Tag Archives: labs

The Importance of Medical Cannabis Trials In Europe

By Marguerite Arnold
No Comments

Calls for more testing have been a watchword of both cannabis reform advocates and opponents alike for many years.

However, now is a really good time for cannabis companies to consider sponsoring medical trials across Europe for their cannabis products. This is why:

The Current Environment On The Ground

Germany is Europe’s biggest consumer of both prescription medications and medical devices dispensed by prescription. It is, as a result, Europe’s most valuable drug market. And ground zero for every international cannabis company right now as a result.Targeting Germany for your latest pharmaceutical product is difficult no matter who you are.

Here, however, are a few problems that face every pharma manufacturer, far beyond cannabis. Targeting Germany for your latest pharmaceutical product is difficult no matter who you are.

  1. The vast majority by euro spending on all drugs and devices dispensed by prescription must be pre-approved. To add to this problem, before they can be prescribed, new drugs must get on the radar of doctors somehow. To put this in stark relief, the entire prescription drug and medical device annual spend is about 120 billion euros a year in Germany. Only 20 billion euros of that, however, may be obtained relatively easily (without pre-approval from an insurer). Preapproval also only comes when there is trialor other scientific evidence of efficacy.
  2. There are strict rules banning the advertising of prescription drugs to patients and highly limiting this outreach to doctors.
  3. There are strict rules prohibiting the use of the word “cannabis” to promote anything.
  4. There is a strong reliance on what is called “evidence-based medicine.” That means that large numbers of doctors and insurance company approvers need to see hard data that this drug or device actually works better than what is currently on the market.

How then, is a new drug supposed to get on the radar of those who prescribe the drug? Or patients?

If this sounds like an impossible situation to navigate, do not despair. There is a way out.

The Impact of the European Medicines Agency

This agency has been much in the news of late. Namely, the British do not want to exclude themselves from the regulatory umbrella of this organization.

Largely unknown outside Europe, this agency actually has a hugeinfluence on how drugs are brought into the region. Specifically, this is the EU-wide agency (aka the EMA) that both regulates all drugs within Europe, but has also, since 2016, been making clinical reports submitted by pharmaceutical companies, available to anyone who asks for them. That includes doctors, members of the public and of course, the industry itself.

In the middle of July, the agency also published a report on the success of its now three-year-old program, including the usage of its entry website. Conveniently written in English, it is possible to easily search new trial data, which, also now must be made public.

Medical trial data, in other words, that can be created by sponsored cannabis company backed trials.

It remains the best way to get patients, doctors and insurance companies familiar with new drugs. Or even new uses for old drugs in the case of cannabis.

Will Trials Move Legalization Discussions?

Of all the established cannabis companies now in operations with producton the ground, GW Pharmaceuticals has learned that this strategy can actually cut both ways.GW logo-2

However,there are no other cannabis companies in the position of GW Pharma – namely with a monopoly on a whole country (the UK), where it alone can legally grow cannabis crops and process the same into medication and further for very profitable export. In addition, even more disturbingly, and clearly an era that is coming to an end, the vast majority of British patients have been excluded from access to cannabis except in the case of GW Pharma products.

The current row over expanded medical use in the UK, in fact, was triggered by two things. The failure of the latest GW Pharma trial for drug resistant epilepsy in Eastern Europe. And the deliberate importation by several desperate families, of good old cannabis (CBD) oil into the UK. No medical processing required.

GW Pharma said their product Epidiolex (for the treatment of childhood epilepsy) is being considered by the European Medicines Agency

However, that is the UK.

Other cannabis companies can take a page out of the company’s handbook. All that is required for faster market entry, is a slightly altered recipe.

By sponsoring cannabis-related trials in each country they want to enter, starting with Germany, cannabis companies can literally put themselves on the medical map.

Why?

Because doctors, patients andother researchers will be easily able to see and access country-specific medical data on each use of cannabis covered by a trial, per EU country. All made possible, of course, by the new open door policy of the EMA.

Growing the Medical Market

While this may sound like an “expensive” proposition, there are really few other alternatives. And with no advertising budget, plus a marketing budget that must include outreach to everyone in the supply chain including doctors, distributors and even pharmacies, the trial approach in the end may be the most efficacious in broadening both the demand and market. Not to mention the cheaper option.

How such a trial strategy might be coordinated at a time when domestic cultivation is still on hold is still a question. However for those companies considering market entry and cultivation bid if not domestic processing strategies for their products is an industry strategy that will pay off in spades.

Its role in the legalization of cannabis as medicine, as well as the speedier introduction of new drugs overall into the European system,cannot be underestimated, even if it is currently underutilized by the cannabis industry specifically now.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.

Lauren Pahnke
From The Lab

Centrifugal Partition Chromatography Paves the Way for Safer, More Standardized Cannabidiol Drugs

By Lauren Pahnke
No Comments
Lauren Pahnke

Imagine this: you are taking medication for cancer pain. One day, it works perfectly. The next, you feel no relief. On some days, you need to take three doses just to get the same effect as one. Your doctor can’t be completely positive how much active ingredient each dose contains, so you decide for yourself how much medication to take.

Doesn’t seem safe, right? It is crucial that doctors know exactly what they are prescribing to their patients. They must know that their patients are receiving the exact same dose of medication in their prescription each time they take it, and that their medication contains only the intended ingredients.

consistency is key to creating products that are safe for consumers.In the cannabis industry, lack of certainty on these important factors is a major problem for drug manufacturers as they attempt to incorporate cannabidiol (CBD), a compound found in cannabis that has no psychoactive effects but many medical benefits, into pharmaceutical drugs.

When using these compounds as medications, purity is essential. Cannabis contains a wide variety of compounds. Delta-9 tetrahydrocannabinol (THC) is the most well-known compound and its main psychoactive one1. Safety regulations dictate that consumers know exactly what they are getting when they take a medication. For example, their CBD-based medications should not contain traces of THC.

The cannabis industry greatly needs a tool to ensure the consistent extraction and isolation of compounds. In 2017, the cannabis industry was worth nearly $10 billion, and it is expected to grow $57 billion more in the next decade2. As legalization of medical cannabis expands, interest in CBD pharmaceuticals is likely to grow.

If compounds such as CBD are going to be used in pharmaceutical drugs, consistency is key to creating products that are safe for consumers.

CBD’s Potential

CBD is a non-psychoactive compound that makes up 40 percent of cannabis extracts1. It is great for medical applications because it does not interfere with motor or psychological function. Researchers have found it particularly effective for managing cancer pain, spasticity in multiple sclerosis, and specific forms of epilepsy3.

Figure 1: The chemical structure of cannabidiol.
Figure 1: The chemical structure of cannabidiol.

Other compounds derived from cannabis, such as cannabichromene (CBC) and cannabigerol (CBG), may also be beneficial compounds with medical applications. CBC is known to block pain and inflammation, and CBG is known for its use as a potential anti-cancer agent1.

Along with these compounds that provide medical benefits, there are psychoactive compounds that are used recreationally, such as THC.

“It will definitely be an advantage to have cannabis-based medications with clearly defined and constant contents of cannabinoids,” says Kirsten Müller-Vahl, a neurologist and psychiatrist at Hannover Medical School in Germany.

Creating a Standard Through Centrifugal Partition Chromatography

To obtain purified compounds from cannabis, researchers need to use technology that will extract the compounds from the plant.

Many manufacturers use some sort of chromatography technique to isolate compounds. Two popular methods are high performance liquid chromatography (HPLC) and flash chromatography. These methods have their places in the field, but they cannot be effectively and cost-efficiently scaled to isolate compounds. Instead, HPLC and flash chromatography may be better suited as analytical tools for studying the characteristics of the plant or extract. As cannabis has more than 400 chemical entities4, compound isolation is an important application.

This method is highly effective for achieving both high purity and recovery.Although molecules such as CBD can be synthesized in the lab, many companies would rather extract the compounds directly from the plant. Synthesized molecules do not result in a completely pure compound. The result, “is still a mixture of whatever cannabinoids are coming from a particular marijuana strain, which is highly variable,” says Brian Reid, chief scientific officer of ebbu, a company in Colorado that specializes in cannabis purification.

Currently, there is only one method available to researchers that completely allows them to isolate individual compounds: centrifugal partition chromatography (CPC).

The principle of CPC is similar to other liquid chromatography methods. It separates the chemical substances as the compounds in the mobile phase flow through and differentially interact with the stationary phase.

Where CPC and standard liquid chromatography differs is the nature of the stationary phase. In traditional chromatography methods, the stationary phase is made of silica or other solid particles, and the mobile phase is made of liquid. During CPC, the stationary phase is a liquid that is spun around or centrifuged to stay in place while the other liquid (mobile phase) moves through the disc. The two liquid phases, like oil and water, don’t mix. This method is highly effective for achieving both high purity and recovery. Chemists can isolate chemical components at 99 percent or higher purity with a 95 percent recovery rate5.

“CPC is ideal for ripping a single active ingredient out of a pretty complex mixture,” says Reid. “It’s the only chromatographic technique that does that well.”

The Need for Pure Compounds

High levels of purity and isolation are necessary for cannabis to be of true value in the pharmaceutical industry. Imagine relying on a medication to decrease your seizures, and it has a different effect every time. Sometimes there may be traces of psychoactive compounds. Sometimes there are too much or too little of the compound that halts your seizures. This is not a safe practice for consumers who rely on medications.“It’s hard to do studies on things you can’t control very well.”

Researchers working with cannabis desperately need a technology that can extract compounds with high purity rates. It is hard to run a study without knowing the precise amounts of compounds used. Reid uses a Gilson CPC 1000 system at ebbu for his cannabinoid research. With this technology, he can purify cannabinoids for his research and create reliable formulations. “Now that we have this methodology dialed in we can make various formulations —whether they’re water-soluble, sublingual, inhaled, you name it —with very precise ratios of cannabinoids and precise amounts of cannabinoids at the milligram level,” says Reid.

Kyle Geary, an internist at the University of Illinois at Chicago, is currently running a placebo-controlled trial of CBD capsules for Crohn’s disease. This consistent isolation is helpful for his research, as well. “Ideally, the perfect study would use something that is 100 percent CBD,” says Geary. “It’s hard to do studies on things you can’t control very well.”

The State of the Industry

While CBD is not considered a safe drug compound under federal law in the United States6, 17 states have recently passed laws that allow people to consume CBD for medical reasons7. Half of medicinal CBD users solely use the substance for treatment, a recent survey found8. As the industry quickly grows, it is crucial that consumer safety protocol keeps pace.

In June, the US Food and Drug Administration (FDA) approved the first drug that contains a purified drug substance from cannabis, Epidiolex9. Made from CBD, it is designed to treat Dravet Syndrome and Lennox-Gastaut syndrome, two rare forms of epilepsy. FDA Commissioner Scott Gottlieb said in the news release that although the FDA will work to support the development of high-quality cannabis-based products moving forward, “We are prepared to take action when we see the illegal marketing of CBD-containing products with serious, unproven medical claims. Marketing unapproved products, with uncertain dosages and formulations can keep patients from accessing appropriate, recognized therapies to treat serious and even fatal diseases.”

The industry should be prepared to implement protocols to ensure the quality of their CBD-based products. The FDA has issued warnings in recent years that some cannabinoid products it has tested do not contain the CBD levels their makers claim, and consumers should be wary of such products10. It’s hard to know when or if the FDA will begin regulating CBD-based pharmaceuticals. However, for pharma companies serious about their reputation, there is only one isolation method that creates reliable product quality: CPC.


References:

  1. Lab Manager. (2018, January 3). Cannabinoid Chemistry Infographic. Retrieved from http://www.labmanager.com/multimedia/2017/07/cannabinoid-chemistry-infographic#.WzT2e1MvyMI
  2. BDS Analytics. (2018, February 26). NEW REPORT: Worldwide spending on legal cannabis will reach $57 billion by 2027. Retrieved from https://bdsanalytics.com/press/new-report-worldwide-spending-on-legal-cannabis-will-reach-57-billion-by-2027/
  3. National Institute on Drug Abuse. (2015, June 24). The Biology and Potential Therapeutic Effects of Cannabidiol. Retrieved from https://www.drugabuse.gov/about-nida/legislative-activities/testimony-to-congress/2016/biology-potential-therapeutic-effects-cannabidiol
  4. Atakan, Z. (2012). Cannabis, a complex plant: Different compounds and different effects on individuals. Therapeutic Advances in Psychopharmacology,2(6), 241-254. doi:10.1177/2045125312457586
  5. Gilson. (n.d.). Centrifugal Partition Chromatography (CPC) Systems. Retrieved from http://www.gilson.com/en/AI/Products/80.320#.WzVB2lMvyMI
  6. Mead, A. (2017). The legal status of cannabis (marijuana) and cannabidiol (CBD) under US law. Epilepsy & Behavior, 70, 288-291.
  7. ProCon.org. (2018, May 8). 17 States with Laws Specifically about Legal Cannabidiol (CBD) – Medical Marijuana – ProCon.org. Retrieved from https://medicalmarijuana.procon.org/view.resource.php?resourceID=006473
  8. Borchardt, D. (2017, August 03). Survey: Nearly Half Of People Who Use Cannabidiol Products Stop Taking Traditional Medicines. Retrieved from https://www.forbes.com/sites/debraborchardt/2017/08/02/people-who-use-cannabis-cbd-products-stop-taking-traditional-medicines/#43889c942817
  9. U.S. Food & Drug Administration. (2018, June 25). Press Announcements – FDA approves first drug comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy. Retrieved from https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm611046.htm
  10. U.S. Food & Drug Administration. (2017). Public Health Focus – Warning Letters and Test Results for Cannabidiol-Related Products. Retrieved from https://www.fda.gov/newsevents/publichealthfocus/ucm484109.htm
Radojka Barycki picture

Food Safety: Do You Know What Is In Your Water?

By Radojka Barycki
No Comments
Radojka Barycki picture

Water is essential for life and it is an important part of agriculture and food manufacturing. Water has many uses in the cannabis industry. Among the most common uses are irrigation, ingredient/product processing and cleaning processes.

Water can be the carrier of pathogenic microorganisms and chemicals that can be transferred to food through agriculture and manufacturing practices. Poor quality water may have a negative impact in food processing and potentially on public health. Therefore, development and implementation of risk management plans that ensure the safety of water through the controls of hazardous constituents is essential to maintain the safety of agricultural and manufactured food or cannabis products.

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans.Although there no current regulations regarding the water used in cannabis cultivation and processing, it is highly recommended that the industry uses potable water as standard practice. Potable water is water that is safe for drinking and therefore for use in agriculture and food manufacturing. In the United States, the Environmental Protection Agency (EPA) sets the standards for water systems under the Safe Drinking Water Act (SDWA.)The regulations include the mandatory levels defined as Maximum Contaminant Levels (MCLs) for each contaminant that can be found in water. Federal Drinking Water Standards are organized into six groups: Microorganisms, Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides. The agriculture and food manufacturing industry use the SDWA as a standard to determine water potability. Therefore, water testing forms part of their routine programs. Sampling points for water sources are identified, and samples are taken and sent to a reputable laboratory to determine its quality and safety.

Microbiological Testing

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus.
Photo courtesy of USDA ARS & Peggy Greb.

Determining the safety of the water through microbiological testing is very important. Pathogens of concern such as E. coli, Salmonella, Cryptosporidium parvum and Cyclospora sp. can be transmitted to food through water. These pathogens have been known to be lethal to humans, especially when a consumer’s immune system is compromised (e.g. cancer patients, elderly, etc.) If your water source is well, the local state agency may come to your facility and test the water regularly for indicator organisms such as coliforms. If the levels are outside the limit, a warning will be given to your company. If your water source is the city, regular testing at the facility for indicator microorganisms is recommended. In each case, an action plan must be in place if results are unfavorable to ensure that only potable water is used in the operations.

Chemical Testing (Disinfectants, Disinfection Byproducts, Inorganic Chemicals, Organic Chemicals and Radionuclides) 

Chemicals can enter the water stream through several sources such as storm water, direct discharge into fields and city water treatment plans. Although, there are several regulations governing the discharge of chemicals into storm water, fields and even into city water treatment plants, it is important that you test your incoming water for these chemicals on a regular basis. In addition, it is important that a risk assessment of your water source is conducted since you may be at a higher risk for certain components that require testing. For example, if your manufacturing facility is near an agricultural area, pesticides may enter the surface water (lakes, streams, and rivers) or the aquifer (ground water) through absorption into the ground or pollution. In this case, you may be at higher risk for Tetrahalomethanes (THMs), which are a byproduct of pesticides. Therefore, you should increase the testing for these components in comparison to other less likely to occur chemicals in this situation. Also, if your agriculture operation is near a nuclear plant, then radionuclides may become a higher risk than any of the other components.

GMPFinally, in addition to the implementation of risk management plans to ensure the safety of water, it is highly recommended that companies working in food manufacturing facilities become familiar with their water source to ensure adequate supply to carry on their operations, which is one of the requirements under the 21 CFR 117. Subpart B – Current Good Manufacturing Practices (cGMPs) for food manufacturers under the Preventive Controls for Human Foods Rule that was enacted under the Food Safety Modernization Act in 2015. Also, adequate supply is part of the Good Agricultural Practices (GAP) The EPA has created a program that allows you to conduct a risk assessment on your water source. This program is called Source Water Protection. It has six steps that are followed to develop a plan that not only protect sourcing but also ensures safety by identifying threats for the water supply. These six steps are:

  1. Delineate the Source Water Protection Area (SWPA): In this step a map of the land area that could contribute pollutants to the water is created. States are required to create these maps, so you should check with local and/or state offices for these.
  2. Inventory known and potential sources of contamination: Operations within the area may contribute contaminants into the water source. States usually delineates these operations in their maps as part of their efforts to ensure public safety. Some examples of operations that may contribute to contaminants into the water are: landfill, mining operations, nuclear plants, residential septic systems, golf courses, etc. When looking at these maps, be sure that you verify the identified sources by conducting your own survey. Some agencies may not have the resources to update the maps on a regular basis.
  3. Determine the susceptibility of the Public Water Source (PWS) to contaminate sources or activities within the SWPA: This is basically a risk assessment. In here you will characterize the risk based on the severity of the threat and the likelihood of the source water contamination. There are risk matrices that are used as tools for this purpose.
  4. Notify the public about threats identified in the contaminant source inventory and what they mean to the PWS: Create a communication plan to make the State and local agencies aware of any findings or accidents in your operation that may lead to contamination of the PWS.
  5. Implement management measures to prevent, reduce or eliminate risks to your water supply: Once risks are characterized, a plan must be developed and implemented to keep risks under control and ensure the safety of your water.
  6. Develop contingency planning strategies that address water supply contamination or service interruption emergencies: OSHA requires you to have an Emergency Preparedness Plan (EPP). This plans outlines what to do in case of an emergency to ensure the safety of the people working in the operation and the continuity of the business. This same approach should be taken when it comes to water supply. The main questions to ask are: a) What would we do if we find out the water has been contaminated? b) What plan is in place to keep the business running while ensure the safety of the products? c) How can we get the operation back up and running on site once the water source is re-stablished?

The main goal of all these programs is having safe water for the operations while keeping continuity of the business in case of water contamination.

Steven Burton
Soapbox

Which Safety Standards Work Best for the Cannabis Industry?

By Steven Burton
No Comments
Steven Burton

Now that governments are legalizing cannabis around the world, the question looms for cannabis businesses seeking legitimacy in the new industry: what safety standards should apply? This question is more difficult as different jurisdictions grapple with defining and implementing legal requirements and struggle to keep up with the pace of growth.

For visionary cannabis business, it makes sense to anticipate requirements – not only from governments, but also from consumers and partners. Most regulations currently focus on security and basic health issues but, in the long-term, the industry that may offer the best model for cannabis businesses isn’t pharmaceuticals, but food. Cannabis (especially edibles) share similar hazards and traceability challenges with food products, so taking the lead from the food industry will be much more applicable and could offer greater benefits.

marijuana buds drying in racks biotrackthc
Dried cannabis curing with RFID tags as part of a traceability system.

Companies that achieve the highest and most flexible certification will enjoy a crucial competitive advantage when it comes to winning market share, popularity and consumer trust. Let’s take a quick look at the different options of food safety (and quality) certifications that cannabis businesses may consider. But first, let’s clarify two important definitions that are necessary to understand the food industry.

Basic Concepts from the Food Industry

The first acronym you should be aware of is GFSI, the Global Food Safety Initiative. GFSI is a food industry-driven global collaboration body created to advance food safety. When it comes to understanding GFSI, the important part to note is that certifications recognized by GFSI (like SQF, FSSC 22000, and BRC) are universally accepted. Companies operating under GFSI-recognized certifications open the most doors to the most markets, providing the highest potential for growth. For this reason, cannabis companies should be aware of and seriously consider seeking GFSI certifications

HACCPSecondly, many food safety programs are built around Hazard Analysis Critical Control Points, or HACCP. While many people may talk about HACCP like it’s a certification in and of itself, it is not actually a certification like the others on this list, but rather a methodology that helps companies systematically identify and control biological, chemical, and physical hazards that may arise during food production, handling, and distribution. Companies that adopt this methodology end up with a HACCP plan, which must then be followed at all times to avoid and address health and safety issues. It’s often required for food businesses and is generally required in most of the world, except where ISO 22000 is more common, primarily in Europe and countries whose primary export market is European. Since HACCP plans are also incorporated into most of the other achievable certifications, developing a HACCP program early will build a strong foundation for higher levels of certification.

Certifications for the Cannabis Industry

Now that we understand the basics of GFSI and HACCP, we can see how the certifications that have been developed by and for the food industry may apply to cannabis companies – and which you should consider necessary for your business.

GMP: Good Manufacturing Practice Certification

GMP (or sometimes cGMP) certification requires that companies abide by a set of good manufacturing processes for food and beverage products, pharmaceuticals, cosmetics, dietary supplements and medical devices. Since it really only covers basic sanitation and employee hygiene, it is considered the lowest level of certification in the industry. It is not recognized by GFSI, but GFSI does require all the standard benchmarks of a GMP be met before granting GFSI certification.

While GMP certification is often required, it is far below the standard that should be upheld by any serious businesses. It doesn’t cover many of the different types of hazards associated with food production – that I have argued will become increasingly relevant to cannabis producers – and doesn’t provide a systematic approach to identifying and controlling hazards like a HACCP program would. It’s really just about providing the basic procedures and checks to ensure that the facility is clean and that employees aren’t contaminating the products.GMP

Final Verdict: Recommended, but as the bare minimum. GMP is not sufficient on its own to adequately control the risk of recalls and foodborne illness outbreaks, and it limits a company’s market potential because it lacks the GFSI worldwide stamp of approval.

Some companies consider GMP certification a good place to start if you’re on a tight deadline for distribution in markets where only GMP is required by regulators. I would argue that striving for the minimum standards will be costly in the long run. Health, safety and quality standards are the foundations upon which winning companies are built. It’s critical to develop a corporate culture that will lead to GFSI-recognized programs without major organizational overhaul. Start on the right foot and set your sights higher – obtain a certification that will stand the test of time and avoid the pain and risks of trying to change entrenched behaviors.

SQF: Safe Quality Food Program Certification

SQF is my number one recommendation as the best certification for the cannabis industry. One of the most common certifications in North America, SQF is a food safety management system recognized by retailers and consumers alike. It is administered by the Food Marketing Institute (FMI) and, importantly, recognized by GFSI, which gives companies a huge competitive edge. SQF focuses on the whole supply chain.

SQF was also the first to develop a cannabis program and is currently the leader in this market segment. It is also the scheme that best integrates food safety with quality. Since it is recognized worldwide, SQF provides the greatest leverage to accelerate a company’s growth. Once obtained, products with SQF certification can often jump the queue to enter different regulatory markets.

Final verdict: Highly recommended. A cannabis company with an SQF certification has the greatest advantage because it offers the broadest worldwide reach and keeps companies a step ahead of competitors. It’s also achievable – just this past April, Curaleaf Florida ostensibly became the first cannabis company to achieve SQF certification. It is tough, but fair and practical.

Other Certification Standards

SQF is the top certification that should be considered by cannabis companies, especially outside of Europe. However, the food industry has several other major types of standards that, at this time, have limited relevance to the cannabis industry today. Let’s take a quick look.

When considering GFSI-recognized programs, the main choice for food companies is between SQF, which we’ve covered, and BRC (the British Retail Consortium Certification). BRC has the most in common with SQF but, while SQF was originally developed for processed foods, BRC was developed in the UK for meat products. Today, they are quite similar, but BRC doesn’t focus quite as much on the quality component as SQF does. While BRC could be a good option, they don’t have a program for cannabis and, thus far, do not appear to be as friendly toward the cannabis industry.The food industry has a lot to offer cannabis companies that are anticipating future regulatory changes and market advantages 

Across the pond, there are a few other certification standards that are more common than SQF. One of these is ISO 22000, which is the certification for the food-related standard created by the International Organization for Standardization (ISO) in Europe. It is not recognized by GFSI but is the primary system used in Europe. If your market is exclusively in the EU, it might be a good choice for you in the future. However, to date, there is no indication that any cannabis company has achieved ISO 22000 certification. Some cannabis companies have attained certification for other ISO standards like ISO 9001:2015, which specifies requirements for quality control systems, and ISO/IEC 17025 for laboratory testing. These are generally more relevant for the pharmaceutical industry than food and beverage, but still apply to cannabis.

There is the perception that cannabis is more accepted in EU countries like the Netherlands, but the regulatory attitude to cannabis is complicated. In the Netherlands, for example, cannabis isn’t actually legal – “coffee shops” fall under a toleration policy that doesn’t include regulation. Medical cannabis in the Netherlands is all produced by one supplier and several countries in the EU allow for licensed distribution and import, but not domestic production. Various EU countries are trying to keep up with the legalization trend, however. The Czech Republic, Germany, and others all recently introduced legislation for domestic production of cannabis for medical use. For companies with their eye on the EU, it is crucial to watch which regulatory requirements will be implemented in each market and how.

The last certification standard to mention is the result of a compromise between ISO and the more HACCP oriented programs like SQF. FSSC 22000 (Food Safety System Certification) tries to address the gaps between ISO 22000 and GFSI-recognized certifications by introducing another component called PAS 220. Since it is recognized by GFSI, FSSC 22000 is starting to get more traction in the food industry because it makes products a bit easier to export to the EU. FSSC 22000 satisfies the EU ISO standards but isn’t as closely tied to HACCP. We will be keeping an eye on this one.

Final Takeaway

The food industry has a lot to offer cannabis companies that are anticipating future regulatory changes and market advantages – but it’s difficult for cannabis companies to understand all the options available and how each apply to their specific products. While markets adjust beyond the preliminary issue of legality, it’s crucial for companies to look forward and comply with safety and quality standards like SQF. Companies who strive for SQF certification (or other GFSI-recognized certifications as they become available) will find themselves far better prepared to seize market share as cannabis markets blossom.

EVIO Logo

EVIO Labs Berkeley Accredited To ISO 17025

By Aaron G. Biros
No Comments
EVIO Logo

According to a press release, EVIO Inc. announced recently that their Berkeley, California testing lab, C3 Labs, LLC doing business as EVIO Labs, received their ISO 17025 accreditation from Perry Johnson Laboratory Accreditation, Inc. (PJLA). EVIO Inc. acquired C3 Labs in January of this year, but C3 Labs is a well-established cannabis-testing lab that has been serving the Northern California industry since 2015.

The new and improved EVIO Berkeley laboratory
The new and improved EVIO Berkeley laboratory

The accreditation and announcement were well-timed given the California regulatory changes that came on July 1, essentially requiring all cannabis products be tested for a range of contaminants before sold in a retail setting. The press release states EVIO Labs Berkeley should be well equipped to handle the surge in demand for testing services and is prepared for the new regulations.

Ron Russak, vice president of operations at EVIO Labs
Ron Russak, vice president of operations at EVIO Labs

According to Ron Russak, vice president of operations at EVIO Labs, they hope these regulations can give producers, retailers and consumers assurance that their products are safe. “EVIO is committed to upholding the highest standards throughout each step of the testing process and we are extremely pleased with the team’s hard work to reach this great achievement,” says Russak. “As the California cannabis industry evolves and state-mandated laboratory standards of operation prove vital, both clients and consumers will now have assurance that the results will be accurate and reliable.”

In June, we spoke with the EVIO team as they were gearing up for the July 1 phase-in of the new rules. They said they were expanding their capacity in anticipation of a higher demand for lab testing services, including adding more resources, equipment and personnel.

Top 10 Common Findings Detected During Cannabis Laboratory Assessments: A Guide to Assist with Accreditation

By Tracy Szerszen
No Comments

With the cannabis industry growing rapidly, laboratories are adapting to the new market demand for medical cannabis testing in accordance to ISO/IEC 17025. Third-party accreditation bodies, such as Perry Johnson Laboratory Accreditation, Inc. (PJLA), conduct these assessments to determine that laboratories are following relevant medical cannabis testing standard protocols in order to detect potency and contaminant levels in cannabis. Additionally, laboratories are required to implement and maintain a quality management system throughout their facility. Obtaining accreditation is a challenge for laboratories initially going through the process. There are many requirements outlined in the standard that laboratories must adhere to in order to obtain a final certificate of accreditation. Laboratories should evaluate the ISO 17025 standard thoroughly, receive adequate training, implement the standard within their facility and conduct an internal audit in order to prepare for a third-party assessment. Being prepared will ultimately reduce the number of findings detected during the on-site assessment. Listed below is research and evidence gathered by PJLA to determine the top ten findings by clause specifically in relation to cannabis testing laboratories.

PJLA chart
The top 10 findings by clause

4.2: Management System

  • Defined roles and responsibilities of management system and its quality policies, including a structured outline of supporting procedures, requirements of the policy statement and establishment of objectives.
  • Providing evidence of establishing the development, implementation and maintenance of the management system appropriate to the scope of activities and the continuous improvement of its effectiveness.
  • Ensuring the integrity of the management system during planned and implemented changes.
  • Communication from management of the importance of meeting customer, statutory and regulatory requirements

4.3: Document Control

  • Establishing and maintaining procedures to control all documents that form the management system.
  • The review of document approvals, issuance and changes.

4.6: Purchasing Services and Supplies

  • Policies and procedures for the selection and purchasing of services and supplies, inspection and verification of services and supplies
  • Review and approval of purchasing documents containing data describing the services and supplies ordered
  • Maintaining records for the evaluation of suppliers of critical consumables, supplies and services, which affect the quality of laboratory outputs.

4.13: Control of Records

  • Establishing and maintaining procedures for identification, collection, indexing, access, filing, storage and disposal of quality and technical records.
  • Providing procedures to protect and back-up records stored electronically and to prevent unauthorized access.

4.14: Internal Audits

  • Having a predetermined schedule and procedure for conducting internal audits of its activities and that addresses all elements that verify its compliance of its established management system and ISO/IEC 17025
  • Completing and recording corrective actions arising from internal audits in a timely manner, follow-up activities of implementation and verification of effectiveness of corrective actions taken.

5.2: Personnel

  • Laboratory management not ensuring the competence and qualifications of all personnel who operate specific equipment, perform tests, evaluate test results and sign test reports. Lack of personnel undergoing training and providing appropriate supervision
  • Providing a training program policies and procedures for an effective training program that is appropriate; identification and review of training needs and the program’s effectiveness to demonstrate competence.
  • Lack of maintaining records of training actions taken, current job descriptions for managerial, technical and key support personnel involved in testing

5.4: Test and Calibration Methods and Method Validation

  • Utilization of appropriate laboratory methods and procedures for all testing within the labs scope; including sampling, handling, transport, storage and preparation of items being tested, and where appropriate, a procedure for an estimation of the measurement of uncertainty and statistical techniques for analysis
  • Up-to-date instructions on the use and operation of all relevant equipment, and on the handling and preparation of items for testing
  • Introduction laboratory-developed and non-standard methods and developing procedures prior to implementation.
  • Validating non-standard methods in accordance with the standard
  • Not completing appropriate checks in a systematic manner for calculations and data transfers

5.6: Measurement Traceability

  • Ensuring that equipment used has the associated measurement uncertainty needed for traceability of measurements to SI units or certified reference materials and completing intermediate checks needed according to a defined procedure and schedules.
  • Not having procedures for safe handling, transport, storage and use of reference standards and materials that prevent contamination or deterioration of its integrity.

5.10: Reporting the Results

  • Test reports not meeting the standard requirements, statements of compliance with accounting for uncertainty, not providing evidence for measurement traceability, inaccurately amending reports.

SOP-3: Use of the Logo

  • Inappropriate use of PJLA’s logo on the laboratories test reports and/or website.
  • Using the incorrect logo for the testing laboratory or using the logo without prior approval from PJLA.
Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 2

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the previous article, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) when a grower, processor or dispensary (user) questions a laboratory result. Now let us look behind this paperwork wall to the laboratory culture the user will encounter once their complaint is filtered past the first line of defense.

It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.In an ISO 17025 (2005 or 2017) and TNI accreditation, the laboratory must be organized into management, quality and technical areas. Each area can overlap as in the ISO 17025-2017 standard or be required to remain as separate sections in the laboratory as in the ISO 17025-2005 or TNI 2009 standards. ISO 17025 standards (e.g. 2005 and 2017) specifically require a separation of monetary benefits for laboratory results as it applies to the technical staff. This “conflict of interest” (CoI) is not always clearly defined in the laboratory’s day-to-day practices.

One example that I have experienced with this CoI separation violation goes back to my days as a laboratory troubleshooter in the 1990s. I was called into a laboratory that was failing to meet their Department of Defense (DoD) contract for volatile organic hydrocarbon analyses (VOAs) of soil samples by purge trap-gas chromatography-mass spectroscopy. I was required to “fix” the problem. What I determined was:

  • The analytical chemists performing the VOAs analyses were high school graduates with no coursework in chemistry or biology.
  • There was no training program in place for these analysts in instrument use, instrument troubleshooting and interpretation of the analytical results.
  • The only training the analysts received was for simple instrument set-up and basic instrument computer software use. (e.g. Push this button and send results to clerks)
  • Clerks with a high school degree and no analytical chemistry training in the business office generated the final reports and certified them as accurate and complete.

None of the staff was technically competent to perform any in-depth VOAs analytical work nor was the clerical staff competent to certify the results reported.

When I pointed out these discrepancies to the laboratory management, they declined to make any changes. The laboratory management had a direct monetary interest in completing all analyses at the lowest costs within the time limit set by DoD. If the laboratory did not complete the analyses as per the DoD contract, DoD would cancel the contract and not pay the laboratory.

The DoD, in a “Double Blind” test sample, later caught this laboratory.. A Double Blind test sample is used to check to see if the laboratory is performing the tests correctly. The laboratory does not know it is a test sample. So if the laboratory is cheating, they will be caught.This does not mean that all laboratories have staff or management issues

Once the laboratory was caught by DoD with the Double Blind, laboratory management claimed they were unaware of this behavior and management fired all analytical staff performing VOAs and clerical staff reporting the VOAs results to show DoD that it was a rogue group of individuals and not the laboratory management. The fired staff members were denied unemployment benefits as they were fired with cause. So, the moral to this story is if the analytical staff and specifically the clerical staff had wanted to hold the laboratory management accountable for this conflict of interest, they may have been fired, but without cause. The staff would have kept their reputation for honesty and collected unemployment benefits.

I have witnessed the “CoI above repeatedly over the last 30+ years both in laboratories where I have been employed and as a consultant. The key laboratory culture problems that lead to these CoI issues can be distilled into the following categories:

  • Financial CoI: In the financial CoI, the laboratory management must turn out so many analytical test results per day to remain financially solvent. The philosophical change that comes over management is that the laboratory is not producing scientific results, but is instead just churning out tests. Therefore, the more tests the laboratory produces, the more money it makes. Any improvement in test output is to be looked upon favorably and anything that diminishes test output is bad. So, to put this in simple terms: “The laboratory will perform the analyses quickly and get the report sent to the user so the laboratory can be paid. Anything that slows this production down will not be tolerated!” To maximize the Return on Investment (RoI) for the laboratory, management will employ staff that outwardly mirrors this philosophy.
  • I Need This Job CoI: This is the CoI area that poor quality lab technical staff and clerical staff most readily falls into. As outlined in the example above, both the analytical staff and clerical staff lacked the educational credentials, the technical training to be proficient in the use of the analytical instruments, ability to identify problems performing the analytical methods or complications in reporting analytical results. That means they were locked into the positions they held in this specific laboratory. This lack of marketable skills placed pressure on these staff members to comply with all directives from management. What happened to them in the end was regrettable, but predictable. Management can prey on this type of staff limitation.
  • Lack of Interest or Care CoI: This form of CoI is the malaise that infects poor quality laboratories, but can reach a level in management, quality and technical areas as to produce a culture where everyone goes through the moves, but does not care about anything but receiving their paycheck. In my many years of laboratory troubleshooting this type of CoI is the most difficult to correct. Laboratories where I had to correct this problem required that I had to impress on the staff that their work mattered and that they were valued employees. I had to institute a rigorous training program, require staff quality milestones and enforce the quality of work results. During my years of laboratory troubleshooting, I only had to terminate three laboratory staff for poor work performance. Unfortunately after I left many of these laboratories, management drifted back to the problems listed above and the laboratory malaise returned. This proves that even though a laboratory staff can achieve quality performance, it can quickly dissolve with lax management.

So, what are the conclusions of this article?

  • Laboratory culture can place profit over scientific correctness, accuracy and precision.
  • Laboratory management sets the quality of staff that determines the analytical results and report quality the user receives.
  • Laboratory quality can vary from acceptable performance to unacceptable performance over the lifetime of the laboratory depending on management.
  • This does not mean that all laboratories have staff or management issues. It is up to the client (processor, grower or dispensary) to determine the quality of the lab they use.

The next article in this series will introduce the user to the specific Quality Control (QC) analyses that an acceptable laboratory should perform for the user’s sample. These QC analyses are not always performed by accredited laboratories as the specific state that regulates their cannabis program does not require them. The use of these QC samples is another example of how laboratory’s with poor quality systems construct another paper work wall.

Amy-Ankrum-headshot
Soapbox

Quality Assurance for the Cannabis Industry

By Amy Ankrum
No Comments
Amy-Ankrum-headshot

Have you paused to consider that quality assurance is a moving target rather than a destination? It is culture within a company that requires constant improvement and change, rather than the work of a select few to reach one defined end goal. Quality, therefore, is not a box that must simply be checked but an overarching and driving force propelling organizations forward.

For those within the cannabis industry and specifically cannabis testing labs, quality assurance is critical to having a successful and thriving business within the rapidly evolving industry. Dr. Kim Ross, who earned her Ph.D. at the University of Colorado in Molecular Biology, and also has worked with multiple cannabis labs, says, “It is not that often that you get a new testing industry born these days and people are scrambling to borrow processes from other industries and apply these to the cannabis industry.” Those within cannabis testing labs are looking towards established industries like water and food testing labs to serve as a quality assurance beacon. Ross elaborates:

The cannabis industry is operating in the absence of federal oversight. If you think about it, the water, food, and pharmaceutical industries have federal oversight. In lieu of that, it is up to states to adopt regulatory practices and enforcement strategies to uphold a level of compliance and data defensibility that these types of regulators have seen in their careers working in the FDA, EPS, NELAC or ISO.

For cannabis testing labs, the stakes are high. First, there is the need to keep up with the rapidly evolving industry climate as more and more states and governing bodies are setting requirements and expectations for quality and compliance. It is in nobody’s best interest to fall behind or be a late adopter to the increasingly regulatory compliance environment.  

Additionally, untrustworthy data sets can have detrimental impacts on people and patients. Medical applications of cannabis require specific results in order to ensure the safety of patients, many of which are immunocompromised. Beyond damage to people and patients, businesses themselves can be hurt if a cannabis testing lab were to present inaccurate or flawed data sets. Ross shared hypothetical examples of potential negative impacts:

 If, for example, you fail a product for microbiology based on false-positive results then it incurs damages to the client because now their product can’t go to market. Additionally, falsely inflated THC results are also a huge problem in the industry, and can result in downstream problems with edible dosing or consumer satisfaction. 

A quality assurance system can minimize risk and maximize adherences to proper procedure, resulting in reliable data. Recalls, product issues and lawsuits cost organizations tremendous amounts of time and money, both to manage the problem at hand and prevent future incidents. Not to mention, the immeasurable damage done to the brand & industry by being viewed as untrustworthy–especially as a consumable product. “Ensuring data defensibility and data integrity protects the laboratory from lawsuits,” says Ross. “That is a really important piece of a quality assurance system for a laboratory.”

One common misconception is viewing quality assurance as a cost center rather than a profitability maximizer. A robust quality assurance system is a competitive advantage–especially for those who are not yet mandated to be compliant to a particular standard, like ISO/IEC 17025, but choose to pursue that accreditation knowing it reflects reliability. In many ways, quality assurance can be summarized as “say what you do, and do what you say”, with a willingness to allow third-party confirmation of your commitment and practice. “Accreditation gives an unbiased stamp of approval that helps ensure data defensibility in the laboratory,” affirms Ross.

Accreditation as a result of quality assurance ultimately leads to reliable and trustworthy data sets. Ross shared:

It might appear to be easy to buy expensive instrumentation, accept samples, and produce data. There are so many ways to do that, some of which are incorrect, and therefore accreditation is really an opportunity to have professionals evaluate methodology and post-analytical data processing to ensure that it is scientifically sound. It is an opportunity for a laboratory to be confident that their processes and reporting procedures are robust and error free.  

Remember: this is a new industry. There aren’t firmly established methods and procedures like other legacy industries. “We are operating in a time and space where there is no standard methodology and that makes oversight by a third party even more important,” shares Ross. When a company opts to pursue accreditation they are indicating a willingness to be honest and transparent with their business processes, procedures, outcomes and data. Accreditation, therefore, is necessary for this emerging industry. Having a robust, inclusive quality assurance system in place will ease and quicken their pursuit of accreditation.The stress on an audit day when there is a digitized system is vastly lower than a system that is printed and physically maintained.

Not all quality assurance systems are created equal. There are still some companies seeking to implement systems that lack the modernization necessary to truly propel them forward towards continuous improvement and scalability. Quality assurance software with widespread use and adaptation across organizations is both scalable and in support of continuous improvements. Binders, rows of filing cabinets and complicated excel spreadsheets are not a scalable backbone for a quality system. 

Beyond the accessibility and traceability that a digital system creates, it also protects. “We can protect that data with credentialed logins for key personnel and have information at our fingertips to reduce the regulatory stress on all personnel,” says Ross. The stress on an audit day when there is a digitized system is vastly lower than a system that is printed and physically maintained.

For those in the cannabis industry, specifically cannabis testing labs, there is an unequivocal advantage to implementing a system that supports continuous improvement, reliable data sets and the very best in business practices. Doing so will help sustain and grow the industry, and could be pivotal in transforming the production, market and research of cannabis.

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


This article is the first in a series that will look into the risks any user of laboratory services (growers, processors or dispensary owners) will face from the quality systems in place in the laboratory. I will discuss specific risk areas in clear and understandable language so as to not obscure the substance of the article series with abbreviations and nomenclature that is not familiar with the reader. Subjects of the articles that follow will focus on the specific laboratory certification or accreditation requirements and how the user may find out if their risks are addressed. As these articles are meant to be interactive with the reader, users are encouraged to send questions or suggested topics to the author.

This article will be an introduction to the typical laboratory process that generates the “paperwork wall” and how it might impact the user.My experience with laboratory certification or accreditation (difference between the two discussed later in this article) comes from over 30+ years in the environmental chemistry field. My experiences include working under the Clean Water Act, Safe Drinking Water Act, FIFRA (pesticides) and ISO 17025 laboratory analyses and laboratory management. I have also received training to perform ISO 17025 and EPA Drinking Water audits. During this time I have been audited as a laboratory analyst/laboratory manager and have performed audits.

As such, I can open up the laboratory structure beyond the sterile “paperwork wall” that has been constructed to allow the user to see the quality of data that is used in final reports that can wreak havoc. This article will be an introduction to the typical laboratory process that generates the “paperwork wall” and how it might impact the user.

One of the common misconceptions that a user has with a “certified or accredited” laboratory is that procession of a certificate indicates that ALL laboratory analyses produced are accurate and precise. I liken this to the “paperwork wall” that laboratories produce when the user questions any results reported to them. The laboratory management assumes that they have answered the user complaint (i.e. a certified/accredited laboratory cannot make a mistake) and the user will not pursue further questions once the certificate is produced.Accreditation does not guarantee that the laboratory personnel can perform the analyses the user is paying for; just that the laboratory’s paperwork has been audited.

First off, let’s look at what the difference between the terms certified laboratory vs. accredited laboratory. These simple words mean specifically different types of laboratories. According to the NIST National Voluntary Laboratory Accreditation Program (NVLAP):

  • Certification is used for verifying that personnel have adequate credentials to practice certain disciplines, as well as for verifying that products meet certain requirements.
  • Accreditation is used to verify that laboratories have an appropriate quality management system and can properly perform certain test methods (e.g., ANSI, ASTM, and ISO test methods) and calibration parameters according to their scopes of accreditation.

So, how does that impact the user?

  • If your state or 3rd party certificate only accredits a laboratory, then the accreditation agency only inspects the laboratory’s quality program as it applies to written documents and static equipment. (e.g. The quality manual is written and the standard operating procedures (SOPs) are in place).
  • Accreditation does not guarantee that the laboratory personnel can perform the analyses the user is paying for; just that the laboratory’s paperwork has been audited.
  • Certification on the other hand says that the laboratory personnel are qualified to perform the laboratory analyses and that the final laboratory results meet specific (certain) requirements. In other words, the laboratory’s quality plan and SOPs are met.

There are three different paths that are utilized by state cannabis control agencies to accredit or certify a cannabis laboratory.

  • ISO 17025: The ISO laboratory quality standard for laboratory accreditation is the most broadly used. ISO 17025 is an international standard and its implementation in the United States is regulated by ILAC. There are three 3rd party companies that audit for and award ISO 17025 accreditation certificates. They are Perry Johnson Laboratory Accreditation Inc., ANAB and A2LA.
  • TNI: The NELAC Institute standards are utilized by one state to handle their cannabis laboratory accreditation.
  • States: Some states have tried to blend an ISO 17025 requirement with their own state’s certification requirements to produce a mixed accreditation-certification program. But, this type of program may rely on two or more agencies (e.g. ISO 17025 3rd party auditors communicating with state auditors) to cover all specific laboratory areas.

PJLAIn two of the paths above, the final result is that the laboratory receives accreditation. That means that only the quality management system and the scope (e.g. SOPS, laboratory instruments, etc.) have been audited, not the laboratory personnel or their capabilities. The third pathway may produce a certified laboratory or may not.

To provide an example of where an accredited laboratory followed their paperwork but produced inadequate results:

  • I received a laboratory report for organic chemical analyses of a client’s process.
    • The laboratory results placed the user in noncompliance with the state and federal regulatory limits.
    • But, the laboratory result contained data flags (e.g. additional information that explains why the laboratory result failed the laboratory’s quality requirements).
    • The laboratory still received payment from the user as the laboratory performed the analyses.
  • I had to explain to the regulatory agency that some of the data flags when investigated showed:
    • The laboratory failed to use the approved analytical method.
    • The detection level for the regulatory chemical was so low that the laboratory had no instrument capable to see those chemicals at the concentrations reported by the laboratory.
  • The state regulators accepted the explanation I provided and the user was no longer under a regulatory administrative order.
  • But, when I presented this information to the accreditation agency that accredited this laboratory I was informed:
    • The laboratory flagged the data so it can be reported to the user.
    • If the user wanted more from the laboratory, then the user will have to outline their specific requirement in a quality contract with the laboratory. (i.e. If the laboratory identifies the problems then they can report the data no matter what happens to the user).

So now, what is being done behind the “paperwork wall”? Areas such as those listed below can impact the results received by the user.

  • Laboratory quality culture: What does the laboratory staff think about quality in their normal daily work?
  • Laboratory staff competence: What is the level of training and real world competence of the staff that actually works on the analyses?
  • Laboratory capabilities: Does the laboratory actually have the laboratory instruments and equipment that can perform the analyses the user needs?
  • Laboratory quality control parameters: What is in the quality manual and does it make sense?
  • Laboratory analytical method validation: Are the analytical methods used by the laboratory validated by approved statistical procedures?

What should the user have in place to limit their risks from laboratory analyses?

  • Failsafe sampling preparation plans: Make sure the user samples for the laboratory are collected correctly.
  • Failsafe’s on laboratory sample reports: Protect the user from bad laboratory reports.
  • User auditing of the laboratory: Go to the laboratory and see if the laboratory can pass muster.

What’s Next: The next article will go behind the laboratory “paperwork wall” to detail the culture that impacts the user results negatively and how that can be recognized. Follow-up articles will help users developing quality plans that identify risks and how to limit them.