Tag Archives: light

A greenhouse grow facility

The Science of Cultivating Cannabis: Tips for a Thriving Grow Operation

By Nathan Johnson, Ph.D.
No Comments
A greenhouse grow facility

Creating a healthy cannabis growing environment based on the science behind growing top-notch, medical-grade cannabis is essential for producing consistent results, assuming you start with quality genetics. Before speaking about the environment, it is necessary to highlight that quality and consistency has to first start with quality plant material. In this article, we will explore six key factors that make for a healthy cannabis growing environment and how regular testing allows growers to achieve consistency and quality. Keep in mind, optimizing these factors to the cannabis strains and environment they are grown in is a must.

Lighting

Lighting is the most important factor in creating a good cannabis growing environment. Cannabis plants require specific types, wavelength and exposure times to grow and produce high-quality flower. The two main types of light that are essential for cannabis growth are blue and red spectrum light where blue is primarily dedicated to vegetative growing and red for flowering. The exposure time is necessary for non-autoflower cannabis to maintain a vegetative or a flowering plant.

lightwavesincTo ensure that the plants are receiving the right type and amount of light, growers can use specialized grow lights that provide both blue and red spectrum light. They can also monitor the intensity and duration of light using light meters and timers. Regular testing of the light spectrum and intensity can help growers fine-tune their lighting setup for optimal plant growth and flower development.

Temperature

Temperature always needs to be considered when creating a strong, healthy cannabis growing environment. Cannabis plants prefer a warm, humid environment, but temperatures that are too high or too low can negatively affect plant growth and flower development. The ideal temperature range for cannabis growth is between 70-85°F (21-29°C) during the day and between 58-70°F (14-21°C) at night.

To maintain a consistent temperature in the growing environment, growers can use temperature-controlled grow rooms or HVAC systems. They can also monitor the temperature using digital thermometers and adjust the temperature as needed. Regular testing of the temperature can help growers identify and address any temperature fluctuations that may affect plant growth and flower development.

Humidity

Like other factors that require precision, humidity needs to be carefully dialed in when creating an optimal cannabis growing environment. Cannabis plants prefer a humid environment, but too much humidity can promote the growth of mold and mildew. On the other hand, low humidity can cause the plants to dry out and become stressed.

A humidity sensor mounted in a weatherproof enclosure
A humidity sensor mounted in a weatherproof enclosure

To maintain a consistent humidity level, growers can use humidifiers and dehumidifiers in the growing environment. They can also monitor the humidity level using a hygrometer and adjust the humidity as needed. Regular testing of the humidity level can help growers identify and address any issues that may affect plant growth and flower development.

Airflow and Ventilation

Proper ventilation helps regulate temperature and humidity and prevents the buildup of carbon dioxide, which can be harmful to the plants. It also helps prevent the growth of mold and mildew. To ensure proper airflow and ventilation, growers can use fans and air ducts in the growing environment. They can also use carbon filters to remove odors and other contaminants from the air. Regular testing of the air quality can help growers identify and address any issues that may affect plant growth and flower development.

Nutrients

Nutrients are a non-negotiable for cannabis growth and flower development. Cannabis plants require a balanced supply of macronutrients such as nitrogen, phosphorus and potassium, as well as micronutrients such as calcium, magnesium and iron.

To ensure that the plants receive the right amount of nutrients, growers can use nutrient-rich soils or hydroponic systems. They can also supplement with fertilizers and other nutrients. Regular testing of the nutrient levels in the soil or growing medium can help growers adjust their nutrient regimen for optimal plant growth and flower development.

Pest and Disease Management

Cannabis plants are susceptible to over 90+ pests and diseases, including insects, mold, mildew, viruses and viroids commonly infected through the environment by touch, air, water and nutrients. The most common are spider mites, aphids, powdery mildew, botrytis, fusarium and hop latent viroid. It is estimated by the United Nations that 20% to 40% of total global crop loss is due to improper pest and disease management. The cannabis growing environment is no different.

Damage from whiteflies, thrips and powdery mildew could be prevented with an appropriate IPM

While lighting, humidity, air flow and nutrients are key aspects for a cannabis growth environment, the most common overlooked aspect of growing is proper pest and disease management. Cannabis plants are susceptible to a variety of pests and diseases, which can have a significant impact on plant health and crop yields. To take optimizing a cannabis growing environment one step further, here are five essentials for developing an effective pest and disease management setup.

  1. Prevention

Prevention is the first and most important step in pest and disease management. Growers should always take steps to prevent pests and diseases from entering or infesting the growing environment in the first place. This can be done by quarantining new plants or clones, using clean equipment, sterilizing the growing area, and monitoring plants for signs of pests and diseases through both visual inspection as well as testing.

Some diseases such as those caused by viruses and viroids, require molecular based testing to identify. Growers should quarantine and test any new plants or clones before introducing them to the growing area. This can help prevent the spread of pests and diseases from infected plants to healthy ones. Growers can also use biological controls, such as beneficial insects, to help prevent pests from infesting the plants. These insects can help control pest populations by preying on them or interfering with their reproduction.

  1. Early Detection

Early detection is key to preventing an entire crop from being infected and scrapped. Growers need to regularly inspect their plants for signs of pests and diseases, including yellowing leaves, discoloration, spots and unusual growth patterns. Early detection can help prevent the spread of pests and diseases and limit the damage they cause, not to mention saving a business’s bottom line!

  1. Integrated Pest Management

Integrated Pest Management (IPM) is an approach to pest and disease management that involves a combination of preventative measures, biological controls and chemical treatments. IPM aims to reduce the use of chemical pesticides, which can be harmful to the environment and human health.

IPM involves regular monitoring of plants for signs of pests and diseases, using biological controls to prevent and control infestations, and only using chemical treatments as a last resort. Chemical treatments should be used sparingly and only when necessary, and growers should follow all safety precautions when using them.

  1. Sanitation

Taking the necessary precautions to ensure all equipment used throughout a cultivation is properly sterilized will save growers from countless headaches. Growers should keep the growing area clean and free of debris, which can provide a breeding ground for pests and diseases. They should also regularly sterilize equipment and growing containers to prevent the spread of pathogens.

  1. Record Keeping

Record keeping is essential for effective pest and disease management in the growing environment. Keep detailed records of all pest and disease issues, including the type of pest or disease, the severity of the infestation, and the treatments used. Cultivators, you will thank yourselves later! This will help identify recurring issues and develop effective pest and disease management strategies.

While there are key aspects of creating a healthy cannabis growing environment, the most common overlooked aspect of growing is on proper pest and disease management, which involves prevention, early detection, integrated pest management, sanitation, quarantine, and record keeping. By taking these steps, growers can help ensure the health and vitality of their plants, produce high-quality cannabis that consumers want and preserve their business’s bottom lines.

Addressing Cannabis Price Compression With Science

By Mark Doherty
1 Comment

Cannabis cultivators across the U.S. are confronting plummeting wholesale prices and tighter profit margins. Operators in Pennsylvania say flower prices have fallen from around $4,000 a pound to around $3,000, on average, and prices in the more mature markets of California, Oregon and Colorado have experienced extreme volatility. Prices in those states are averaging around $700 per pound but of course, that’s an average. There are whispers that prices are as low as $150, revealing how bad the situation really is.

Oversaturation of legal cannabis affects commercial growers everywhere. For example, when Oklahoma opened its free-wheeling medical cannabis program with unlimited business licenses, the pipeline of cannabis from legacy markets in California was disrupted and a glut of flower from the gray market began to influence pricing within the state’s legal market. Although cannabis is not federally legal and interstate commerce is banned, what happens in one state definitely affects what happens in another.

Competition in legal markets has also increased dramatically in recent years as multistate operators expand their footprint and consolidation proliferates. Vertically integrated cultivation, manufacturing and retail is becoming unsustainable for many mom-and-pop businesses, while MSOs can leverage their cash and resources to weather the current storm.

Economic Viability Meets High Quality Production

All of this news is not necessarily negative, but it’s a definite cautionary tale: Being complacent opens opportunities for others. Growing cannabis is complex. It is working with a living and breathing machine. Some businesses fail because operators are not able to find the perfect blend of horticulture, plant science and manufacturing efficiency necessary for success. Some see it simply as a manufacturing concern, others a scientific endeavor, and still others as an artform. An understanding of growing cannabis as a blend of all three is paramount.

Just like the LED evolution, other new cultivation technology is here to stay and should not be brushed off as just experimental

Squeezing more high-quality product out of existing facilities is essential. Costs for labor and electricity are relatively fixed, so operators must turn to technology to improve yield, quality, consistency and plant health without increasing operating expenses.

Over the years, growers have often resisted change surrounding what they view as “the way” or “the best,” but with the industry in such distress, the time is now to address facility inefficiencies.

Much like the evolution of LED use, there might be an initial skepticism at the cost and real value of new cultivation technology, but the economics are too compelling to ignore. The majority of all indoor grows now use LED. The progression from single-ended bulbs, to double-ended HPS, to LED is analogous to plants on the floor of a grow facility, to rolltop benches, and now to vertical farming using racks.

Vertical Cultivation Science

Crop steering applies plant science directly to commercial production. The methodology is based on the idea that plants can be manipulated to grow and perform a certain way. For cannabis plants, the science really comes into play with inter-canopy airflow.

When airflow occurs under the surface of the leaf of the plant, the stomata opens and gas exchange increases as water vapor and oxygen are released and carbon dioxide is absorbed. The micro-barrier of air trapped against the leaves is broken and the exchange of gasses and energy in the cultivation environment is improved, enabling the entire grow to increase its yield. And while CO2 supplementation is widely used and has been for years with positive effect, the under-canopy airflow provides greater efficiency relative to the operating expense of pumping CO2 into the grow room. Money can be saved by applying science to encourage the plant to uptake the extra CO2 that has been naturally released.

Proper Drainage Is Also Key

Controlling the space with proper drainage will keep a host of problems at bay

Drainage issues like the puddling of water in vertical farming are detrimental to the efficiency of a cultivation facility. Even when growers use precision irrigation techniques to give the plants pinpointed irrigation volumes over different time periods, rack systems can still suffer from drainage issues. That means that affected plants are not receiving the precision irrigation strategy and the entire purpose of the scientific application is defeated.

Precise drainage is critical because standing water opens the door to root born disease, pests, and microbial issues. Spray regimes can address this problem, but they cost money. The key is to reduce dependency on mitigation efforts by better controlling the agricultural space and improving outcomes with a scientifically approached plan.

Greenhouses, warehouses and vertical farming facilities all have potential environmental issues that reduce their economic viability, but with proper vertical air movement, drainage equipment and an understanding of microclimates and how to address them scientifically, efficiency and product quality are enhanced.

Time to Embrace Change

As with any industry, there is resistance to adopting new technology in cannabis cultivation. The original and legacy players will always claim they know how to best grow their plants, but the reality is that the business needs must be addressed.

As canopies increase within a facility, advancements like robotics, LEDs and advanced airflow technology define how the industry operates and continues to improve. Efficiency keeps business alive—cannabis growers must continually assess their operations and make the capital investments that will pay off as wholesale prices continue to decline.

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 3

By Phil Gibson
No Comments

This is Part 3 in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1 and here to see Part 2. Stay tuned for Part 4, coming next week.

The Right Build Out

Aeroponic & hydroponic systems grow plants at a highly accelerated rate. A “clean room” type of construction approach is the best way to manage this type of grow operation. Starting with a facility that is completely void of any kind of wood or materials that are porous is a good start. Cellulose materials collect moisture and encourage mold and mildew formation no matter how good the sealant.

We have seen cultivation spaces built out of dry wall over wooden post construction and studs that look sealed and solid on the outside of walls but when repaired for plumbing or other expansion work, they are black inside and covered with nasty mold that no one wants near their grow space.

Panel construction over steel frames or steel studs with skins is a safer, more sterile approach than retrofitting a wooden structure. Panel construction offers the added benefit of rapid assembly and minimal labor costs. We have seen 300 light rooms assembled in a few days so it is both very cost effective and safely sealed for protected growth.

Room Sizes & Count

How do you best fill this space if you have a clean slate?

If you have unlimited space, temperature and humidity management should determine the room sizes in your facility. Room sizes that are square in dimensions tend to be easier to maintain from an environmental standpoint. Long narrow rooms are good for fan airflow but tend to be more expensive from a cooling and dehumidification point of view. The larger the room, the more likely that you will get “microclimates” within the room which can challenge yield optimization.

Now, of course, many grows are retrofits of existing structures so compromises can be necessary. We have found that cultivators that have both very large and mid-size rooms in the same facility (200 lights versus 70 lights) are consistently more successful in the 70 light rooms. These “smaller rooms (~1,500 ft2) out-yielded and out-performed the larger rooms using the same genetics and grow plans. Compartmentalization also minimizes the risk in the case that a calamity (i.e. pest infestation) strikes the room. In a large room scenario, the losses can damage your operation. For this reason, we recommend 70-100 light/tub rooms as a standard.

Rooms should also follow your nursery economics. Structuring your nursery to produce just enough clones/veg plants for your next flower room avoids wasted plant material and resources. Breaking a larger space down into individual rooms means that you need fewer veg plants to fill your flower room that week. The best way to optimize this is to have a number of rooms that are symmetrical with the number 8 (typical 8-week cycle genetics).

With 8 rooms running flower, you are able to plant one room per week for 8 weeks. In the 9th week, you start over on room 1. This continuous harvest process is highly efficient from a labor standpoint and it minimizes the size of your mothers room (cost center). Additional space can be applied to your flower rooms. If you do not have infinite space, even divisors work just as well; 2 or 4 rooms can be planted in sequence for the same optimization (for 2-room structures, harvest and replant 1 room every 4 weeks for example). The optimal structure (8, 16, 24, or more rooms) enables you to optimize your profitability. If any of this needs further explanation, please just ask.

Not photoshopped: An “ideal” 70-tub flower room in a CEA greenhouse (courtesy of FarmaGrowers, South Africa)

Within your room choice, movable rows or columns of tubs/lights also provides optimal yields.  Tubs/plants can be moved together for light usage efficiency and one 3-foot aisle can be opened for plant maintenance. Racking systems or movable trays/tubs make this convenient nowadays.

Floors

Concrete floors offer pockets for bacteria to collect and smolder.  As such, they have to be sealed.  Proper application of your sealant choice is required so that it does not peal up or crack after sealing. There are many benefits to sealed floors that is discussed in the white paper. Floor drains are the equivalent of a portal to Hell for a sterile grow operation. Avoid them at all costs.

Phased Construction

Tuning or optimizing you grow rooms for ideal flowering operation depends on your location. Our advice is that you build and optimize your facility in phases with the expectation that nothing is perfect and you will learn improvements in every phase of expansion. The immediate benefit is production that you can promote to your sales channels and revenue that starts as soon as possible to improve your profitability. This is also an excellent learning curve to apply to subsequent rooms. Our happiest customers are those that learned construction improvements in early rooms that were able to be applied to following rooms without headache. The ability to focus on one or two rooms also allows you to get the recipe correct rather than just relying on “winging it”.

Don’t Be In A Rush To Go Green

A 70-tub flower room (courtesy of FarmaGrowers, South Africa)

Validate your water supplies and their stability. Verify that the water in your aeroponic or hydroponic feeds that get to your plants are clean and sterile. This is much easier in a step-by-step fashion than in a crisis debug mode once production is in progress. Be very cautious about incoming clone supplies. We will talk about this more in the next chapter on Integrated Pest Management but incoming clones are a top pest vector that can contaminate your entire facility.

Warehouse Versus Greenhouse Cultivation Spaces

As we started out, controlling your environment is your most important concern. We have seen success in both indoor rooms and greenhouses. The defining success factor is controlling humidity and temperature. Modern sealed controlled environment (CEA) greenhouses do this well and CEA is somewhat of a given for indoor grows. More details on this in the white paper.

Packaging these recommendations gets you to the perfect body for your Formula 1 race car. Now, you are ready to look at some of the mechanics of protecting your operation from pesky little critters and biologicals that can derail your operation and weaken your engine.

Before we sign off this week, I wanted to highlight the ultimate build-out that we have seen so far.  Of course, there are many challengers that have done this well but at this point, FarmaGrowers in South Africa has the best thought out facility we have seen. They acquired Good Manufacturing Practice (GMP) & Good Agricultural & Collection Practice (GACP) certification early in their operations due to very well-thought-out designs. They are exporting to global markets without irradiation today. Certainly, many successful customers have beautifully thought-out operations and there are several upcoming facilities that offer amazing planning that will challenge for this crown, but for now. FarmaGrowers leads the pack in this aspect. See here for a walkthrough.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 4 coming next week where we’ll discuss Integrated Pest Management.

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 2

By Phil Gibson
No Comments

This is Part 2 in The 3-Legged Stool of Successful Grow Operations series. Click here to read Part 1 and stay tuned for Part 3 coming next week.

Aeroponic and hydroponic systems use zero-soil, so water is effectively our media and our transport mechanism for nutrition. Ideally, you start with clean, fresh water with “nothing” in it. Nothing in this case means no heavy metals, pesticides, bacteria or pathogens. There are some scary words in there so let’s talk through the best ways to get to “nothing.”

The first place to start is by testing your source water, whether it is surface, well or municipal water. This will give you an initial idea of how “empty” your water is. Water supplies shift over time, so it is also a very important input to monitor over time with annual or bi-annual testing. Clean water is the essence of success for aeroponics and a great way to lower your cost of production. With proper design and management, you can recycle and reuse 95%+ of the water you draw into your facility.

Reverse Osmosis (RO)

Mothers to clones: Happy clones, it’s all about the water

RO is the most common way to clear your incoming water. The process uses pressure filtration by forcing your water through a series of filters or meshes that block or extract large particles, organics and metals. Normally this is 98%-99% efficient. These systems do require attention and maintenance as they do have filters that are required to be changed regularly depending on the clarity of your original water source and the type of material filtered. This accomplishes a lot of your water clearing process to empty the balloon, but it does not clear the pesky biologicals or pathogens. RO is covered in detail in our “You are what you drink” webinar so look that over for a deeper explanation. There are a wide range of relatively low-cost suppliers based on capacity and filtration efficiency. From an operations standpoint, the key is to understand the filter replacement cycle and cost of replacement.

Ultraviolet Light (UV)

UV light can be used to clear organics and pathogens from water. The primary use is to clear origin water but it is also especially important for recovered water that you save from the humidity in your grow rooms. More on this below. One has to be cautious about the use of UV light. It will cause sunburn and eye damage with exposure so handle this resource with care. After RO & UV treatment, input water should be an empty balloon ready for the addition of your perfect nutrient salt recipe. There are a wide range of low-cost UV lighting solution suppliers from which to choose and they are easy to find.

Dehumidification & Recovery (DEHU)

Early root follicles: Reaching for first nutrients

The number one way to conserve water in an accelerated growth aeroponic grow room is to recapture the humidity that is transpired into the air as the plants grow. While DEHU water is effectively distilled water (or clear of particulates), it can be full of healthy little bacteria or pathogens than may be transported through air or residing in the equipment filters. Clearing these with UV light normally makes this water directly reusable in your fertigation systems. Not all dehumidifiers are perfect. Some metals used in their construction can leach into the recovered water, so this is worth a deeper look as you create your complete water system. Air treatment suppliers are covered in Part 1 of this series.

Used Fertigation Water, or “Flush”

At the start of the flower cycle, take your clean water (the empty balloon) and add your perfect nutrient salt flower recipe and deliver it to your plants. Over the grow cycle from flower to harvest, your plants will use portions of your nutrients and your balloon contents will drift from your target recipe you’re your desired cycle, clear or flush your reservoirs and reset your recipe by refilling your balloon to your exact targets. The exiting nutrient-rich “flush” water can also be recycled into your source water feed since the salts and metals present can be cleared from the mixture through the same RO process that your source water goes through. The end result is perfectly good recycled water savings.

Oxygen Reduction Potential (ORP)

Healthy roots reach for water: Early veg when plants get rolling

ORP is a measurement of an oxidizing agent. Oxidizing solutions are a common and inexpensive method of disinfecting water before and during use in hydroponic systems. Oxidizers can be used to monitor and deal with the “cleanliness” of a nutrient water solution while it is in use. Several oxidizing agents exist with the most common being: hydrogen peroxide, chlorine, ozone and chlorine dioxide. The characteristics of each of these agents and how they interact with the organic matter in solutions is different. The ideal concentrations to use in each situation to kill or control pathogens is unique and one of the topics covered by our “Letters from the AEssenseGrows plant science team” on our website. That deep dive is the subject of another paper.

When you take all of these subjects together and they are done right, you should be able to recycle 95% of your source water with a professional water treatment & recycling system.

Here, I would like highlight the ultimate water hero: Ashley Hubbard, director of cultivation at RAIR Cannabis. For a quick tour of her water treatment and recovery room, see here. No one that I know manages water better than RAIR Cannabis and Ashley leads the team there.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 3 coming next week where we’ll discuss The Right Build Out.

Your Cultivation Plan is the Most Important Factor to Increase Your Yield

By David Perkins
No Comments

Having a well-built grow room with adequate lighting, the ability to properly control the environment, proper nutrient feedings, a good pest management plan, well trained employees and an experienced cultivation manager are very important to the overall output of cannabis plants. However, even if you have all those measures in place, there’s no guarantee of success. One factor that is often overlooked is how many harvests you can get per year, as clearly the more harvests you can get in a given time period, the more likely your chances of success are in this competitive industry. This is why having a good cultivation plan in place, with proper foresight and planning, is so essential to success.

Increasing yield or production output in a cannabis cultivation facility can often be as simple as having the right cultivation plan in place to ensure that you are harvesting the maximum number of times per year. All it requires is a well thought out plan, and best of all, that does not cost any money if you have someone with enough cultivation experience assisting you and will earn back more than the cost of paying a consultant to get such a plan in place.

In this article I will explain why changing nutrients, grow media or even a cultivation manager may not necessarily increase yield, quality or your chance of success. What you should be focusing on is your cultivation plan and the scheduling of your cultivation cycles.

  1. Why changing nutrient companies may not necessarily increase your yield
Nutrient dosers are used to inject fertilizer directly into irrigation lines

For the most part, nutrient companies use the same ingredients in their product lines and often buy them from the same source, but they combine them in different forms and ratios to create their “unique” product. You can go to a grow store, pick five different nutrient products, read the labels and compare the different nutrients in each one. You will find for the most part that they are very similar. Generally speaking, you could pick any one of those five nutrient companies and have great results. Mixing nutrients into a nutrient tank needs to be done precisely and if your employees are not doing it properly this can lead to plant health issues. In larger cultivation facilities, often nutrient dosers are used to inject fertilizer into the irrigation lines without having to mix nutrients. However, if the dosers are not set to the proper ratios, this can also lead to plant health issues.

There are a few companies that I really like that have a different approach to plant nutrition, which saves time and can prevent human error associated with mixing and applying liquid nutrients. Soilscape solutions, Organics Alive and Beanstock Agriculture all have nutrient lines that are intended to be used with soil or soilless media that can be amended into the soil which provide a slow steady release of nutrients that the plants can uptake as needed. This avoids the risk of human error in repeatedly applying liquid nutrients to the plants.

  1. Why changing grow medium and nutrients will not necessarily improve your yield but may increase yourquality

Whether it is rock wool, coco fiber, a soilless mix or living soil, everything has a limit. Giving your plants the proper amount of water and the frequency at which you water, along with having sufficient room for the roots to grow are key factors to ensuring plant health. If your plants aren’t getting watered properly, no matter what media you are growing in, you will be having problems. Changing things like grow media won’t result in instant success, as there will always be a learning curve when making changes to your cultivation. If you cannot adapt quickly enough, you can quickly create major problems.

plebanisoil
Changing things like grow media won’t result in instant success, as there will always be a learning curve when making changes to your cultivation.

You would be better off to master the grow media you are currently working; you will have more chance of success making slight alterations to your current media than you will if you switch your grow media altogether. There are so many different nutrient lines, soil companies, coco coir companies and the truth is any of them can lead to success.

Changing grow media and nutrients do play a large role in quality though. With cannabis being legalized in many states, the overall quality of cultivation inputs have increased, especially nutrients. However, in general, with some exceptions, the quality of cannabis has not necessarily increased along with the increase in quality of nutrients. One exception: I would argue that switching from salt nutrients and rock wool, to organic living soil will result in an improvement to the flavor, quality and terpenes of the cannabis.

A lot of people use rock wool with salts because it’s easier to scale up than if you are growing in soil, but some quality is also sacrificed. Soil is heavy and messy and most people throw their soil away which takes a lot of money and labor to do. Reusing your soil is one of the best ways to save time, money and increase quality. I had a friend that grew the same variety, same lights, same ventilation but grew hydroponically with salt-based nutrients and he would always say the cannabis I grew, organically, tasted better. The same was true when we grew the same variety outdoors. He used salt-based fertilizer, I used amended soil with water. There wasn’t really a comparison in flavor and the yield was not compromised either! This was his opinion not mine.

I think the vast majority of consumers have not seen the type of quality that someone in Northern California who has been smoking and growing for 20 plus years has seen. Quality is relative to what you have been able to acquire. Most people especially nowadays will never see the quality that used to be common when we didn’t treat the sacred herb like a commodity. When you do it for the love of the plant it shows. Remember, quality is relative to your experience and if salty weed is all you know, you are probably missing out.

  1. Why changing your Cultivation manager may not necessarily increase your yield

Every cultivation facility should have an experienced cultivation manager who is knowledgeable in the areas of nutrient requirements, pest management, environmental requirements, managing employees and overall facilities operations. If a grow room cannot sustain the proper environmental set points, blaming the problems and issues that arise on the cultivation manager is not fair. It is a common problem in the cannabis industry – the owners of a company are not seeing the results that they want and think that by replacing the cultivation manager it will solve all their problems. In reality, often the problem results from upper management or owners of the company not providing the cultivation manager the tools necessary to perform their job at the highest level. Another common problem is when owners fire the cultivation manager and replace them with lower-level employees to manage the facility. The problem with this is those employees do not have enough experience nor the attention to detail to successfully run a cultivation facility. The result is that yield and quality suffer tremendously.

  1. You should be harvesting every 60-70 days
If you are cultivating strains that finish flowering in 60 to 70 days you should be getting five harvests per year.

The reality is there is no one specific thing you can try or buy that will result in success. It is everything combined, the HVAC system, lights, genetics being grown, water quality, air quality, root zone temperature, ability to control environment, having a clean facility, disease free plants, knowledgeable cultivation manager etc. that are required to operate a successful cultivation.

But all of that is less important to yield than a good cultivation plan. Cultivation methods directly tie into the overall production of a facility. But, regardless of whether you’re growing in soil, hydroponics, using LED or HPS, have low or high plant counts, if you don’t have the ability to harvest a grow room, clean and replant within a very short amount of time (ideally one or two days) then you’re going to be losing out on profit.

If you’re cultivating strains that finish flowering in under 60 days you should be getting six harvests per year. If you are cultivating strains that finish flowering in 60 to 70 days you should be getting five harvests per year. To do this, you will need to have the appropriate amount of plants that are ready to be flowered to refill your grow room or greenhouse ready to flower. With a little bit of planning and foresight you will be able to do this, and you will be on your way to producing your highest yield potential.

If you are struggling to have enough plants that are ready to flower once you are done harvesting and cleaning your grow room, having trouble planning your cultivation schedule to maximize production, or struggling to maintain a mother and clone room to supply your own plants or planning for the appropriate amount of labor, contact Floresco Consulting and talk with one of our cultivation advisors to get you back on track. We can guide you to ensure you are harvesting, cleaning and replanting every 60 days. Contact us today to get your facility producing at its maximum potential.

Going Vertical: How Vertical Farming Is Revolutionizing the Cannabis Industry

By Jeffrey L Garber
1 Comment

In the cannabis industry, it’s crucial to be able to predict the future, to adapt and survive in a competitive industry that is arguably regulated more closely than any other.

From licensing to buildout, there are a growing number of barriers to entering the cannabis industry as a cultivator. Those who are lucky to successfully establish a grow operation are well aware that one of the crucial hurdles is managing space to maximize facility efficiency and capacity.

To stay profitable, the more plants you can grow and harvest at a time in a continuous cycle, the better. From an economic and environmental perspective, managing cost, space and time comes down to automation and efficiencies. One of the most efficient ways we optimize is through the practice of vertical farming.

Vertical farming maximizes canopy square footage while minimizing Cost of Goods Sold (COGs) to produce high-quality cannabis at scale year-round, and the industry is slowly finding that this method is an incredibly efficient and profitable way to maximize cannabis output.

Yellow Dream Farm is our family-owned cannabis cultivation, manufacturing and distribution company based in San Bernardino County, California, often known as the Silicon Valley of cannabis. Our craft, boutique-style cannabis is grown from floor to ceiling in the 30,000-square-foot facility. We’re using cutting-edge technology that’s only come to market in the last five years and using a variety of sustainable practices. With environmental and feeding efficiencies, we’re able to harvest 300 pounds per week when compared to 150 pounds per week from a facility of the same size.

Vertical Farming for Space Optimization

Like any medical field, cannabis has seen large numbers of outside investments into the space, bringing ideologies and efficiencies from other time-tested industries. One such efficiency is vertical farming – a practice already seen in large-scale agriculture.

The Yellow Dream Farm vertical cultivation facility

We choose vertical farming to maximize our canopy square footage and minimize COGs to produce high-quality cannabis at scale. The barrier to entry into the cannabis industry is expensive, and you must utilize every square inch to stay profitable. We believe vertical farming is the most efficient and most profitable way to maximize output and our numbers can back that up; for example, we can produce double the amount of flower than the average single-tier room with the same square footage, without doubling the cost.

Our rooms contain double stacks to double room capacity by using ceiling heights instead of square footage. Even though vertical farming has larger start-up costs, we can maximize square footage and output, allowing us to get a better and faster ROI. Vertical farming can be done in many different ways but the way we built our facility was always with a sustainable outlook. We also look to improve and remove human error; with full irrigation control and crop steering technologies, we can recalibrate sensors, irrigation media and environmental sensors when needed based on successes, challenges or environmental constraints. Additionally, we have a few other sustainable practices that make a difference.

Water Conservation, Lighting and Automation

Being a California-based grower, water conservation is a key part of our operations. With San Bernardino County being located in the heart of the high desert, conserving water is not only a requirement but a competitive advantage. Our practices provide cost savings which we then pass along to our customers. Each cannabis plant on average requires between a half gallon and one gallon of water per day, which we then recirculate through condensate water from our A/C and dehumidifiers. All runoff nutrient water is re-filtered and reused to get the most out of our nutrients before discarding waste. Our freezer panel walls hold temperatures at consistent rates, and we have a fully automated system to dial in specific needs at any given time.

LED lights above a crop at Yellow Dream Farm

Lighting is another major environmental and capital cost. Our primary lighting system is LED technology, and we use LED spectrums to find which spectrum benefits the plant most. With LEDs, our energy consumption is 30 percent less.

Vertical Farming Is the Future of Cannabis and Agriculture

Vertical farming has been hailed as the future of many agricultural industries and cannabis is no different. We already see large vertical farms in most legal states, but surprisingly it’s still not a common style of growing. As the price per pound steadily declines in California, being able to keep COGs down will allow vertical farmers to sustain and thrive in this volatile industry.

In order to adapt, grow and leave a positive mark on the industry, we must pave the way for new styles of growing and utilizing new technology and science that was not available to growers in the past. We can use these advanced new technologies to make real-time changes to each sector of our facility and optimize both people power, and energy efficiency. And most importantly, we’ll be able to produce top-quality cannabis for adults to enjoy at affordable prices.

For more information, visit Yellow Dream Farm.

Cannabis Dispensary Displays: What’s Trending in 2022

By Ray Ko
1 Comment

As additional states around the country legalize cannabis – New Jersey, Arizona, South Dakota and Montana, to name a few– more and more medical and adult use dispensaries are popping up. Business owners are looking for ways to stand out from their competition. Enter dispensary displays, cost-effective hot commodities and a trending topic in 2022. Cannabis displays have become the vehicle to not only house merchandise but can also be a customized branding tool unique to the company’s aesthetic and marketing messaging.

Before we delve into the dispensary display trends disrupting the cannabis industry, let’s start at the very beginning: the basics. The basics include retail space, dispensary layout, cannabis inventory, complementary accessories and of course, budget. Decorating a unique space with a signature aesthetic can be as easy as mixing-and-matching the displays and ideas discussed in this article.

A Well-Lighted, Clean and Simple Space is In

Whether your dispensary is for medical or adult use, a clean design aesthetic is always a good choice. This never-fail approach to decorating conveys a crisp, modern, hygienic feel and a neutral palette like clear, white and black cannabis display cases support this look.

Store lighting plays heavily in dispensary décor, too. According to the lighting experts at Stanpro Lighting Systems, there are three basic types of lighting: ambient, task, and accent and all play a unique role. In short, ambient lighting lights up an entire room or space – outdoor too – to safely facilitate traffic. Task lighting, as the name suggests, is used for a given task such as reading and the like. Directional recessed fixtures, pendant and desk lamps all fall into this category. Light is directed to a focal point and shouldn’t be too bright or harsh. Accent lighting directs attention to a point of interest. Think track lighting, undercabinet or recessed lighting – perfect for dispensaries. When mapping your lighting layout, consider pod holder placement. Place a multi-shelf locking cannabis cabinet under bright lights so customers can see and smell, if appropriate, the merchandise. Alternatively, if lighting is an issue, use a lighted display riser to showcase your pod assortment. A pop of color via custom color pod picks like these from shopPOPdisplays, placed inside a clear cannabis display pod holder on the lighted display riser grabs attention and can be easily switched out depending on the product promotion. It’s versatile, cost-efficient and eye catching.

Make It Marketable

Cannabis displays come in all shapes, sizes, styles and colors. Organize your cannabis, CBD, vape and other merchandise like nitro tins to keep clutter at bay, but make it work for your brand as well. Double-duty dispensary displays like tube holders provide the functionality of neatly presenting products with the bonus of brand recognition through a customization option. If decorating your dispensary business and building your brand on a budget – and who isn’t – customizing key pieces like locking displays and cabinets, may be the solution. Placing products in and on customized cannabis dispensary displays with your logo, brand and/or company color scheme brings instant recognition as well as consumer confidence that your dispensary is not a fly-by-night company. Strategic customization might be the savvy investment option in the long run.

Protecting Your Employees: Health and Otherwise

Security means different things to different people. Physical, financial – you name it – people want to feel safe and protection of others, oneself and properties is at the forefront. Like all business owners, dispensary entrepreneurs invest time, money and sweat equity to get their business up and running. According to cannabis software specialist TRYM, by the year 2025, the cannabis industry is estimated to reach $30 billion dollars. Ensuring the safety and security of staff and inventory investment is a top priority. Cameras, security personnel and alarm systems are all factors, plus practically shatter-resistant plexiglass counters and displays are the new must-have trend. Acrylic sheets don’t end at the counter either. The health of staff members, especially during these times mean plexiglass sheets, clear acrylic barriers and sneezeguards are being implemented in dispensaries across the country. In compact or limited retail space these protective panels ensure social distancing and help ease customer anxiety.

The cost of dispensary inventory is significant, protecting it doesn’t have to be. Many states require cannabis, CBD and vape merchandise be stored in locking display cases and locking cabinets, behind counters, and more depending on the state. Sidestep specific regulations and instead opt for securing all cannabis and high-ticket items in both countertop and locking wall mount displays as well as wall pedestals, lighted pedestals (with acrylic cover or without) with the lock option. These display cases promote waist- and eye-level optimization without taking up valuable retail space.

Color Me Green This Year and Next

As mentioned, in 2022 clean is in, but so is green. In The Psychology of Design: The Color Green, Christi Wharton says, “Green evokes a feeling of abundance and is associated with refreshment and peace, rest and security.” Therefore, it only makes sense to include green when decorating your dispensary. Add planters with greenery to odd corners, break up a white space with a verdant splash of color to bring attention to products. Consider custom green acrylic display risers with company name, brand or logo to literally elevate merchandise or use a LED cannabis display and a showcase is born!

With these current and classic display trends; a well-designed dispensary doesn’t need tricks and a large budget to succeed. Quality merchandise, great customer service as well as classic in-stock and custom dispensary displays never go out of style.

At Delic Labs, We Have a Dream: A Cannabis Better Future

By Dr. Markus Roggen, Amanda Assen, Dr. Eric Janusson
No Comments

Many people associate cannabis with eco-friendly, counter-cultural movements, but we know the environmental impacts of the cannabis industry are significant. Given the climate crisis, cannabis production companies have a responsibility to ensure future demands of the industry are met in an environmentally sustainable way. We also know that as the world is seeing the impacts of climate change, consumers are changing their spending habits 1. As a result, companies also have the financial incentive to seriously consider implementing more environmental policies, to align their interests with the interests of consumers. Unfortunately, restrictions on cannabis research and the legal industry create barriers to implementing many environmentally friendly alternatives in production. However, this does not give us an excuse to do nothing while we wait – there are many steps that can be taken while we work to overcome these barriers. Our team at Delic Labs aims to help companies ensure the environmental and economic sustainability of the cannabis industry. So, we did some research and developed the Cannabis Better Future (CBF) concept, a guide that considers the impacts of cannabis cultivation and processing on the environment. The pillars of CBF are:

  1. Use of renewable/recyclable materials in production

The packaging used for legal cannabis products is infamously excessive. A standard 3.5-grams of dried cannabis is estimated to come packaged in more than 70 grams of plastic. This seemingly redundant packaging is done to meet regulations surrounding cannabis packaging that often require single-use plastic with labels and warnings at specific sizes 2. Despite this, there is work being done to get biodegradable packaging approved in the industry.

More companies, such as Knot Plastic, are using plant-based materials to provide medical-grade biodegradable alternatives to single-use plastic 3. As members of the industry, we should support these companies and call for regulations to approve biodegradable packaging. As for immediate actions that can be taken, we can turn to companies that reduce the amount of plastic from the industry that ends up in landfills. The Tweed x TerraCycle Cannabis Packaging Recycling Program accepts all cannabis containers from licensed producers in Canada – free of charge – and melts down the plastic to create new products 4. This includes tins, plastic bags, tubes and bottles with child-proof caps. The program has saved more than 165,000 containers from ending up in landfills.

  1. Upcycle biomass waste

It is estimated that for every pound of cannabis harvested, up to 4.5 pounds of plant waste is generated 5. Cannabis biomass waste can be discarded in four different ways: via landfill, composting, in-vessel digestion or incineration 6. Cannabis bio-waste usually ends up in landfills because this is the cheapest method. However, landfill disposal represents a missed opportunity for companies to use biomass waste for economic and environmentally-friendly uses.

Converting biomass for other uses will drastically limit waste

To reduce landfill waste, some companies are looking at sustainable bio-circular solutions, where cannabis biomass is converted into something of industrial use such as compost, bio-plastics and paper packaging for cannabis products 7.  The easiest way to reuse cannabis biomass with current regulations in place is to upcycle it to produce compost and greywater that can be used for industrial cultivation 8. Currently, bleach is commonly used to remove THC from biomass, making it unfit to be used for these purposes 6. However, Micron Waste Technologies Inc. have shown enzymatic denaturation can be adopted on the industrial scale to remove THC from the biomass, resulting in reusable water and compostable matter 8. Turning to this alternative method would also reduce the amount of required fertilizer and replace bleach with a more environmentally-friendly solution.

  1. Recycle production side streams

Terpenes are the compounds in cannabis that give it distinctive aromas and flavors sought after by consumers.During the cannabis drying stage, over 30% of terpenes can be lost along with the water phase from the product 9. This terpene-containing water phase gets trapped in drying rooms and decarboxylation ovens and is usually thrown out. To reintroduce the terpenes in their products, companies usually purchase them 10.However, they instead could be recapturing terpenes that are otherwise going to waste, and re-introducing them into their products. Recapturing terpenes would not only reduce the production and shipment energy that goes along with purchased terpenes, but also the costs of buying them.

There are many other wasted by-products that can be recycled. Ethanol that has been used as extraction solvent can be reused as cleaning solvent, reducing the need to purchase ethanol separately for cleaning purposes. Further, the condensation caught in HVACs can be recycled to water plants.

  1. Optimize production energy efficiency
LED lights use less energy and omit less heat than other more traditional options

A study by Summers et al. 11 found that from producing one kilogram of dried cannabis flower, the emitted greenhouse gasses emissions range from 2,283 to 5,184 kg of CO2. Electricity used for indoor cultivation is the major culprit in producing these emissions. In fact, over $6 billion is spent annually to power industrial cannabis growth facilities in the U.S. alone12. Growing outdoors is significantly more energy efficient; however, non-auto flowering, high-THC cannabis plants depend on the specific timing of daylight (and darkness) to grow properly 13. Optimal conditions for these plants are not always achievable in outdoor setting. Meanwhile, auto-flowering plants that are hearty outdoors are generally lower in THC content 14. Promoting research into generating more stabilized cannabis cultivars may help outdoor growing be a more feasible solution. Given the recent work being done with genetically modified and transgenic plants, upregulating THC production in cannabis and increasing the heartiness in different climates is well within the realm of possibility 15–17.

In the meantime, cultivation facilities can do their part to maintain a controlled growth environment with reduced energy waste. Companies that are still using high-intensity sodium lights should consider switching to high-efficiency LED bulbs 12. These are a good alternative option as they produce less heat, and as a result, require less mechanical cooling. It has been shown that many plants, including cannabis, might even do better under blue-red LED lights 18,19. Growth under these conditions correlated with an increase in THC and CBD levels, and overall larger plants 18. In addition to low energy consumption, LED lamps have flexible mobility and a tunable spectrum range. This makes it possible to mediate the spectrum specifically for cannabis crops by controlling each spectral range and manipulating spectral quality and light intensity precisely. Finally, lights can also be brought closer to plants, to further reduce the amount of mechanical cooling needed.

  1. Utilize high-precision processes

Reducing energy use while maintaining production rates can only be done if the process is optimized. Our own research improves process optimization in the cannabis industry. A key component of industrial optimization is reducing wasted time on various machines. For cannabis producers, this machine “junk time” can accumulate when the instrumentation is not progressing the reaction.

Reducing energy use in this case means ensuring machines are not in operation if they are not progressing the reaction. For example, many companies spend approximately two hours on the decarboxylation step because decarboxylation is always complete after two hours 20; however, decarboxylations are often complete in as little as thirty minutes 21. Companies can save energy by installing a monitor on decarboxylation systems to stop reactions once they are complete.

Reducing the environmental impacts of the cannabis industry is crucial to combat the developing climate crisis. While lifting restrictions on cannabis research and mitigating stigmas surrounding the legal industry will be what ultimately paves the way for meaningful changes toward a sustainable industry, cannabis companies cannot wait for regulatory changes to occur before considering eco-friendly practices. As outlined by CBF, there are existing actions which all companies can take to reduce their carbon footprint immediately. Delic Labs, and many other companies we have noted, aim to support companies in making these decisions for a better future for cannabis.


References:

  1. Statista Research Department. Share of consumers worldwide who have changed the products and services they use due to concern about climate change in 2019. https://www.statista.com/statistics/1106653/change-made-consumer-bevaviour-concern-climate-change-worldwide/ (2021).
  2. Akeileh, O., Moyer, E., Sim, P. & Vissandjee Amarsy, L. Chronic Waste: Strategies to Reduce Waste and Encourage Environmentally-Friendly Packaging in Canada’s Legal Cannabis. https://www.mcgill.ca/maxbellschool/files/maxbellschool/policy_lab_2020_-_strategies_to_reduce_waste_and_encourage_environmentally-friendly_packaging_in_canadas_legal_cannabis_industry.pdf (2020).
  3. Bauder, P. Ry Russell of Knot Plastic️: 5 Things We Must Do to Inspire the Next Generation about Sustainability and the Environment. (2020).
  4. Waste360 Staff. Tweed, TerraCycle Take Cannabis Packaging Recycling Across Canada. (2019).
  5. Peterson, E. Industry Report: The State of Hemp and Cannabis Waste. CompanyWeek (2019).
  6. Commendatore, C. The Complicated World of Cannabis Waste Generation (Part One). Waste 360 (2019).
  7. Drotleff, L. Cannabis-based packaging and paper could reduce waste, promote sustainability. MJBiz Daily(2020).
  8. Waste 360 staff. Micron Secures U.S. Design Patent for Waste Treatment Tech. Waste 360 (2019).
  9. Challa, S. R. DRYING KINETICS AND THE EFFECTS OF DRYING METHODS ON QUALITY (CBD, TERPENES AND COLOR) OF HEMP (Cannabis sativa L.) BUDS. (2020).
  10. Erickson, B. Cannabis industry gets crafty with terpenes. chemical and engineering news (2019).
  11. Summers, H. M., Sproul, E. & Quinn, J. C. The greenhouse gas emissions of indoor cannabis production in the United States. Nature Sustainability 4, (2021).
  12. Reott, J. How Does Legalized Cannabis Affect Energy Use? Alliance to Save Energy (2020).
  13. When To Plant Cannabis Outside: A State By State Guide. aPotforPot.comhttps://apotforpot.com/blogs/apotforpot/when-to-plant-cannabis-outside-a-state-by-state-guide/ (2020).
  14. 15 Pros And Cons of Autoflowering Cannabis. aPotforPot.com https://apotforpot.com/blogs/apotforpot/15-pros-and-cons-of-autoflowering-seeds/ (2019).
  15. Ye, X. et al. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287, 303–305 (2000).
  16. Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18, 1151–1155 (2000).
  17. Hu, H. & Xiong, L. Genetic Engineering and Breeding of Drought-Resistant Crops. Annual Review of Plant Biology 65, 715–741 (2014).
  18. Wei, X. et al. Wavelengths of LED light affect the growth and cannabidiol content in Cannabis sativa L. Industrial Crops and Products 165, (2021).
  19. Sabzalian, M. R. et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development 34, (2014).
  20. LunaTechnologies. Decarboxylation: What Is It and Why Is It Important? LunaTechnologies.
  21. Shah, S. et al. Fast, Easy, and Reliable Monitoring of THCA and CBDA Decarboxylation in Cannabis Flower and Oil Samples Using Infrared Spectroscopy. (2021).

Technological Evolution of the Cannabis Industry

By Serge Chistov
No Comments

Discussions about the evolution of the cannabis industry are often focused on the legalization of adult use and medical cannabis, the growth of the business models associated with the industry and so on. An interesting corollary to those discussions is how technology is impacting the evolution of this growth industry. 

It’s no longer just a question of growing some buds and offering up a high, with little thought as to product, packaging, marketing or the end consumer. Technology has changed the way cannabis is being commodified, and that’s a good thing. After all, with more and more states making adult use legal, creating products that appeal to a wider market and demographic is in part accomplished thanks to tech.

From the growth stage

Few growers are using outdoor facilities, where the elements cannot be controlled. Until recently, indoor growers ran into issues like simulating natural light to a level that would be of maximum benefit to the plants. The amount of lighting required to be effective was very expensive to maintain in terms of electricity consumption, but that is changing.

Then LEDs came on the scene: high quality, low heat light with a far larger and more natural spectrum, versus blue and red light frequencies that are available in standard bulbs. Using far less electricity and emitting less heat, therefore requiring less need for additional air cooling, as well as longer bulb life spans, LEDs have become an industry standard.

Beyond the plant

LED lights use less energy and omit less heat than other more traditional options

As with any agricultural product, the important work is in growing the plants but thanks to technology, producers and manufacturers can now offer their customers a much wider array of products than buds for smoking. Edibles, vapes, oils, capsules and even creams are all products of technology influencing change in the cannabis industry. For consumers who aren’t interested in smoking directly, these offer promising options. 

The issue consumers have often had with edibles has been the lag time from consumption to high, as the THC has to pass through the digestive system, which takes upwards of an hour, and reduces the effectiveness of the dosage as some just doesn’t make it to the bloodstream. Technology has led to the creation of a method for making non-smokable forms of cannabis just as effective as a direct to the lungs hit of a joint: nanoencapsulation.

The point of nanoencapsulation is to reduce the size of the cannabinoid to a nano size and protect it—the encapsulation part of the equation—so that it becomes soluble in water, or in the body which is 75% water. The ability to bypass the digestive system and the gastric fluids that impact the effectiveness of an edible, and get it through the stomach walls to the bloodstream, means that nanoencapsulated formulations can have the virtually the same “time to a high” effects as a joint, without the need to inhale smoke.

It’s now possible for consumers to quantify exactly how much THC they are consuming, allowing for new and different consumption styles, including micro-dosing. Finding the right “dosage” for each individual—as everyone responds differently to cannabinoids—isn’t a simple task but newer technology is setting up a path to personalization that will make it easier.

Personalization

Imagine being able to take a test that would allow you to determine the perfect balance of THC and CBD dosage, as well as the right strain of cannabis, to create the desired effect. Whether that’s a reduction of anxiety, improved sleep or the psychoactive high that cannabis is known for, technology is leading the path to ending the guessing games as to dosage and blending of different cannabinoids.

A perfect example of this is CannabisDNA, a saliva-based swab test that evaluates over 70 of an individual’s genetic markers to establish what strains and dosages are most compatible with that person’s physiology. It’s a matter of time before this technology becomes more readily available and consumers will be able to obtain a range of products created with their personalized profile in mind.

In addition to matching cannabis to an individual’s DNA, there are efforts to decode the DNA of the various strains of cannabis, to better clarify important elements like THC, CBD and other cannabinoids like CBC. This last and far more rare cannabinoid has been associated with very strong anti-inflammatory reactions. This kind of deconstruction of cannabinoids at the DNA level will make it easier for producers and manufacturers to create products that address specific needs, both medical and recreational.

Purchasing power

Boutique dispensaries are popping up to make the more mainstream consumer comfortable. And thanks in part to the recent pandemic, online purchasing has jumped, with apps and websites being developed for purchasing and shipping just the right product, any time. 

Ads for CBD products online regularly perform very well

As has occurred in other areas of agriculture, there is a push towards transparency on product provenance and growth methods, so that the end consumer can make choices about what they are putting into their bodies, with as much information as possible. Field to dispensary tracking is on the table as a method to keep consumers educated and informed, which ultimately improves the connection between producers and consumers. 

Add to these ideas the fact that there are serious improvements in packaging being developed, which allow buds to remain fresh and full of flavor by eliminating light, air and moisture, while still remaining child proof. This is all part of the evolution of the cannabis industry, with a view to keeping customers happy and interested in the product.

Technology within the cannabis industry isn’t an end in itself: after all, the most important part of the effort is the growth of the plants themselves. But technology can change the evolution of the industry in ways that make it more interesting for everyone, from the grower, to the manufacturer of products, the dispensary owner and the consumer as well.

Cannabis Manufacturing Considerations: From Raw Materials to Finished Goods

By David Vaillencourt, Kathleen May
2 Comments

Facility layout and design are important components of overall operations, both in terms of maximizing the effectiveness and efficiency of the process(es) executed in a facility, and in meeting the needs of personnel. Prior to the purchase of an existing building or investing in new construction, the activities and processes that will be conducted in a facility must be mapped out and evaluated to determine the appropriate infrastructure and flow of processes and materials. In cannabis markets where vertical integration is the required business model, multiple product and process flows must be incorporated into the design and construction. Materials of construction and critical utilities are essential considerations if there is the desire to meet Good Manufacturing Practice (GMP) compliance or to process in an ISO certified cleanroom. Regardless of what type of facility is needed or desired, applicable local, federal and international regulations and standards must be reviewed to ensure proper design, construction and operation, as well as to guarantee safety of employees.

Materials of Construction

The materials of construction for interior work surfaces, walls, floors and ceilings should be fabricated of non-porous, smooth and corrosive resistant surfaces that are easily cleanable to prevent harboring of microorganisms and damage from chemical residues. Flooring should also provide wear resistance, stain and chemical resistance for high traffic applications. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces22 provides a method for evaluating the antibacterial activity of antibacterial-treated plastics, and other non-porous, surfaces of products (including intermediate products). Interior and exterior (including the roof) materials of construction should meet the requirements of ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Covering7, UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings 8, the International Building Code (IBC) 9, the National Fire Protection Association (NFPA) 11, Occupational Safety and Health Administration (OSHA) and other applicable building and safety standards, particularly when the use, storage, filling, and handling of hazardous materials occurs in the facility. 

Utilities

Critical and non-critical utilities need to be considered in the initial planning phase of a facility build out. Critical utilities are the utilities that when used have the potential to impact product quality. These utilities include water systems, heating, ventilation and air conditioning (HVAC), compressed air and pure steam. Non-critical utilities may not present a direct risk to product quality, but are necessary to support the successful, compliant and safe operations of a facility. These utilities include electrical infrastructure, lighting, fire detection and suppression systems, gas detection and sewage.

  1. Water
Microbial monitoring methods can include frequent/consistent testing

Water quality, both chemical and microbial, is a fundamental and often overlooked critical parameter in the design phase of cannabis operations. Water is used to irrigate plants, for personnel handwashing, potentially as a component in compounding/formulation of finished goods and for cleaning activities. The United States Pharmacopeia (USP) Chapter 1231, Water for Pharmaceutical Purposes 2, provides extensive guidance on the design, operation, and monitoring of water systems. Water quality should be tested and monitored to ensure compliance to microbiological and chemical specifications based on the chosen water type, the intended use of the water, and the environment in which the water is used. Microbial monitoring methods are described in USP Chapter 61, Testing: Microbial Enumeration Tests 3and Chapter 62, Testing: Tests for Specified Microorganisms 4, and chemical monitoring methods are described in USP Chapter 643, Total Organic Carbon 5, and Chapter 645, Water Conductivity 6.Overall water usage must be considered during the facility design phase. In addition to utilizing water for irrigation, cleaning, product processing, and personal hygiene, water is used for heating and cooling of the HVAC system, fogging in pest control procedures and in wastewater treatment procedures  A facility’s water system must be capable of managing the amount of water required for the entire operation. Water usage and drainage must meet environmental protection standards. State and local municipalities may have water usage limits, capture and reuse requirements and regulations regarding runoff and erosion control that must also be considered as part of the water system design.

  1. Lighting

Lighting considerations for a cultivation facility are a balance between energy efficiency and what is optimal for plant growth. The preferred lighting choice has typically been High Intensity Discharge (HID) lighting, which includes metal halide (MH) and high-pressure sodium (HPS) bulbs. However, as of late, light-emitting diodes (LED) systems are gaining popularity due to increased energy saving possibilities and innovative technologies. Adequate lighting is critical for ensuring employees can effectively and safely perform their job functions. Many tasks performed on the production floor or in the laboratory require great attention to detail. Therefore, proper lighting is a significant consideration when designing a facility.

  1. HVAC
urban-gro
Proper lighting is a significant consideration when designing a facility.

Environmental factors, such as temperature, relative humidity (RH), airflow and air quality play a significant role in maintaining and controlling cannabis operations. A facility’s HVAC system has a direct impact on cultivation and manufacturing environments, and HVAC performance may make or break the success of an operation. Sensible heat ratios (SHRs) may be impacted by lighting usage and RH levels may be impacted by the water usage/irrigation schedule in a cultivation facility. Dehumidification considerations as described in the National Cannabis Industry Association (NCIA) Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification 26 are critical to support plant growth and vitality, minimize microbial proliferation in the work environment and to sustain product shelf-life/stability. All of these factors must be evaluated when commissioning an HVAC system. HVAC systems with monitoring sensors (temperature, RH and pressure) should be considered. Proper placement of sensors allows for real-time monitoring and a proactive approach to addressing excursions that could negatively impact the work environment.

  1. Compressed Air

Compressed air is another, often overlooked, critical component in cannabis operations. Compressed air may be used for a number of applications, including blowing off and drying work surfaces and bottles/containers prior to filling operations, and providing air for pneumatically controlled valves and cylinders. Common contaminants in compressed air are nonviable particles, water, oil, and viable microorganisms. Contaminants should be controlled with the use appropriate in-line filtration. Compressed air application that could impact final product quality and safety requires routine monitoring and testing. ISO 8573:2010, Compressed Air Specifications 21, separates air quality levels into classes to help differentiate air requirements based on facility type.

  1. Electrical Infrastructure

Facilities should be designed to meet the electrical demands of equipment operation, lighting, and accurate functionality of HVAC systems. Processes and procedures should be designed according to the requirements outlined in the National Electrical Code (NEC) 12, Institute of Electrical and Electronics Engineers (IEEE) 13, National Electrical Safety Code (NESC) 14, International Building Code (IBC) 9, International Energy Conservation Code (IECC) 15 and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ).

  1. Fire Detection and Suppression

“Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs.”Proper fire detection and suppression systems should be installed and maintained per the guidelines of the National Fire Protection Association (NFPA) 11, International Building Code (IBC) 9, International Fire Code (IFC) 10, and any other relevant standards dictated by the Authority Having Jurisdiction (AHJ). Facilities should provide standard symbols to communicate fire safety, emergency and associated hazards information as defined in NFPA 170, Standard for Fire Safety and Emergency Symbols 27.

  1. Gas detection

Processes that utilize flammable gasses and solvents should have a continuous gas detection system as required per the IBC, Chapter 39, Section 3905 9. The gas detection should not be greater than 25 percent of the lower explosive limit/lower flammability limit (LEL/LFL) of the materials. Gas detection systems should be listed and labeled in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems 16 and/or UL 2017, Standard for General-Purpose Signaling Devices and Systems 17 and UL 2075, Standard for Gas and Vapor Detectors and Sensors 18.

Product and Process Flow

Product and process flow considerations include flow of materials as well as personnel. The classic product and process flow of a facility is unidirectional where raw materials enter on one end and finished goods exit at the other. This design minimizes the risk of commingling unapproved and approved raw materials, components and finished goods. Facility space utilization is optimized by providing a more streamlined, efficient and effective process from batch production to final product release with minimal risk of errors. Additionally, efficient flow reduces safety risks to employees and an overall financial risk to the organization as a result of costly injuries. A continuous flow of raw materials and components ensures that supplies are available when needed and they are assessable with no obstructions that could present a potential safety hazard to employees. Proper training and education of personnel on general safety principles, defined work practices, equipment and controls can help reduce workplace accidents involving the moving, handling, and storing of materials. 

Facilities Management

Facilities management includes the processes and procedures required for the overall maintenance and security of a cannabis operation. Facilities management considerations during the design phase include pest control, preventative maintenance of critical utilities, and security.

Damage from whiteflies, thrips and powdery mildew could be prevented with an appropriate PCP

A Pest Control Program (PCP) ensures that pest and vermin control is carried out to eliminate health risks from pests and vermin, and to maintain the standards of hygiene necessary for the operation. Shipping and receiving areas are common entryways for pests. The type of dock and dock lever used could be a welcome mat or a blockade for rodents, birds, insects, and other vermin. Standard Operating Procedures (SOPs) should define the procedure and responsibility for PCP planning, implementation and monitoring.

Routine preventative maintenance (PM) on critical utilities should be conducted to maintain optimal performance and prevent microbial and/or particulate ingress into the work environment. Scheduled PMs may include filter replacement, leak and velocity testing, cleaning and sanitization, adjustment of airflow, the inspection of the air intake, fans, bearings and belts and the calibration of monitoring sensors.

In most medical cannabis markets, an established Security Program is a requirement as part of the licensing process. ASTM International standards: D8205 Guide for Video Surveillance System 23, D8217 Guide for Access Control System[24], and D8218 Guide for Intrusion Detection System (IDS) 25 provide guidance on how to set up a suitable facility security system and program. Facilities should be equipped with security cameras. The number and location of the security cameras should be based on the size, design and layout of the facility. Additional cameras may be required for larger facilities to ensure all “blind spots” are addressed. The facility security system should be monitored by an alarm system with 24/7 tracking. Retention of surveillance data should be defined in an SOP per the AHJ. Motion detectors, if utilized, should be linked to the alarm system, automatic lighting, and automatic notification reporting. The roof area should be monitored by motion sensors to prevent cut-and-drop intrusion. Daily and annual checks should be conducted on the alarm system to ensure proper operation. Physical barriers such as fencing, locked gates, secure doors, window protection, automatic access systems should be used to prevent unauthorized access to the facility. Security barriers must comply with local security, fire safety and zoning regulations. High security locks should be installed on all doors and gates. Facility access should be controlled via Radio Frequency Identification (RFID) access cards, biometric entry systems, keys, locks or codes. All areas where cannabis raw material or cannabis-derived products are processed or stored should be controlled, locked and access restricted to authorized personnel. These areas should be properly designated “Restricted Area – Authorized Personnel Only”.

Future Expansion

The thought of expansion in the beginning stages of facility design is probably the last thing on the mind of the business owner(s) as they are trying to get the operation up and running, but it is likely the first thing on the mind of investors, if they happen to be involved in the business venture. Facilities should be designed so that they can be easily expanded or adjusted to meet changing production and market needs. Thought must be given to how critical systems and product and process flows may be impacted if future expansion is anticipated. The goal should be to minimize down time while maximizing space and production output. Therefore, proper up-front planning regarding future growth is imperative for the operation to be successful and maintain productivity while navigating through those changes.


References:

  1. United States Environmental Protection Agency (EPA) Safe Drinking Water Act (SDWA).
  2. United States Pharmacopeia (USP) Chapter <1231>, Water for Pharmaceutical Purposes.
  3. United States Pharmacopeia (USP) Chapter <61>, Testing: Microbial Enumeration Tests.
  4. United States Pharmacopeia (USP) Chapter <62>, Testing: Tests for Specified Microorganisms.
  5. United States Pharmacopeia (USP) Chapter <643>, Total Organic Carbon.
  6. United States Pharmacopeia (USP) Chapter <645>, Water Conductivity.
  7. ASTM E108 -11, Standard Test Methods for Fire Tests of Roof Coverings.
  8. UL 790, Standard for Standard Test Methods for Fire Tests of Roof Coverings.
  9. International Building Code (IBC).
  10. International Fire Code (IFC).
  11. National Fire Protection Association (NFPA).
  12. National Electrical Code (NEC).
  13. Institute of Electrical and Electronics Engineers (IEEE).
  14. National Electrical Safety Code (NESC).
  15. International Energy Conservation Code (IECC).
  16. UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
  17. UL 2017, Standard for General-Purpose Signaling Devices and Systems.
  18. UL 2075, Standard for Gas and Vapor Detectors and Sensors.
  19. International Society for Pharmaceutical Engineers (ISPE) Good Practice Guide.
  20. International Society for Pharmaceutical Engineers (ISPE) Guide Water and Steam Systems.
  21. ISO 8573:2010, Compressed Air Specifications.
  22. ISO 22196:2011, Measurement Of Antibacterial Activity On Plastics And Other Non-Porous Surfaces.
  23. D8205 Guide for Video Surveillance System.
  24. D8217 Guide for Access Control Syst
  25. D8218 Guide for Intrusion Detection System (IDS).
  26. National Cannabis Industry Association (NCIA): Committee Blog: An Introduction to HVACD for Indoor Plant Environments – Why We Should Include a “D” for Dehumidification.
  27. NFPA 170, Standard for Fire Safety and Emergency Symbols.