date pickers and calculated results, means that Grow Ohio only enters data in 5-10 fields, depending on product line. As the system evolves the next step will be to take data for compliance details automatically from METRC.

Branding

As the first to enter the medical marijuana market, Grow Ohio leadership knew that their brand image is as important to their success as the quality of their products. Their logo, color choice, and inclusion of the THC logo had to be consistent in appearance across all products, regardless of production method.  They used full color branded product labels and blank labels that have the Grow Ohio and THC logo pre-printed. (Compliance data is added to the blank labels on demand.)

Label Application – Automatic, Semi-automatic and Manual

Grow Ohio packages in metal cans, glass bottles and in boxes. Each packaging type has specific requirements.

Metal Cans: Grow Ohio uses an automated packaging line for plant material in cans. That line includes two automatic apply-only machines (for brand labels). The compliance label is printed and dispensed and placed on the can as it is boxed.

Bottles: Cylindrical containers can be difficult to label. Grow Ohio originally packaged tinctures and oils in glass bottles which were pre-printed with their logo. The printed logo looked nice, but printing on the glass was expensive. This made placing the compliance label on the bottle more difficult, since the logo could not be covered. Positioning and straightness was critical for readability as well as aesthetics. Manual placement was time consuming (15 – 30 seconds per bottle).

Now, bottles are being processed with the help of a semi-automatic print-apply machine. The print-apply machine can label 18-20 bottles per minute.

By using plain bottles and pre-printing the blue Grow Ohio logo and red THC logo on the label, they were able to streamline the process. The semi-automatic print-apply machine adds the compliance data to the label and applies the label to the bottle.

The result is a lower total cost of the product. Plain bottles cost less without the logo and the labor to manually apply the labels has been greatly reduced. In addition, with the logos on the label instead of the bottle, orientation and spacing are no longer an issue. The label maintains the natural brand feel, which was important to Hunt.

Boxes: Only compliance labels are required for boxes as the branding information is pre-printed on the box. Compliance labels for boxes include a pre-printed, red THC logo. The printer prints the compliance data and presents the label with the liner removed, ready to be manually applied to the box.

Summary

With a broad product line, Grow Ohio’s label requirements are quite diverse. By specifying and sourcing the right hardware, software and label materials,

Adaptative Data provided an efficient, repeatable, cost-effective way to do brand and compliance labeling for Grow Ohio’s diverse product offering.  

Hunt now understands the magnitude of work that goes into coming up with a compliant, cost-friendly compliance labeling approach – an appreciation he did not have at the outset. He is not alone in this regard as many companies come to this understanding late in the start-up process.

Hunt isn’t sure how fast the market will grow, but he is not worried. As the market expands and demand grows, he knows his systems can handle it.