A top product trend this year is the rise of solventless cannabis products, according to recent statistics from cannabis market analyst firm BDSA. In fact, from June 2021 to June 2022, BDSA research also showed that the category grew an average of 132% each month.
Nearly all cannabis products start with cannabis concentrates, which are made with a solvent that contains the desirable compounds from cannabis. Solventless concentrates however are made from the cannabis flower without the use of any chemicals and are becoming popular among businesses and consumers. This broad category of cannabis products includes everything from hash to live rosin.
Mitch Lindback, Lab Director at Copperstate Farms, has been growing and extracting cannabis for 15 years and has over a decade of experience working with cannabis derivatives. “Solventless is the truest expression of the cannabis plant,” he says.
Copperstate Farms is one of the largest greenhouse cannabis producers in North America and home to 1.7 million square feet of canopy and 40 acres under glass. Here is an inside look into the company’s solventless creation process:
The Harvest
One of the most important growth factors in cannabis is light, so cannabis grown in full-spectrum light often brings the best flower to harvest. In the weeks before harvesting, the lab conducts a test wash on cannabis plants before hand-selecting which will be used in rosin. Plants are selected based on appearance, aroma and test wash results. On harvest day, all flowers are lightly hand-trimmed and frozen within two hours of harvest.
The Wash
Using only chilled RO water and minimal ice, our cannabis extraction experts gently break the trichome heads off the fresh-frozen cannabis using a stainless-steel wash system, by gently agitating the flower. Then they collect the 73μ-159μ trichome heads while pushing the immature trichome heads and stalks to pass through collection bags with a cold spray wash.
The Press
After carefully freeze drying, sifting and packing the hash into double-wrapped mesh rosin bags, Copperstate Farms uses rosin presses to gently express the nectar from the trichome heads using a little heat and a lot of pressure.
The Cure
All live rosin goes through a minimum 7-day cure. “We have found through extensive analytical testing that curing rosin for a minimum of seven days increased its terpene content by over 30 percent,” Lindback says.
The extensive process to create solventless cannabis products is time and energy intensive, but leads to quality offerings, like full melt hash and live rosin. In fact, the solventless category is “primed for premiumization and growth in legal cannabis markets,” according to BDSA retail sales analytics. This is especially true in the dabbable concentrate product category and predicted in the vaping concentrate category as well.
With popular annual holidays like 7/10 (the cannabis community’s holiday for celebrating oil products, dabs and concentrates) gaining traction, solventless products are predicted to grow in market share and are worth cannabis companies looking into producing as demand rises among consumers who are always looking for innovative products that feature solventless concentrate.
The Tohiyusdv Cavalry is a black-owned small business based in rural Virginia. At its core, they grow and process cannabis for CBD products, but it’s really much more than that. Through its Precision Craft Farmer Program, the company works with existing small minority-owned farms to introduce them to the cannabis market.
Via land leasing, profit-sharing, crop-sharing, facility design, community involvement and incubator-style support, Tohiyusdv Cavalry has built a network of farmers and a community around them that work together to gain access to the larger cannabis market.
Tohiyusdv, pronounced “toe-hee-yoos-da,” means “calm” and comes from a Native American dialect in the region. James Arrington III, founder of the company, is both African American and Native American, so the name is a nod to his roots. While Arrington insists he is just one part of this larger organization, it’s his passion for community, small business, social equity and cannabis that drives the company.
We sat down with James to learn more about the Tohiyusdv Cavalry, a bit of his background, how him and his community have found success and what they hope to achieve.
Different Sides of the Tracks
He grew up in Norfolk, Virginia alongside his two brothers and sister with a view of two different lifestyles. “We grew up in the hood of Huntersville, but I was raised in a white church, so it was interesting seeing both sides of the tracks and seeing the side that some of my friends couldn’t see,” says Arrington. The dichotomy of his upbringing gave him a unique perspective that he took to heart, eventually going to Old Dominion University for electrical engineering at the encouragement of a teacher.
Throughout his formative years, he didn’t really get involved with cannabis – that came much later. In his college years though, he met his Delta Chi fraternity brother Ernest Toney, who would go on to become the founder of BIPOCann, a nonprofit that helps social equity entrepreneurs, minority business owners and professionals in the cannabis industry.
Working as an electrician to pay for tuition, Arrington graduated and launched what would become a successful career in electrical engineering. He worked as a subcontractor for the government in warzones, designing electrical systems with security and defense in mind, before starting his own company CalArr Consulting. “What really tied me to the industry was when I started using cannabis for my mental health and to understand who I am,” says Arrington. A combination of his upbringing and his career led to his PTSD, which then led him to cannabis as a tool for his wellbeing and mental health.
More recently, he spoke with Ernest Toney, who said, “Look man, I’ve seen what you’ve done with your business over the years and you should consider getting into the cannabis industry.” Arrington took that advice and ran with it. “So, the company I started is a mission-driven company based around healing, cannabis, understanding and helping people,” says Arrington. “Tohiyusdv Cavalry is based around working with small farmers and minorities; We introduce them to the cannabis industry.”
Here Comes the Cavalry
Right now, his company works with hemp and CBD products, but he says they are looking to expand into the THC market once Virginia legalizes and they already have some partners they’re working with in other states to expand the program.
Tohiyusdv Cavalry has been around for about two years now and Arrington says the heartbeat of it is their craft farmer program. “These are existing minority farmers in a community, already growing crops like soybean or corn,” says Arrington. “These are generational farms that have been passed down through family, some of them almost 100 years. They’ve always had to change with the times.” In changing with the times, a lot of these small, rural farms are seeing the hemp market as a possible pivot, but hardly know where to begin. “They are starting to hear about farmers in their community growing hemp, but having trouble finding folks to buy their crop.”
That’s where the Cavalry comes in. “What you see in minority backgrounds is a lot of opportunities like this that are very scary to step into,” says Arrington. “We’re teaching people how to get into the industry, helping them through processing and getting on the market using new technology, and we do it at their pace.” Some folks in their network just want to rent space on their farm out to a hemp grower, others want to dive right in and create CBD products. They operate a white label program for some and help set up turnkey facilities complete with extraction and processing for others. “We work with them to build a community around their farm,” says Arrington. “We are just the engine behind these small farmers helping them get access to the larger market.”
From the Ground Up
A good example of the work they put in is Everbreeze Acres. Based in Rustburg, Virginia, Everbreeze is a 434-acre farm and bakery that’s been in the same family for generations. They had an interest in the cannabis market, so they approached Tohiyusdv Cavalry. James and his crew came in and built a 2,000-square-foot facility that is hydroponic, fully turnkey and automated. “We are teaching them the process and turning it over to them,” says Arrington. “We are teaching them how to take care of the plants, grow the crop, harvest and process it, all while collecting data.”
Before brainstorming how they want to market their products and how they want to be represented, the owners of the farm were still a little skeptical. Being in their 70s, they wanted to make a product that has some medicinal properties and could help people take care of themselves. So, James and his team put together a plan to launch a daily supplement, akin to a multivitamin.
Now Everbreeze Acres is using CBD as a megaphone to communicate their story. They were wary at first, but learned about it, grew to like it and now run a fruitful cannabis business. “We have their facility up and running and we’re growing several strains that work best for them right now,” says Arrington. “We’re about a month away from another harvest there.”
Building Community
Everbreeze Acres embodies the concept of the Tohiyusdv Cavalry. Helping small farmers establish themselves in the cannabis industry, building community around them and working to help their following and their mission.
Small business is the keystone of many communities, the cannabis industry included. Economic empowerment is sort of a way of staving off big business too. Given the history of big tobacco in the Virginia area, many stakeholders are worried if they’ll still have a seat at the table when Virginia legalizes adult use cannabis. “Looking at it in that sense, we are hoping that creating this group of diverse minds and backgrounds is building a table where everyone can sit at,” says Arrington. “We want to provide that place for them and let them know that, yes, this is the room for you, this is the place for you. We’re lending a helping hand and giving them a voice and a megaphone, sharing what they want to see in this industry.”
When asked what advice James would give himself ten years ago, the mood was somber. “Ten years ago, my mentor, alumni Dave “BamBam” Hoffman died. I would say that was the thing that gave me that kick in the ass, that I wasn’t doing everything I could do.” He has the same advice for minorities and indigenous people getting into the industry now: “Don’t be afraid to do it, the skills that you have you can put into the industry in some way. Your fit is out there. If it’s the right way, it’s never going to be easy. Push through it, keep going,” he says.
Growing in Virginia
Tohiyusdv Cavalry is ready for the day that Virginia legalizes adult use cannabis, but James says he hopes they make room for the small farmers. “Small farmers are what makes Virginia, Virginia.” They are in talks with some larger medical cannabis companies about creating similar programs for sourcing from craft growers. Through their strategic partners, a big part of their work right now is around partner and sponsor outreach, getting more businesses interested in sponsoring facilities and investing with small farmers. “Our hope is that we’ll be able to keep expanding the program and involve more minority farmers in Virginia and that it will only keep growing,” he says. “We’re optimistic that we’ll have three more farms signing on this year. And hopefully when Virginia legalizes adult use cannabis soon, we’ll be ready to expand in that market and keep on growing.”
Ideal cannabis profits come from high demand/high selling prices and low production costs. The spread between those two, or margin, can determine the life or death of your business. We want to share this series of articles so that your next investment can be highly successful and high margin out-of-the-box.
Regardless of the grow method (soil, coco, rockwool, hydro or aero), every plant performs best in its own ideal environmental conditions. Experienced growers gained success through hard work, and just that, experience. Many have tried more advanced grow technologies, but shied away due to early trial failures or the complexity of maintaining chemistry across a grow facility. The wonderful thing now is that precision sensors and software controls eliminate the risk to robust healthy plants and harvest success. Growers are now able to both manage production while performing research in line with their operations.
We have learned a great deal working with our grow partners over the last 6 years. Every grow facility and location are different due to local weather, business environment and scale. This series of articles and guide, authored by our expert, Christopher Wrenn, will include recommendations of the most successful approaches we have seen here in North America and all over the world.
Building top-quality cultivation facilities is no simple task. Cultivators are also looking for new help as they shift from older soil or media approaches to more efficient grow methods. One powerful method is aeroponics, which is very good at growing any type of plant in air in a sterile environment, with labor, nutrient and water savings.
Where possible, we will share key vendors that support healthy grow operations and (since it is World Series Time), customer examples that are knocking it out of the park. In today’s competitive business environment, it is critical to do what we can to increase profitability and survival in the face of steep headwinds. We want you to crush it and be “the last man standing.”
So, let’s get to it.
Climate: Environmental Control
We begin with a critical leg in your environment. The process of photosynthesis is more than just light, plant and moisture. We want to do more than just grow plants. We want to grow highly profitable plants. That means we have to accelerate photosynthesis so we are growing faster, bigger and more potent than our competitors.
The Vapor Pressure Deficit (VPD) is the amount of “drying power” available in the air surrounding your plants. This is a useful way to understand the amount of moisture your atmosphere can remove from your plants as they digest carbon dioxide and aspirate water and oxygen into the air around your plants. A higher vapor deficit is a good thing for growth; It is also a measurement of how much nutrient you can uptake into the plant roots and convert into size and potency in the canopy. We recommend that you have resources in your grow rooms to maintain your environment to within 5% of both your humidity and temperature targets for ideal results.
In our Top Quality Cultivation Facilitywhite paper, we review environmental settings for temperature and humidity for mother, clone/veg and flower rooms for day and night light cycles from early cuttings through to end of harvest flush. Day temperatures can be up to 20% higher than night temperatures for example.
Cooling
Managing temperature may seem straight-forward but the heat generated by LED lights, HPS lights or the sun will vary across rooms, time exposure and with the distance of the light source from the plants. Measurement sensors should be distributed across rooms to monitor and trigger temperature resources.
Humidification/Dehumidification
This is a topic that can be underappreciated by cultivators. It is important to slowly transition humidity as you move plants from cuttings to clones, to veg and to flower. Beginning in a very humid stage to motivate root start, humidity will be stepped down from an opening near 90% down to an arid 50% in your end of flush flower rooms. We detail the transitions in 5% increments in the white paper.
Relative Humidity (RH) and the related VPD are the key metrics to accelerating growth throughout the stages. Not sizing dehumidifiers correctly is one of the most common mistakes our grow partners learn about as they move to full production. In the first phase of turning cuttings from healthy mothers into rooted clones, hitting your target VPD to motivate root growth is the number one success factor. This will require the addition of humidity into your clone room. It is also typical to require raise the humidity of your flower rooms when you transition clone/veg plants from the high humidity clone/veg room into an initially dry flower room, otherwise the plants may go into shock as a result of the dramatic change.
As flowering begins, if humidity remains high, and the VPD is below target, the plants will not be moving nutrients and transpiring moisture. We have seen lowering the humidity from 70% in a flower room down to 50%, results in a yield increase from 50 grams to 90 grams of dry trim bud per plant, so a smooth transition can both accelerate growth and have a big impact on your margins and profitability.
Plants in aeroponics can truly have explosive growth. This means that they will also transpire moisture at an accelerated rate. Fast automated growth in aeroponics means increased humidity output. Sizing these critical systems for humidification/dehumidification are a critical part of the design process.
Airflow
Fans combined with your cooling/heating/humidity/dehu systems need to mix the air in a room to break the boundary layer at the leaf surface for transpiration. As we covered, VPD is critical to growth success. A dry surface motivates the plants to transpire moisture. We recommend flow rates across the canopy in a 0.5-1.5 meter/second rate to align to your genetics and where you are in the flowering process.
Airflow and flowering means rich beautiful aromas are generated. Every facility has to consider odor control. If you are in a populated area, you will have ordinances and neighbors to satisfy. The best way to do this is to minimize the amount of air that exits a facility. This is also the cheapest approach.
Sterile HEPA filters and scrubbing systems clean air of pathogens and odor but they also need to circulate and “condition” air to the correct temperature and humidity levels before it can be recirculated into a room. Oftentimes, this is a good place to also recapture humidity and reinject it into your pure water cleaning systems.
Key vendors to talk to about sizing air treatment systems are SURNA, Quest, Desert Aire and AGS. Each of these vendors have specialties and tend to be superior partners in different regions of the world. We would be happy to introduce you to excellent support resources for air management systems.
According to a press release sent out today, ASTM International’s D37 cannabis committee has approved three new standards for environmental conditions during packaging, shipping and storing cannabis and hemp flower. The three new standards are:
Standard Specification for Environmental Conditions for Post Packaged Storage and Retail Merchandising of Cannabis/Hemp Flower (soon to be published as D8423);
Standard Specification for Environmental Conditions While In-Transit for Packaged Cannabis/Hemp Flower (soon to be published as D8432); and
Standard Specification for Environmental Conditions While Packaging Cannabis/Hemp Flower (D8450).
ASTM members will be presenting at the Cannabis Quality Conference & Expo, October 17-19 in New Jersey. Click here for more information. Jonathan DeVries, a member of ASTM, says these standards are designed for the entire cannabis supply chain, from cultivation, manufacturing and transportation all the way to the end consumers. “These standards are designed to support the safety and quality of packaged cannabis and hemp flower as it moves through the supply chain,” says DeVries. “This includes the activities following curing and drying, namely packaging, transit, and storage, until it reaches the final end user.”
The Brand Marketing Byte showcases highlights from Pioneer Intelligence’s Cannabis Brand Marketing Snapshots, featuring data-led case studies covering marketing and business development activities of U.S. licensed cannabis companies.
In this week’s Byte, we’re taking a look at the hottest retail U.S. cannabis brands right now. Using a scoring methodology that factors in a wide variety of data sets, Pioneer’s algorithm tracks brand awareness, audience growth and engagement. Using more than 80,000 relevant data points per week, they analyze business activity across social media, earned media and web-related activities.
The brands listed below have the strongest marketing performance indicators, according to Pioneer Intelligence, which includes web activity. Here are a few insights that explain why some of these companies made the cut:
Cookies comes in at the eighth spot on July’s list. The brand does a lot of promotional content on their business development activity, which helps them make the news almost every week. This time around, they announced the debut of a new chain of Sativa-focused dispensaries under the brand name Lemonnade.
Terrapin Care Station took the fifteenth spot in July’s list. Terrapin made headlines this month with their expansion in Michigan. Their newest brick-and-mortar location is the first medical cultivation facility to open in Grand Rapids, Michigan.
Surterra Wellness had a podium finish in July, becoming the third hottest U.S. cannabis retail brand. Back in early July, they received a lot of press for launching its line of tinctures in Texas.
Here are the top 15 hottest U.S. cannabis retail brands for July 2020:
Communication is key for efficient interaction between cultivation and business functions at any cannabis operator. So, what are the top four things cultivation directors should be discussing with their operations manager right now, as we face an uncertain Summer 2020 and unique COVID-related challenges (product demand uncertainty, reduced workforce, and immediate response to problems and issues):
Labor requirements
Operators should be discussing “Who, and what, do I need to operate this facility and how do I make operations more streamlined without diminishing quality, consistency, and yield?”
Efficient operations should focus on labor workflow and circulation and document a clear understanding of how employees will move through the spaces while doing their jobs.
Having a “less labor” philosophy and understanding—a ‘first in and first out’ mentality—drives down cost of production.
By limiting employees’ need to cross paths and segregating processes (e.g. harvest, distro, packaging) in a facility, you can maintain biosecurity and limit the risks of cross-contamination
When working with fewer staff members, everyone should be trained to:
Operate all necessary equipment
Perform keys tasks like nutrient deliver or preventative maintenance
Supply chain
What sort of products do I use to cultivate, process, distribute and how will potential shortages affect my use/cost related to these?
Consider products and supplies that you can order in bulk
Examine and update your chemical regime to focus on products that are cheaper to freight ship, and located within the US or even your state
Mitigate the risk of availability by using products that are have no shelf-life or expiration issues, and those where the supply chain has not yet had disruptions
Automation and technology
What’s the availability to allow for remote monitoring and controls?
Cultivators can take some of the load off the reduced staff by automating critical tasks
Remote monitoring solutions will also allow for faster notification of crop issues
Integrating preventative maintenance tasks like equipment schedules and maintenance can increase efficiency
Yield expectations
Ensure that conversations on yield expectations are as transparent as possible and set realistic and achievable goals
Build business models based on the correct numbers that take into account productions numbers on ‘high yield’ genetics versus lower-yielding plants (yield versus price)
Ensure you have a detailed plan that combines both plant density and production goals
There are obvious upsides and downsides to cannabis regulation. Gone are the days when it was a free for all, for outlaws growing in California’s hills, under the limited protections California’s medical cannabis laws provided. While there is no longer the threat of arrest and incarceration, for the most part, there are also a lot of hoops to jump through, and new rules and standards to contend with. This article highlights three areas in which your cultivation plan must necessarily change due to the new regulations.
1. Integrated Pest Management (IPM) is limited
In the new regulated market, products that were once widely used are now no longer allowed. Prior to regulation, in the days of Prop 215, you could spray your plants with just about anything, since there was no testing mandated for the products that were being sold. However, people unfortunately got sick and experienced negative reactions, with products like Eagle 20, which contains mycobutinol, and Avid, which contains bifenthrin. Accordingly, under new regulations there are thankfully much more stringent standards dictating what pesticides can be used. It’s ironic that for most of the “medical marijuana” era in California there were no mandatory testing requirements for the THC content of your cannabis, let alone testing for toxins, including pesticides, molds or heavy metals.
You need to have a very thorough pest management plan to make sure your bug populations are always in check. Given that there are a small number of allowable products for pest control in the regulated market, this can be tricky. You need to be extremely familiar with what is and isn’t allowed in today’s regulations. You must also make sure that someone who is certified to apply pesticides is applying them.
As a word of caution, there have been instances where approved pesticides were found to have old unused chemicals (that are not approved for use) from the manufacturing process in them. They may have only occurred in very small amounts, but they are harmful to humans and there is no lawful way to dispose of them.
Further, the presence of these harmful chemicals can cause your finished product to fail when undergoing mandated testing.
Rather than using risky chemicals, the best solution for (early detected) control of pests is the use of beneficial insects. Although they may not be the best solution for an infestation, predator bugs like Neoseiulus Californicus can efficiently control small populations of spider mites while ladybugs are good to limit aphids. Strategic planning of your IPM is one of the best ways to keep pest levels in check.
2. Plant size and plant count matter more than ever
Despite widespread legalization in the past few years for both the medical and recreational markets in the United States, the black market is still rampant and most cannabis is still being produced illegally in the US and internationally.
Generally speaking, in the black market, the less plants you have the better, as high plant counts lead to longer sentences of incarceration. With the passage of prop 215 in 1996, many growers, especially outdoor, started growing their plants as big as they possibly could because most limitations were based on plant counts. Some outdoor growers were able to cultivate plants that yielded over 10 pounds per plant. These days regulations are based on canopy measurements, meaning you can grow as many plants as you want within a defined, limited square footage area. This is where “light deprivation,” a method used to force plants into flowering, becomes favorable as it allows 2-4 harvests per year instead of just one. It is a much more intensive way of growing when you have tens of thousands of plants. While it is easier to plant, cultivate and harvest a larger number of smaller plants, it also requires a much more detailed level of planning and organization.
In order to achieve 4 harvests per year, you must have a well thought out cultivation plan and an all-star staff, but if you are able to accomplish this, you can increase your revenue significantly. Maximizing plant canopy space is essential to a profitable business in today’s market, and to do that will require more detailed planning, better organization and proper crop management.
3. How you grow and what equipment you use
With regulation comes liability for defects or injury. It is essential that all equipment used is approved for its intended use. Traditionally, cannabis was cultivated in secrecy in the black market. This led to many unsafe grow rooms being built by people who did not have the proper skills to be undertaking projects such as converting a garage into a grow room or handling the electrical and plumbing running into them. Accordingly, there were many instances of damages to property or injuries to people because of this. Now that counties and states permit cannabis cultivation facilities, the infrastructure and labor that is done must meet regulated building codes and general safety requirements. It is therefore imperative to know the codes and regulations and hire a professional that does, to ensure you meet the standards in order to avoid potential liability.
Larger scale cultivation requires bigger and more expensive equipment. Cultivation facilities are more likely to have sophisticated equipment, such as chiller systems, that are designed to control the grow room environment. While very efficient, some are not intended to be used specifically for cannabis cultivation, and can therefore be difficult to control and maintain. They perform very specific functions, and when not properly tuned to your conditions, can malfunction by prioritizing dehumidification over cooling. This can be a real challenge in warmer climates when temperatures rise, requiring cooling, but also necessitate removal of moisture from the cultivation space.
On the other hand, there is new technology that can make a huge difference in the success of your cultivation. I recently worked with two different companies that specialize in root zone heating systems. One manufactured equipment for root zone heating and cooling of 10k sq ft raised beds that had never been used in California previously. The other company specialized in root zone heating using radiant floor heat. They both worked as intended to maintain a constant root zone temperature, which increased plant health, and ultimately increased yield.
Many counties require data collection from your cultivation, requiring you to track the amount of water and nutrients used. Therefore, another useful tool you can use to increase efficiency, is data collection software that will allow you to collect different information about the amount of water and nutrients used, as well as specific information about the conditions in your grow medium. You can also record and display temperature and humidity readings in your grow room, in real time remotely through Wi-Fi, that you can then access from your phone or computer from anywhere in the world. This can be a useful tool when documenting information that your county, state or investors may require from you. Further, the ability to collect and analyze data will allow you to identify areas of inefficiency in order to correct and optimize your grow room’s potential. While you can achieve these same goals with simple in-line water meters, keeping track of nutrients and pesticides is not as easy. Data collection in the most basic form, using a pen and paper, can be an inaccurate and an inefficient use of time, and can easily be misplaced or ruined. Therefore, simple data software collection programs are the best solution to make the process simple and hassle free.
While it is nice to have state of the art equipment, if it does not work properly, or cannot be easily maintained, it will not be worth it in the long run and you will never see a return on your investment. Innovation comes with a price; using equipment that is cutting edge can be risky, but on the flip side, when done properly it can give you a big advantage over your competitors.
In switching from the black market to the regulated market, these three areas have proven to be the biggest areas of change and have presented the biggest challenges. It is important you consider these necessary changes, and make a solid plan before you begin your cultivation. This is where a cultivation consultant can help.
Cannabis legalization has taken the United States by storm, with 33 states approved for medicinal cannabis use — 11 of which are also approved for recreational use for adults aged 21 and over. With new patients and consumers entering the market every day, it’s more important than ever for cannabis cultivators to establish more effective methods for mold and fungal prevention in their crops and to ensure consumer confidence in their brands.
Today, many cultivators address the risk of mold and fungus growth by testing crops for contaminants at the end stage of production. While this helps to catch some infected product before it reaches the market, this method is largely ineffective for mold and fungal prevention during the cultivation process. In fact, recent studies have shown an 80% failure rate in mold and fungal testing in Denver cannabis dispensaries. By relying on late-stage, pass/fail testing, cannabis entrepreneurs also expose themselves to increased risk of lost crops and profits.
However, emerging sensor technologies exist that can test plants during the grow process, significantly reducing the risks associated with cannabis cultivation while increasing the bottom line for commercial grow operations. By leveraging data from these monitoring sensors along with environmental automation systems that are integrated with data analytics platforms, cannabis professionals can take a proactive approach to achieve the ideal environmental conditions for their crops and prevent against mold and fungal infestation.
Common Causes for Bud Rot in Indoor Growing Systems
Botrytis cinerea — commonly known as “bud rot” — is a pathogenic fungi species that creates a gray mold infection in cannabis plants. An air-borne contaminant, it is among the most prevalent diseases affecting marijuana crops today and can lead to significant damages, particularly when left untreated during post-harvest storage. Bud rot is one of the most difficult challenges cannabis entrepreneurs face: Once plants have been affected, only 2% can be expected to recover. This is because Botrytis cinerea can use multiple methods for attacking host plants, including using the plant’s natural defenses against it to continue infestation.
While difficult to contain, bud rot is very easy to spot. Plants affected with the fungus will begin yellowing, experience impaired growth, and develop gray fungus around its buds. Overall crop yield will be significantly reduced, leading to decreased profit for cannabis cultivators. The biggest contributing factors to a Botrytis cinerea infestation are as follows:
Humidity: Indoor grow facilities that maintain humidity levels in excess of 45% are breeding grounds for mold and fungus. These environments can become perfect conditions for mold and fungal growth.
Temperature: Bud rot typically thrives in environments where temperatures fall between 65- and 75-degrees Fahrenheit, which is why greenhouses and grow rooms are often the victim of such infestations.
Ventilation: Poor airflow is another contributing factor to Botrytis cinerea Without proper ventilation, excess moisture buildup will eventually result in mold and mildew growth.
Strain: Some marijuana strains are better equipped to fend off bud rot infection. In particular, sativa plants have a higher resistance to mold development than their C. indica and C. ruderalis cousins.
Controlling mold and fungal growth in commercial grow facilities is a top priority for cannabis cultivators. Not only detrimental to their profitability and crop yield, infected plants can pose serious health risks to consumers, especially for immunocompromised patients. Consuming cannabis products that have been compromised by bud rot or other mold and fungal infections can cause a wide range of medical concerns, including pneumonitis, bronchitis, and other pulmonary diseases. As a result, growers are required to dispose of all infected plants without the possibility to sell.
Bud rot isn’t the only culprit responsible for cannabis plant destruction. Powdery mildew, Fusarium, sooty molds, and Pythium all contribute to the challenges faced by cannabis professionals. In fact, a recent study conducted by Steep Hill Labs and University of California, Davis – Medical Center found that in 20 randomly-selected samples submitted for testing, all samples showed detectable levels of microbial contamination7. Many of these samples also contained significant pathogenic microorganism contamination. Without proper detection and prevention methods in place, these pesky plant-killers will only continue to terrorize the cannabis cultivation industry.
The Current Cannabis Cultivation Landscape
The data is clear: Current practices for cannabis cultivation are insufficient for preventing against mold and fungal growth. Sterilization and pass/fail testing do not identify the root cause of harmful infestations in plants, therefore leaving cannabis professionals in the dark about how to better optimize their grow conditions for improved crop reliability and safety. In order to prevent against damages incurred from mold and fungal infestation, marijuana growers must be more diligent in their grow condition monitoring practices.
Many cannabis professionals rely on manual monitoring to identify environmental changes within their indoor grow facilities. While it’s important to collect data on your operation’s essential systems, doing so without the right tools can be time-consuming and ineffective. Manual monitoring often relies on past data and does not illustrate the relationship between different systems and their impact on environmental changes. The goal is to assemble data from all the grow systems and create correlations on actual bio-environmental conditions during the grow process to compare to yield results. This is only available when an information management platform is synthesizing data from all the systems within the grow facility and presenting meaningful information to the growers, facility operators and owners.
Especially as the cannabis industry is expected to grow exponentially in coming years, growers need more robust tools for tracking and manipulating environmental changes within their indoor growing systems.
Leveraging Building Automation Systems & Data Analytics in Cannabis Cultivation
A powerful approach to prevent environmental conditions that are known to lead to mold and fungus growth exists in leveraging the data produced from your grow facility’s various automation systems. Most commercial cultivation facilities have multiple stand-alone and proprietary systems to control their indoor environment, making it difficult to not only collect all of this valuable data, but also to achieve the level of grow condition monitoring necessary for mold and fungal prevention.
With some data analytics platforms, such as GrowFit Analytics, data is collected across disparate systems that don’t normally communicate with one another, providing access to the key insights necessary for achieving environmental perfection with your cannabis crops. A viable solution collects vital grow facility system data and relevant bio-environmental monitoring data, and delivers this information in one, centralized software interface. The software then will apply analytic algorithms to develop key performance indicators (KPIs) while working to detect system anomalies, faults, and environmental fluctuations. The right analytics solution should also be customizable, allowing you to track the KPIs that are most important to your unique facility, and to achieve the vision of your chief grower. Ultimately, the software should serve up actionable insights that empower facility management and growers.
Collecting reliable data from different grow facility systems and environmental sensors can be a complex process and the information collected illustrates more than just what’s working right and what isn’t. By implementing an advanced data analytics solution, cannabis cultivation professionals can now be empowered to track minute details about their indoor grow facility, providing a safer, healthier environment for their crops and avoiding those environmental conditions that lead to mold and fungus altogether.
An ideal data analytics platform won’t simply collect data to be analyzed at a later date, and simple trending of sensor data is not enough. Information — especially in a commercial grow facility — is time-sensitive, which is why growers should select a system that offers real-time analytics capabilities. Some platforms offering real-time analytics utilize cloud computing, allowing for easy access from anywhere while also providing enhanced security to protect sensitive facility data. The most robust data analytics platforms provide detailed historical data for your entire crop’s lifecycle that provide a “digital recipe” to replicate successful crops, and fine-tune the process for continuous improvement.
Data analytics tools can also impact the bottom line by lowering operational costs. GrowFit Analytics, for example, was born out of a software solution designed to lower energy costs for large complex buildings like commercial grow facilities.
The data and insights provided can help identify opportunities for greater energy efficiency, which can lead to significant utility savings. Grow facilities operate 24 hours/day, with energy expenses representing one of the largest operational costs. With data analytics tools at their disposal, facility managers are armed with the information they need to improve system efficiency, increase energy savings, and improve profitability.
Eliminating Mold & Fungus from the Future of Cannabis Cultivation
By focusing on grow condition monitoring using data analytics tools, cannabis professionals can effectively eliminate the risk of mold and fungus growth in their crops. Leading data analytics tools make tracking environmental changes simple and easy to manage, allowing cannabis professionals to take a proactive approach to mold and fungus prevention. As we look to the future of the cannabis cultivation industry, it’s paramount for professionals to explore the technological advancements available that can help them address their business’ most pressing challenges.
Concentrates refer to products made from processing cannabis – often resulting in much higher THC or CBD percentages. The category includes oils, wax, dabs, shatter, live resin and hash. Consumers are increasingly drawn to these cannabis products for their near-immediate and intense effects. They’re often consumed through vaporization, dabbing or sublingual absorption and are sometimes favored by those who want to avoid smoking. Cannabis growers who have traditionally focused on flower yields may decide to prioritize quality and potency levels in order to tap into these changing consumer tastes.
What Growers Should Focus on to Produce High Quality Concentrates We’ll let you in on a little secret: making good concentrates starts with good flower. If you’re starting with low-quality flower, it’s impossible to create a high-quality concentrate. Whatever qualities inherent to the flower you’re starting with will be amplified post-processing. So, really, the concentrate-making process starts at the seedling level, requiring the right care and attention to coax out the results you’re looking for.
But what makes good flower? While this can be a subjective question, those producing concentrates generally look for flowers with big, abundant trichomes. Trichomes are the small, dewy structures found across the cannabis plant on buds, leaves and even the stem. They’re responsible for producing the plant’s cannabinoids and terpenes – the chemical compounds that give a strain its unique benefits, aroma and taste. Evolutionarily, trichomes attract pollinators, deter hungry herbivores and provide some defense against wind, cold and UV radiation.
Generally, trichomes indicate how potent the flower is. Plus, what we’re most often looking for when making concentrates is higher cannabinoid and terpene profiles, while also ensuring absolute safety.
What measures can growers take to produce crops that are ideal for concentrate production? Start with the following:
Avoiding Contaminants Just like you would wash your fruits and vegetables before consumption, consumers want to be sure there’s no dangerous residuals in the concentrate they are ingesting. Growers can avoid any post-process residuals by taking a few key steps, including:
Cutting out the pesticides. Any pesticides that are on your flowers before they go through processing will show up in your concentrates, often even more – you guessed it – concentrated. This is a serious health concern for consumers who might be sensitive to certain chemicals or have compromised immune systems. It’s dangerous to healthy consumers, too. Rather than spraying hazardous chemicals, growers could consider integrated pest management techniques, such as releasing predatory insects.
Limiting foliar spraying. Some growers will use foliar spraying to address nutrient deficiency or pest-related issues through delivering nutrients straight to the leaves. However, this can also result in contaminated concentrates. If you really need to spray, do it during the vegetative stage or investigate organic options.
Taking the time to flush the crop. This is a critical step in reducing potential contaminants in your concentrate, especially if you’re using a non-organic nutrient solution or fertilizer. Flushing simply means only giving your plants water during the final two weeks of flowering before harvest, resulting in a cleaner, non-contaminated flower and therefore a cleaner concentrate.
Perfecting the Indoor Environment When cultivating cannabis indoors, growers are given ultimate control over their crop. They control how much light the plants receive, the lighting schedule, temperature and humidity levels. Creating the ideal environment for your cannabis crop is the number one way to ensure healthy plants and quality concentrates. There are many factors to consider when maintaining an indoor grow:
Temperature regulation. Trichomes are sensitive to temperature changes and start to degrade if they’re too hot or too cold. To maintain the best trichome structure, you’ll want to maintain an ideal temperature – for most strains, this falls between an idyllic 68 and 77 degrees.
Adequate light. For plants to perform photosynthesis indoors, they’ll need an appropriate light source – preferably one that is full-spectrum. Full-spectrum LEDs are able to closely replicate the sun and provide ample, uniform light to your crop. Another selling point for LEDs is their low heat output, making it much easier for growers to regulate ambient heat.
CO2. Another necessary ingredient for photosynthesis is CO2. Providing your indoor crops with CO2 can boost plant size and yields and, therefore, provides more surface area for trichomes to develop and thrive.
Cold snap prior to harvest. Some growers rely on this age-old tactic for one last push before harvest – lowering their temperature for a few days right at the end of the flower cycle. They believe this puts the plants into a defense mode and will produce more trichomes in order to protect themselves.
Following Best Practices Post-Harvest You made it to harvest – you’re almost done!
When harvesting and storing your plants, handle them with care to reduce damage to trichomes. If you’re planning on immediately making concentrates, you can move forward to the drying and curing process. If you’re going to wait a few weeks before processing, freeze your plants. This will preserve the cannabinoid and terpene profiles at their peak.
As the cannabis industry continues to expand, more consumers are likely to reach for concentrates at their local dispensaries. It makes sense that businesses want to diversify their offerings to satisfy customers looking for the most effective way to consume cannabis. As with any cannabis-derived product, producers will want to prioritize quality and safety – especially in the concentrate market.
One goal all growers seem to agree on is the need to increase density in their houses. How that gets done, well, there are a variety of ways and here’s one way a grower chose to do it:
With 45,000 square feet of greenhouse space, Nathan Fumia, a cannabis grower and consultant for a commercial operation in California, wasn’t pleased with what he was seeing. “If I put my hand inside the canopy and I can see sunlight on it, I’m losing money,” was how he described the situation. Unfortunately, the operators and staff of the greenhouse disagreed. They thought increasing density would rob the leaves of needed light.
He chose to test his theory by increasing the number of plants on one of his benches from 140 to 150 plants. To ensure the validity of the research, Nathan grew the same strain on Bench 1 as Bench 2, and to make sure all the metrics were equal, he even processed the crops separately. After weighing, Bench 2 (his research bench) showed an 8% higher yield than Bench 1.
“The post-harvest data from the weight, yield confirmed my decision to maximize density by increasing the total number of plants per bench,” says Fumia. “Whenever I saw red on the canopy heat map from LUNA, I knew there was room for improvement and I knew that I wasn’t making the money that I should have from those areas.”
His next challenge was where to place the extra ten plants? Did it make a difference or could he just shove 150 plants in a space that was originally planned for 140? Again, his greenhouse system was able to pinpoint the best sub-sections on the benches and Nathan was able to see exactly which plants were growing the fastest. That also gave him the ability to understand why certain quadrants of the bench were doing better than others.
“We were able to determine which quadrant on which bench was already at 100% density, and determine which quadrant wasn’t. Without that data, it would have been pure guesswork.”
He dialed down even further to find out which cultivars grew the best on a particular bench in the greenhouse. “Some cannabis cultivars need more light, some need less, some need warmer climates, and some need cooler climates,” Fumia noted. “Additionally, in order to increase the density of flowering points/buds, we began focusing on better pruning techniques in the vegetative phase, directly increasing branches for flowering.”
With optimization even more important now than it was 12-18 months ago, Nathan summed up the impact on his bottom line. “With a crop cycle averaging just over six a year, at that time we were averaging $600-$800 a pound depending on the strain. Some were even more. Ten extra plants per bench per cycle was a nice bounce for us.”
Obviously, this isn’t the only way to increase density. What’s your suggestion? Share your ideas with the rest of us by posting your comments below.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.