Terpenes are a group of volatile, unsaturated hydrocarbons found in the essential oils of plants. They are responsible for the characteristic smells and flavors of most plants, such as conifers, citrus, as well as cannabis. Over 140 terpenes have been identified to date and these unique compounds may have medicinal properties. Caryophyllene, for example, emits a sweet, woody, clove taste and is believed to relieve inflammation and produce a neuroprotective effect through CB2 receptor activation. Limonene has a citrus scent and may possess anti-cancer, anti-bacterial, anti-fungal and anti-depression effects. Pinene is responsible for the pine aroma and acts as a bronchodilator. One theory involving terpenes is the Entourage Effect, a synergistic benefit from the combination of cannabinoids and terpenes.
Many customers ask technical service which instrumentation is best, GC or HPLC, for analysis of terpenes. Terpenes are most amenable to GC, due to their inherent volatility. HPLC is generally not recommended; since terpenes have very low UV or MS sensitivity; the cannabinoids (which are present in percent levels) will often interfere or coelute with many of the terpenes.
Headspace (HS), Solid Phase Microextraction of Headspace (HS-SPME) or Split/Splitless Injection (SSI) are viable techniques and have advantages and disadvantages. While SPME can be performed by either direct immersion with the sample or headspace sampling, HS-SPME is considered the most effective technique since this approach eliminates the complex oil matrix. Likewise, conventional HS also targets volatiles that include the terpenes, leaving the high molecular weight oils and cannabinoids behind (Figure 1). SSI eliminates the complexity of a HS or SPME concentrator/autosampler, however, sensitivity and column lifetime become limiting factors to high throughput, since the entire sample is introduced to the inlet and ultimately the column.
The GC capillary columns range from thicker film, mid-polarity (Rxi-624sil MS for instance) to thinner film, non-polar 100% polysiloxane-based phases, such as an Rxi-1ms. A thicker film provides the best resolution among the highly volatile, early eluting compounds, such as pinene. Heavier molecular weight compounds, such as the cannabinoids, are difficult to bake off of the mid-polarity phases. A thinner, non-polar film enables the heavier terpenes and cannabinoids to elute efficiently and produces sharp peaks. Conversely the early eluting terpenes will often coelute using a thin film column. Columns that do not contain cyano-functional groups (Rxi-624Sil MS), are more robust and have higher temperature limits and lower bleed.
For the GC detector, a Mass Spectrometer (MS) can be used, however, many of the terpenes are isobars, sharing the same ions used for identification and quantification. Selectivity is the best solution, regardless of the detector. The Flame Ionization Detector (FID) is less expensive to purchase and operate and has a greater dynamic range, though it is not as sensitive, nor selective for coeluting impurities.
By accurately and reproducibly quantifying terpenes, cannabis medicines can be better characterized and controlled. Strains, which may exhibit specific medical and psychological traits, can be identified and utilized to their potential. The lab objectives, customer expectations, state regulations, available instrumentation, and qualified lab personnel will ultimately determine how the terpenes will be analyzed.
The American Association for Laboratory Accreditation (A2LA) announced today that they just accredited the Washington State Department of Agriculture-Chemical and Hop Laboratory to ISO 17025. The laboratory, based in Yakima, WA, finished the accreditation process on May 3, 2017.
The lab was accredited to ISO/IEC 17025 – General Requirements for the Competence of Testing and Calibration Laboratories, so they are now able to test for pesticides in cannabis and other matrices, according to the press release published today. “WSDA sought this accreditation to ensure our clients can have absolute confidence in our testing methods and lab results. The information we produce drives enforcement cases and policy decisions,” says Mike Firman, manager of the WSDA Chemical and Hop Laboratory. “We want to do everything that can be done to make sure our data is reliable.”
The A2LA Cannabis Accreditation Program is essentially a set of standards for quality in testing cannabis and cannabis-based products, such as infused products, tinctures and concentrates. ISO 17025 accreditation is quickly become a desirable certification for laboratories. Many states strongly encourage or even require ISO 17025 accreditation for cannabis laboratories. California recently released a set of proposed lab testing regulations for the cannabis industry that specifically requires an ISO 17025 accreditation in order for laboratories to issue certificates of analysis.
Because each state’s requirements for laboratories testing cannabis varies so greatly, A2LA works with state regulators to craft their accreditation program to meet each state’s specific requirements. “A2LA is excited to play such an important role in the accreditation of cannabis testing laboratories and is pleased to see ISO/IEC 17025 accreditation expanding into additional states,” says A2LA General Manager Adam Gouker. “Priority must be placed on ensuring that cannabis products are tested by competent laboratories to convey confidence in the results – a cornerstone which underpins the safety to all end-users.” A2LA is currently accepting applications for cannabis laboratories working to receive accreditation. Labs that already have ISO 17025 accreditation and are in a state with legal cannabis, have the ability to expand their scope of accreditation if they are looking to get into cannabis testing.
Last Friday, the Bureau of Marijuana Control, the regulatory body overseeing California’s cannabis industry, released a set of proposed regulations for the lab testing market. The regulations are somewhat comprehensive, covering sampling, licensing, pesticide testing, microbiological contaminants, residual solvents, water activity and much more.
Formerly named the Bureau of Medical Cannabis Regulation under the state’s Department of Consumer Affairs, the Bureau of Marijuana Control is tasked with overseeing the development, implementation and enforcement of the regulations for the state’s cannabis industry. In their statement of reasons for the lab testing regulations, the bureau says they are designed with public health and safety at top of mind. At first glance, much of these laboratory rules seem loosely modeled off of Colorado and Oregon’s already implemented testing regulations.
The regulations lay out requirements for testing cannabis products prior to bringing them to market. That includes testing for residual solvents and processing chemicals, microbiological contaminants, mycotoxins, foreign materials, heavy metals, pesticides, homogeneity as well as potency in quantifying cannabinoids.
The microbiological impurities section lays out some testing requirements designed to prevent food-borne illness. Labs are required to test for E. coli, Salmonella and multiple species of the pathogenic Aspergillus. If a lab detects any of those contaminants, that batch of cannabis or cannabis products would then fail the test and could not be sold to consumers. A lab must report all of that information on a certificate of analysis, according to the text of the regulations.
The proposed regulations stipulate requirements for sampling, including requiring labs to develop sampling plans with standard operating procedures (SOPs) and requiring a lab-approved sampler to follow chain-of-custody protocols. The rules also propose requiring SOPs for analytical methodology. That includes some method development parameters like the list of analytes and applicable matrices. It also says all testing methods need to be validated and labs need to incorporate guidelines from the FDA’s Bacterial Analytical Manual, the U.S. Pharmacopeia and AOAC’s Official Methods of Analysis for Contaminant Testing, or other scientifically valid testing methodology.
Labs will be required to be ISO 17025-accredited in order to perform routine cannabis testing. Laboratories also need to participate in proficiency testing (PT) program “provided by an ISO 17043 accredited proficiency-test provider.” If a laboratory fails to participate in the PT program or fails to pass to receive a passing grade, that lab may be subject to disciplinary action against the lab’s license. Labs need to have corrective action plans in place if they fail to get a passing grade for any portion of the PT program.
This three-part series will provide an in-depth look at intellectual property (IP) protection that is available for innovative and new varieties of cannabis. In this first installment, we will examine the reasons why cannabis breeders should adopt a strong IP strategy and look briefly at the types of IP that they should be considering. In the second and third pieces, we will look at the types of IP protection that can be used to protect innovative cannabis varieties and the unique IP issues the cannabis industry faces right now. Taken together, these articles will provide insight into IP strategies that cannabis breeders and growers can employ today to help prepare for the day that cannabis becomes legal nationally.
Why should I use IP to protect my cannabis varieties?
First and foremost, as the cannabis industry continues to move from a small, tight-knit community of breeders and growers into a ‘big-business’ industry, IP is the only way for breeders to protect the investment of time, energy and money that they put into developing new and innovative strains of cannabis. At a recent cannabis growing conference, one sentiment felt among numerous breeders was a feeling of frustration– stemming from the fact that they had spent many years developing new varieties of cannabis and, now that the industry is exploding, they are not getting recognition for all that effort. The way to avoid this issue is to protect novel varieties with IP to ensure that you are given proper credit for all of your hard work.
Moreover, an examination of industries that have strong similarities to the cannabis industry, such as other plant-based industries and ‘vice’ industries, provides compelling evidence that IP will become a main driving force in the cannabis industry as it continues to mature. For example, the fruit and hops industries have been relying upon strong plant patent and trademark protection for many years. The extremely popular Honeycrisp apple is a patented variety and the Amarillo hops variety (officially called ‘VGXP01’) is protected by both a U.S. Plant Patent and a federally registered trademark. Similarly, the alcohol and tobacco industries rely upon strong trademark and branding strategies, with many consumers being extremely brand-particular.
Additionally, there is strong evidence that the cannabis industry is primed for intellectual property protection. Since long before cannabis was legalized, consumers who were buying cannabis on the black market often sought out a particular variety from their dealer, something that becomes more prevalent as the industry continues to mature.
Why is now the time to think about IP?
First, the relevant governmental bodies have now provided some clarity as to the types of IP protection that can, and cannot be obtained for cannabis. For example, it is now clear that the U.S. Patent and Trademark Office (USPTO) will issue patents that cover new cannabis plant varieties and related innovations, such as novel growing methods. In fact, the first U.S. Plant Patent that covers a novel cannabis strain, called ‘Ecuadorian Sativa’, issued in late 2016.
Similarly, though federal trademark registration is not currently available if the product being protected is a cannabis product that is illegal under federal law. Federal trademark registration may be available to protect products related to the cannabis industry that are not themselves federally illegal (e.g., grow lights, fertilizer, etc.). Many states with legalized cannabis will grant state trademark registrations for cannabis products regardless of whether the products are viewed as illegal under current federal law. With this increased clarity, companies can now begin to formulate a comprehensive IP strategy that ties together the various types of IP protection.
Additionally, cannabis breeders and growers should look to adopt an IP strategy now because there are certain time bars that exist that may result in loss of rights if they wait. For example, as we will discuss in Part 2 of the series, patent protection can only be sought if the variety to be patented was not sold, offered for sale, or otherwise made publicly available more than one year before the patent application is filed. So if a breeder chooses to wait to seek patent protection for a new variety, the ability to ever get that protection may be lost.
The bottom line is that, to solidify their place in the market, cannabis breeders and growers should be formulating an IP strategy sooner rather than later. Those forward-thinking growers and breeders that adopt a comprehensive IP strategy up front will gain a distinct competitive advantage over competing growers and breeders down the road – an advantage that will become even more important if and when large corporations begin to move into the cannabis space. Those companies that have strong brands in place will be better equipped to survive and thrive in the face of pressure from legal teams at larger companies.
The next two installments of this series will examine the specifics of the types of IP protection that can be sought and the unique issues that the cannabis industry faces with each of them.
Legal disclaimer: The material provided in this article is for informational purposes only and not for the purpose of providing legal advice. The opinions expressed herein are the opinions of the individual author and may not reflect the opinions of the firm or any individual attorney. The provision of this information and your receipt and/or use of it (1) is not provided in the course of and does not create or constitute an attorney-client relationship, (2) is not intended as a solicitation, (3) is not intended to convey or constitute legal advice, and (4) is not a substitute for obtaining legal advice from a qualified attorney. You should not act upon any such information without first seeking qualified professional counsel on your specific matter.
Last week, the American Society for Testing and Materials (ASTM International) approved the formation of a committee to develop standards for the cannabis industry. ASTM International is a standards development organization that develops voluntary consensus-based standards for industries. United States regulatory bodies and the World Trade Organization have recognized the organization’s standards in other industries.
On March 1st, the non-profit announced the formation of a committee for ““creating technical standards and guidance materials for cannabis and its products and processes.” So now that the vote has passed, what is the next step? They will begin the process of member training, appointment of leadership and writing the bylaws. ASTM will have two online briefings before their official meeting for the cannabis committee (D37) in June. Those meetings will discuss how the committee was formed and how it’ll be structured. The first official meeting of the cannabis committee will take place June 11th and 12th in Toronto.
Voluntary consensus-based standards means there is a balance of interests, an appeals process and an overall consensus has been reached. The areas of focus for the cannabis standards include indoor and outdoor horticulture and agriculture, quality management systems, laboratories, processing and handling, security and transportation, and personnel training, assessment and credentialing. Many standards will be developed under each of these broad categories. A large component of consensus-based standard development is openness…so anyone who wants to participate in the development of the standards is welcome and encouraged to do so. They are still looking for participants from the cannabis industry and those interested can register here.
Lezli Engelking, founder of the Foundation of Cannabis Unified Standards (FOCUS), says this is terrific news for the cannabis industry. “To have a global organization like ASTM, that federal governments actually work with and respect, is a huge stride forward for the cannabis industry,” says Engelking. “FOCUS is thrilled to be working with ASTM.” FOCUS and ASTM International have a derivative work license agreement that provides ASTM the FOCUS standards to use as a baseline for developing their standards. “FOCUS will continue to certify cannabis businesses to the FOCUS standards, but we will be able to add in the ASTM standards to our certification platform,” says Engelking. “It helps us expand our depth and reach in tools for our clients.”
FOCUS standards and ASTM standards are both voluntary consensus-based, meaning it is the businesses and stakeholders participating that ultimately write the standards. The organizations’ staff does not actually contribute to and develop the standards; they are more like a vehicle for the industry and stakeholders to come to a consensus, according to Engelking. “ASTM does the same thing that we do for the cannabis industry, just on a much larger scale,” says Engelking. “Its role is to fulfill the development, not actually develop it.” Because of that, ASTM and FOCUS standards can work in harmony.
In the first part of this series, we introduced Dr. Hope Jones, who took her experience in tissue culture from NASA and brought it to the cannabis industry and C4 Laboratories. We discussed some of the essential concepts behind tissue culture and defined a few basic terms like micropropagation, totipotency, explants and cloning. Now let’s get into some of the issues with cloning from mother plants and the advantages that come with using tissue culture for propagating and cultivating cannabis.
Time & Resources
Taking cuttings from mother plants is arguably the most popular method of propagating cannabis plants. It is a process that requires significant real estate, resources and labor. “Moms can take up a great deal of space that is not contributing directly to production,” says Dr. Jones. “I know from experience that scaling up production and/or adding new strains to the production line requires significant time and resources to raise and maintain new healthy and productive mother plants.” Each mother plant produces a limited number of clones per harvest period and over the course of her life cycle.
By using tissue culture, a cultivator can generate an almost infinite number of clones from one plant cutting. With so many growers calculating their costs-per-square-foot, micropropagation is an effective tool to save space, labor and time, thus increasing profit margins. “Just to put it in perspective: Holly Scoggins’ book Plants From Test Tubes, cites a Day Lily cultivator who uses micropropagation to produce 1,000 plants in 30 square feet of shelf space each week,” says Dr. Jones. “Using conventional methods, one would need a half-acre to produce the same amount of plants.” Cultivators can produce a much greater number of plants-per-square-foot by using micropropagation effectively.
Early Health & Vigor
Most tissue culture methods use sterilized vessels that contain sugar-rich media to support growth of plantlets before they can photosynthesize on their own. “The media is prepped, poured into vessels, and placed in an autoclave (or pressure cooker) where it is subjected to high temps and pressure to achieve proper sterility.”
The sterile environment and rich growth media supplies plantlets with an abundance of everything they need. “When plantlets emerge from culture, they are pathogen-free, with a stockpile of food and nutrient reserves that support rapid growth and vigor, superior to conventional cuttings,” says Dr. Jones.
Stress & Disease
As any grower knows, mother plants can sometimes experience stress and disease. This might come in the form under or over-watering, heat stress, spider mites, whiteflies, mold and viruses. “Any stress or infection that a mother plant is subjected too can impact progeny health and productivity in a couple of ways,” says Dr. Jones.
For example, diseases like powdery mildew and tobacco mosaic virus are often systemic, meaning that pathogens have spread to almost every tissue in the plant. Once infected, it is impossible to completely eliminate pathogens from tissues. Therefore any cuttings made from a diseased mother plant, even if they look perfectly healthy, will also be infected and can eventually present disease symptoms like reduced productivity and/or plant death, according to Dr. Jones.
How does tissue culture get around this problem? Remember that explants (small tissue samples used as starting material) can be extracted from any part of the plant. Meristematic cells in shoot tips and leaves are the source of new plant growth. Dr. Jones explains that these cells, and the first set of primordial leaves are not connected directly to the vascular tissue, the plant’s transport system by which pathogens spread. Therefore, meristematic cells tend to be disease-free, whatever the condition of the mother. It takes a sharp blade, a dissecting microscope, and a lot of experience to learn, but as Dr. Jones explains, “harvesting explants from meristems is a routine micropropagation technique used by ‘Big Horticulture.’ One example is the strawberry. Viruses and pathogens are so prevalent that the strawberry industry must use meristematic culture to ensure pathogen free progeny.”
Epigenetics
Now let’s talk about epigenetics. We know that plants don’t have the option of physically moving away from stress or predation. Instead, they have evolved sophisticated ways of changing their own biology to adapt to and/or protect themselves. “Consider what happens to a mom exposed to a pathogen. The infected plant will start expressing (turning on) genes and making proteins that contribute to pathogen resistance,” says Dr. Jones. “These changes to gene expression are partly regulated by epigenetic modifications, chemical changes to DNA that increase or decrease the likelihood a cell will express a particular gene, but that do not actually modify the gene itself. Like annotations to a piece of music, epigenetic modifications don’t change the notes but rather how loud or soft, quickly or slowly the notes are played.”
This is where it gets interesting. “Epigenetic modifications can be systemic and long lived. Plants infected by a pathogen or stressed by drought will present widespread epigenetic modifications to their DNA,” says Dr. Jones. “For an annual plant like cannabis, those modifications are relatively permanent. Thus a cutting from a mom having drought or pathogen adapted epigenetic programming will inherit that modified DNA and behave as if it were experiencing that stress, whether present or not.”
In the wild, this adaptability is critical for plant survival and reproduction, but to a grower, this is a less-than-ideal scenario. “The epigenetic modifications allowed the mother to tolerate the stress, which is great from the perspective of survival and fitness, but it comes at a cost. Some of the finite energy and resources that usually support plant growth and reproduction are instead channeled to stress response,” says Dr. Jones. This trade off results in reduction in overall plant yield and quality. “Those epigenetic changes result in a new phenotype for that mother,” says Dr. Jones. “All cuttings from her will reflect the new phenotype. This is one major mechanism underlying what many in the cannabis industry (incorrectly) call ‘genetic drift,’ or the loss of vigor over successive clonal generations.”
This is again where tissue culture can be such a game changer. The process of dedifferentiation, as explained in part 1 of this series, can rejuvenate a “tired” mother plant by inducing a kind of reboot– clearing accumulated epigenetic modifications that negatively impact progeny vigor and productivity. In the third part of this series, we will discuss the five stages of micropropagation, detailing the process of how you can grow plantlets in tissue culture. Stay tuned for more!
According to a press release, the State of Delaware has chosen BioTrackTHC as their partner in seed-to-sale tracking software. Delaware’s Department of Health and Social Services (DHSS) signed a contract with BioTrackTHC for the tracking and patient registry software.
In 2016, Delaware issued a request for proposals for “the Delaware Enterprise Consolidated Cannabis Control System,” which encompasses the statewide patient registry and seed-to-sale traceability systems. “Our sincerest thanks to DHSS for choosing Team BioTrack,” says Patrick Vo, CEO of BioTrackTHC. “DHSS has been wonderful to work with throughout the contracting process, and we look forward to partnering with them to provide the tools and data they need to continue overseeing the industry and protecting their patients.” BioTrack’s software was selected as the winner of a number of government contracts in other states previously for the same role.
Their software is currently used in government traceability systems in Washington, New Mexico, Illinois, Hawaii, New York and the city of Arcata, California. The press release states regulators will have the ability to view the retail data “including plant counts and usable inventory, lab results, transportation, and point-of-sale data—to perform periodic audits and ensure compliance.” The patient registry will also provide better patient accessibility through the new software with a faster turn around time and automated application processing.
BioTrackTHC provides technology solutions for businesses and governments to tracking products throughout the supply chain to the point of sale. The software systems help businesses remain compliant with regulations and monitor data for things like inventory management.
Last week, Governor Brown’s Administration released a set of proposed rules for the medical cannabis, attempting to provide some oversight to the once unregulated market. In 2015, the governor signed three bills into law that established a regulatory framework via the Medical Cannabis Regulation and Safety Act. That legislation set up the Bureau of Medical Cannabis Regulation inside the Department of Consumer Affairs as the overseeing regulatory agency.
According to the press release, the proposed regulations for manufacturing and cultivation have also been published. “The proposed licensing regulations for medical cannabis are the result of countless hours of research, stakeholder outreach, informational sessions and pre-regulatory meetings all across the state,” says Lori Ajax, chief of the Bureau of Medical Cannabis Regulation. “And while we have done quite a bit of work and heard from thousands of people, there is still so much more to do. In order to make our program successful we still need your feedback.”
According to their website, the legislation divides responsibility for licensing businesses between three regulatory bodies: The CA Department of Food and Agriculture the CA Department of Public Health and the Bureau of Medical Cannabis Regulation, which will be the leading body in charge of licensing. The proposed regulations are not set in stone, but give us an important glimpse into how the state hopes to regulate the market.
Among the proposed rules are a number of regulatory compliance nuances expected to raise prices, but provide extra measures to protect consumer safety. According to the SF Gate, regulators expect prices could climb $524 per pound. But with that price jump comes a lot of regulations that other states have so far successfully implemented. The laboratory testing and traceability stipulations are presumably designed to safeguard public health, preventing things like black market diversion and off-label pesticide use.
In addition to the medical regulations, the proposed manufacturing regulations set some notable requirements. Those rules are set by the Office of Manufactured Cannabis Safety, established in the Center for Environmental Health of the California Department of Public Health (CDPH) after the 2015 legislation was signed into law. Good Manufacturing Practices, food product standards, operational and labeling requirements are included in the provisions, along with a list of licensing tiers, application requirements and fees. They have a handy summary of the proposed regulations for those looking for the key highlights.
Omar Figueroa, an attorney with a cannabis law practice in California, says his clients in the industry are preparing to suggest changes to the proposed regulations and possibly legal challenges. “They are looking at this as overregulation by people that are not in the cannabis industry,” says Figueroa. “These are outsiders with a limited knowledge base creating somewhat uninformed regulations.” He says a good example of this is the potency limit on infused products. “They make perfect sense for [the recreational market] but for the medical market it is simply unacceptable. Patients develop a tolerance to THC and would have to increase their caloric intake and buy more infused products if this proposed regulation becomes final.” He says there are a number of regulations that seem kind of arbitrary. “Like prohibiting cannabis-infused caffeine products; there doesn’t seem to be a necessity in the rulemaking for this,” says Figueroa. “A lot of these regulations are going to be susceptible to challenges because California requires regulations to be necessary and alternatives to be considered.”
Although the lab testing regulations won’t be published for another few days, Figueroa expects them to be a huge disruptor for the market. “Most labs in the state are not ISO 17025-accredited, which means many labs might not be able to issue certificates of analysis when the regulations get enforced,” says Figueroa. He says it is safe to say California regulators are looking at other jurisdictions, like Colorado and Oregon for example, in crafting these rules, but we can expect a sea change in these regulations before they get enforced.
Manufacturers will be required to use a cannabis product symbol with a ‘THC!’ marking on their labels. There is also a 100-milligrams-per-package limit for THC in infused products, which is similar to rules we saw Colorado and Oregon roll out during a preliminary period of legal recreational cannabis.
For those looking to get involved in the regulatory process, there is a 45-day comment period on the proposed rules.
On May 1st, Congress reached a bipartisan deal to keep the government open and funded through September 30th, 2017. Congress approved the appropriations bill that sets the government’s spending with an important section in it relating to cannabis. Section 537 on page 230 states that the Department of Justice cannot use funds to interfere with states’ legal medical cannabis programs.
The bill uses similar language to The Rohrabacher–Farr amendment, a bill that was originally introduced in 2013 to prevent the Department of Justice from spending money on enforcing the Controlled Substances Act in states with legal medical cannabis programs. This new appropriations bill, with the language in section 537, effectively achieves the same thing. “None of the funds made available in this Act to the Department of Justice may be used, with respect to any of the States of… to prevent any of them from implementing their own laws that authorize the use, distribution, possession, or cultivation of medical marijuana,” reads the bill. The language includes a mention of the 40 or so states and territories with some form of medical cannabis program, legislation or bill.
This means that Attorney General Jeff Sessions is relatively powerless to go on a sort of ‘crackdown’ on medical cannabis programs. Given Sessions’ previous comments and general views on cannabis, this should put cannabis industry stakeholders at ease for the time being. Of course, this budget is only for the 2017 fiscal year, so come September, the same or similar language needs to be included in the next appropriations bill. With Jeff Sessions’ task force still investigating federal cannabis policy, it is still very possible we could get a clear policy decision in the near future.
“We are encouraged that the Federal Government and NIDA are recognizing the true and powerful medical benefits that cannabis provides, especially in the war against devastating opiate-based drug addiction, abuse and death,” says Sally Vander Veer, President of Medicine Man Denver. “We have seen anecdotal evidence of this as reported by our patients/customers (and the beneficial effects of cannabis in numerous other conditions) since we opened our doors in 2010. Our hope is that this acknowledgment will open the door to additional research, eventually leading to legal and safe access to cannabis medicine for all Americans.”
The following section also includes a protection of industrial hemp research, as defined in the Agricultural Act of 2014, which basically means universities and institutions can research it. SEC. 538. “None of the funds made available by this Act may be used in contravention of section 7606 (‘‘Legitimacy of Industrial Hemp Research’’) of the Agricultural Act of 2014 (Public Law 113–79) by the Department of Justice or the Drug Enforcement Administration.” With all of the uncertainty and inconsistent comments coming out of the Trump administration, at least we have a sense of security in the medical cannabis community through the summer.
The Colorado Department of Revenue (DOR), in conjunction with the Colorado Department of Agriculture (CDA) and the Colorado Department of Public Health and Environment (CDPHE) issued two public health and safety advisories this morning after they identified pesticide residues on dried cannabis flower, trim, concentrates and infused products, according to the advisory. The contaminated products come from cannabis grown by Rocky Mountain Ways, LLC and Herbal Options, LLC, both doing business as Good Meds.
The advisory cautions consumers to check their labels for the license numbers of the businesses and the harvest batch numbers. They list the license number as, “Medical Optional Premises Cultivation License 403-001116 and/or Medical Marijuana Center License 402-00736.” The harvest batch numbers in question are B11H15.041317-Headband, B11H15.041317-Night Terror OG, and B11H15.041217-Citrix.
The CDA found the presence of off-label pesticides, including Pyrimethanil, Tebuconazole, and Spinosyn, in the products. Pyrimethanil is a fungicide commonly used on seeds, but it is generally regarded as not acutely toxic to humans. Tebuconazole is another fungicide, while the FDA says it is safe for humans, other sources say it could have a moderate acute toxicity in humans. Spinosyn is a class of insecticides with a slight acute toxicity to humans and has been the culprit in a previous cannabis recall in Oregon. In the public health and safety advisory, the CDPHE and DOR say the pesticides were used off-label and none of them are on the approved list of pesticides for cannabis.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.