Tag Archives: material

How to Develop Quality Cannabis Products with Advanced Analytical Testing

By Vanessa Clarke, Melody Lin
No Comments

A thorough cannabis product development process goes far beyond extracting and packaging. Performing advanced analytical testing at each and every stage allows producers to know the quantity, quality and behaviour of compounds in samples. Here are the four key stages from flower to consumption.

Stage 1: Flower

Developing a quality cannabis product begins with knowing the composition of compounds in your starting material. The best analytical tests utilize a metabolomics approach. Metabolomics is a suite of techniques that include a variety of instruments to run samples through in order to receive compositional data. In this stage, LC-qTOF and GC-MS are the best instruments to track all the compounds in the starting plant material. Essentially, metabolomics establishes a fingerprint of the compounds in a plant sample. This is beneficial because producers have to understand how their chosen cannabis plant differs from other cultivars and how it would potentially behave in their desired end product formulations.

Stage 2: Concentrate

After the plant material has gone through an extraction process, producers want to know precisely what is in the extract. Are there compounds that should not be there and are all the desired compounds present? The best way to test the quality of cannabis oils is again to use metabolomics (e.g. via LC-qTOF). This test reveals all the compounds in the sample in order to help the producer determine the purity and consistency of molecules beyond just THC and CBD.

When testing cannabis isolates, it is best to use NMR spectroscopy and X-ray diffraction. NMR characterizes and assesses the purity of single compounds or mixtures in solution or solid state. X-ray diffraction provides information about the crystal structure, chemical composition and the physical properties of the cannabis sample to help the producer prove the identification of desired compounds. Establishing that the concentrates are pure and aligned with what the producer intended to extract is key in this stage of product development.

Stage 3: Formulation

Designing an appropriate drug delivery formula is a universal challenge producers face at this stage of product development. Where nanoemulsion or other carrier approaches are being used, formulation characterization allows producers to understand how their active compounds behave in simulated physiological environments as well as how stable their products are over time. Specifically, nanoparticle sizing and assessing size changes over time can help a formulation scientist ensure the highest quality product is being mixed, and that the desired effect will be imparted on the consumer/patient.

Stage 4: Smoke/Vapor

Many producers might not consider this final stage, but it is critical for all inhalable cannabis products and devices. Using a smoke analyzer and metabolomics testing can identify and quantify compounds present within the formed smoke or vapor from pre-roll joints to vape devices. This is not only important for preventing the production of toxic by-products, but it can help producers create an optimal smoking experience for consumers.

One area that is often an afterthought is quality compliance testing. Despite a number of groups using the required tests well during development, many forget to continue the same robust testing on end products. In the current cannabis product development landscape, there is little guidance on how compliance testing should be conducted on every product “batch.” With these advanced analytical tests, producers can confidently develop compliant, stable and quality cannabis products.

 

The Ten Biggest Mistakes When Building a Cultivation Facility

By Michael Burnstein
3 Comments

As cannabis legalization becomes more prolific across the United States, entrepreneurs are entering the cultivation business in droves. With so many new companies entering the market and growing cannabis, there are a lot of common errors made when getting started. Here are ten of the biggest mistakes you can make when building a cannabis grow facility:

  • Failure to consult with experts in the cannabis business – poor planning in floorplan and layout could create deficient workflow causing extra time and costing profits. Bad gardening procedures may result in crop failure and noncompliance could mean a loss of license. Way too often, people will draft a design and begin construction without taking the time to talk to an expert first. Some important questions to ask yourself and your consultant are: What materials should be used in the building of the grow? Is my bed-to-flower ratio correct? How long will it take before I can see my first harvest? 
  • Contractor selection – DO NOT build your own facility; leave it to the experts. Sure, you have experience building things and you have a friend who has worked in construction. Do not make this mistake – Our experience can save you from the mistake’s others have made. To stay lucrative in this competitive industry and to maximize your products’ quality and yields, have the facility built right the first time. Paying an experienced, qualified cannabis professional to build you a facility will produce better yields and will save you time, stress and money in getting you from start of construction to your first crop.
  • Not maximizing your square footage potential – With today’s fast changing environment, multi-tiered stationary racks, rolling benches and archive style rolling racks help maximize square footage. Without the proper garden layout, you will find yourself pounds short of your potential each harvest.
  • Inadequate power – Not planning or finding out if there is sufficient power available at the site for your current and future needs. This will stop you from building the overall square footage you want. When finding a building make sure you first know how much power you will need for the size grow you want. With proper engineering you will find out what load requirements will be so you can plan accordingly.
  • Material selection – The construction material that goes into a cultivation and extraction facility should consist of nonabsorbent anti-microbial finishes. The days of wood grow benches are long gone. Epoxy flooring, metal studs and other materials are mandatory for a quality-built, long-lasting facility.
  • Hand watering – Once your facility is up and running, many people feel they have spent enough money and they can save by hiring people to water by hand, rather than going with an automated system to handle the watering and nutrients. The problem with this is your employees are not on your plants timetable. What if an employee calls off and can’t come into water at the right time or they mix the wrong amount of nutrients from the formula you have selected? These are issues we see a lot. It is critical to perform precise, scheduled watering and nutrient delivery to increase your yields.
  • Failure to monitor and automate – Automating your grow is important for controlling the light and fertigation schedules as well as data collection and is crucial to maximizing yields. Being able to do this remotely gives you peace of mind in that you can monitor your grow room temperature and humidity at all times and be notified when something is not right.
  • MedicineManTechGrowPoor climate – This can cause stunted growth, smaller harvests and test failures. Our experience has taken us to facilities that have had mold and mildew issue due to poor climate. Proper air balancing, additional dehumidification along with a proper cleaning procedure can get a facility back in working order. Installing proper climate control systems could save millions of dollars.
  • Choosing the wrong site or building – Not knowing the history of the building you are choosing to rent or buy can create logistical and monetary nightmares. The wrong site can be a distribution and marketing disaster. In the wrong building, exponentially more money is spent to bring that building up to the standards needed for successful production and yields. For example, bringing in the ceiling and the cleaning of an existing facility can be a great expense. If you do not know what you are looking at when you purchase, you may be in for months of unaccounted expenses and inaccurate timelines. This can be detrimental for companies and individuals that are on restricted timelines and have to start producing successful and continuous yields from a space that has to be converted into a prime grow facility.
  • Failure to maintain your facility – A dirty site creates an invitation for pests, workplace injuries, unhealthy working environment and equipment failure. Keeping the facility and equipment properly maintained with routine service will ensure efficiency, longevity of equipment life span and reduce mold and bacteria risk. Clean facilities = clean plants and better flower.

New Guidance on Waste Disposal for Hemp Producers

By Stephanie McGraw, Emily Sellers
No Comments

On January 15, 2021, the USDA published its final rule on US hemp production. The rule, which becomes effective on March 22, 2021, expands and formalizes previous guidance related to waste disposal of noncompliant or “hot” crops (crops with a THC concentration above .3 percent). Importantly for the industry, the new disposal rules remove unduly burdensome DEA oversight and provides for remediation options.

Producers will not be required to use a DEA reverse distributor or law enforcement to dispose of noncompliant plants. Instead, producers will be able to use common on-farm practices for disposal. Some of these disposal options include, but are not limited to, plowing under non-compliant plants, composting into “green manure” for use on the same land, tilling, disking, burial or burning. By eliminating DEA involvement from this process, the USDA rules serve to streamline disposal options for producers of this agricultural commodity.

Alternatively, the final rule permits “remediation” of noncompliant plants. Allowing producers to remove and destroy noncompliant flower material – while retaining stalk, stems, leaf material and seeds – is an important crop and cost-saving measure for producers, especially smaller producers. Remediation can also occur by shredding the entire plant to create “biomass” and then re-testing the biomass for compliance. Biomass that fails the retesting is noncompliant hemp and must be destroyed. The USDA has issued an additional guidance document on remediation. Importantly, this guidance advises that lots should be kept separate during the biomass creation process, remediated biomass must be stored and labeled apart from each other and from other compliant hemp lots and seeds removed from non-compliant hemp should not be used for propagative purposes.

The final rules have strict record keeping requirements, such rules ultimately protect producers and should be embraced. For example, producers must document the disposal of all noncompliant plants by completing the “USDA Hemp Plan Producer Disposal Form.” Producers must also maintain records on all remediated plants, including an original copy of the resample test results. Records must be kept for a minimum of three years. While USDA has not yet conducted any random audits, the department may conduct random audits of licensees.

Although this federal guidance brings some clarity to hemp producers, there still remains litigation risks associated with waste disposal. There are unknown environmental impacts from the industry and there is potential tort liability or compliance issues with federal and state regulations. For example, as mentioned above, although burning and composting disposal options for noncompliant plants, the final rule does not address the potential risk for nuisance complaints from smoke or odor associated with these methods.

At the federal level, there could be compliance issues with the Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and ancillary regulations like Occupation Safety and Health Administration (OSHA). In addition to government enforcement under RCRA and CERCLA, these hazardous waste laws also permit private party suits. Although plant material from cultivation is not considered hazardous, process liquids from extraction or distillation (ethanol, acetone, etc.) are hazardous. Under RCRA, an individual can bring an “imminent and substantial endangerment” citizen suit against anyone generating or storing hazardous waste in a way the presents imminent and substantial endangerment to health or the environment. Under CERCLA, private parties who incur costs for removal or remediation may sue to recover costs from other responsible parties.

At the state level, there could be issues with state agency guidance and state laws. For example, California has multiple state agencies that oversee cannabis and hemp production and disposal. CA Prop 65 mandates warnings for products with certain chemicals, including pesticides, heavy metals and THC. The California Environmental Quality Act (CEQA) requires the evaluation of the environmental impact of runoff or pesticides prior to issuing a cultivation permit. Both environmental impact laws permit a form of private action.

Given the varied and evolving rules and regulation on hemp cultivation, it remains essential for hemp producers to seek guidance and the help of professionals when entering this highly regulated industry.

Canadian Lab Offers Vapor/Smoke Analysis

By Cannabis Industry Journal Staff
No Comments

According to a press release sent out last week, Complex Biotech Discovery Ventures (CBDV) has expanded their testing capabilities considerably with the new addition of a vapor/smoke analyzer. CBDV is a licensed cannabis and psilocybin research laboratory embedded in the University of British Columbia, led by CEO Dr. Markus Roggen.

Dr. Markus Roggen, Founder of Complex Biotech Discovery Ventures (CBDV)

The ability to analyze vapor and smoke is a relatively novel concept for the cannabis space, but has been utilized by the tobacco industry for years now. In the early days of adult-use cannabis legalization in the United States, stringent testing regulations for contaminants like pesticides were adopted out of a fear for what would happen when consumers ingest toxic levels of contaminants.

One of the common refrains iterated throughout the industry over the past ten years was that there just wasn’t enough research on how different contaminants affect patients and consumers when burned and inhaled. We still don’t know too much about what happens when someone smokes a dangerous pesticide, such as myclobutanil. Beyond just contaminants, the new technology allows for companies to measure precise levels of cannabinoids in vapor and smoke, getting a more accurate reading on what cannabinoids are actually making it to the end user.

The smoke analyzer at CBDV

This new development coming from our neighbor to the north could lead to a breakthrough in the cannabis lab testing and research space. CBDV claims they can now analyze cannabis material with a much more in-depth analysis than basic compliance testing labs. The new technology for analysis of smoke, vapor, plant material and formulations allows companies to thoroughly understand their materials in each stage of the product formulation process, all the way to product consumption.

Beyond just smoke and vapor analysis CBDV also offers NMR spectroscopy, metabolomics, nanoparticle characterization, computational modeling and other testing services that go far beyond the traditional compliance testing gamut.

“Our new services offer comprehensive insights into plant material, extracts, end-products and even the smoke/vapor by using state-of-the-art analytical instruments,” says Dr. Roggen. “By understanding the chemical fingerprint of the material, cannabis producers can eliminate impurities, adjust potencies, and optimize extraction processes before wasting money and resources on producing inconsistent end products. As a chemist I am really excited about adding NMR and high-res mass spectroscopy to the cannabis testing offerings.”

The Craft of Extraction: Like Beer Making, It’s All About Control

By Jeremy Diehl
No Comments

Any brewmaster from the more than 7,000 U.S. craft breweries will tell you one of two things: That their art is a science, or that their science is an art. The answer might depend upon the brewer’s individual approach, but a combination of experience, process, precise measurement and intuition is exactly what’s required to create great beer. In a very similar way, the cannabis industry has its own version of the brewmaster: Extraction technicians.

A cannabis extraction technician deploys knowledge from multiple science disciplines to apply industrial solvents, heat and pressure to plant matter through a variety of methods with the aim to chemically extract pure compounds. Extraction techs use their passion for the cannabis and hemp plants, combined with chemistry, physics, phytobiology and chemical engineering to help create a result that’s not quite art, but not quite completely science. By manipulating plant materials, pressure, heat and other variables, the extraction technician crafts the building block for what will become an edible, tincture or extract.

Similarly, brewmasters use their knowledge of multiple science disciplines like chemistry and microbiology, as well as different brewing processes and a variety of ingredients to develop creative recipes that result in consistent, interesting beers. The brewmaster’s work is both science and art, as well. And they also manipulate plant materials, pressure, heat and other variables to achieve their desired results.

Author Jeremy Diehl collects cannabis extract from equipment for testing

“I would certainly consider brewing to be an art and a science, but it takes a very disciplined approach to create consistent, yet ever evolving beers for today’s craft market,” says Marshall Ligare, PhD. Research Scientist at John I. Haas, a leading supplier of hops, hop products and brewing innovations. “We work to ensure brewers can create something different with every new beer, as well as something that helps create an experience as well as a feeling.”

In both brewing and extraction, the art comes in the subjective experience of the craftsman and his or her ability to curate the infinite possibilities inherent in each process. However, both are a science in their requirement of establishing production methodologies that guarantee a consistent, reliable product experience every time to win customer loyalty (and regulatory compliance). In the same way hops determine recipes for beer flavors, the cannabis plant determines extraction recipes, especially considering the role that terpenoids play in the quality, flavor and effects of the end product.

The development of new and appealing cannabis products is beginning to mimic the vast variety of craft beers now found all over the world. In the same way beer connoisseurs seek out the perfect stout, lager or IPA, discriminating cannabis consumers now search for that gem of a single-origin, specialty-strain vaporizer oil or irresistible dab extract.

“I see an exciting new day for quality-focused, craft extraction that tells a story, not only of where the cannabis plant might have been grown and how, but also the care that was taken in the processing of that strain into smokable or edible oil,” says John Lynch, Founder of TradeCraft. “Imagine the impact in the marketplace when product-makers figure out how to do seasonal one-offs where engaged connoisseurs are willing to pay a premium for the art behind limited releases.”

In the same way hops determine recipes for beer flavors, the cannabis plant determines extraction recipes

In either process, you’re essentially creating art with science. Each process works with different strains. Each is concerned with chemical and flavor profiles. Each has its own challenges. In both worlds, quality depends upon consistency. You’re creating art, but you need to replicate that art over and over – which can only occur with strict control of the process. Brewmasters seek control of things like yeast quantity and health, oxygen input, wort nutritional status and temperature, among other things. In their pursuit, extraction technicians seek to control temperature, pressure and flow rate–as well as all the ways these variables interact with each other. What enables this control in both efforts is the equipment used to achieve results.

“A modern brewhouse is very much like a scientific laboratory,” Ligare says. “Brewers treat their setup with the same care and attention a scientist gives to their lab equipment, and are equally concerned with precision, cleanliness and the purity of the result. With each new beer, they want to develop a process that can be controlled and replicated.”

The key to creating a precise process is to use instrument-grade extraction machinery that performs to specifications – and allows you to repeat the process again and again. The value of using high-quality instrumentation to manage and monitor either the brewing or extraction process cannot be overstated. Although it seems counterintuitive, this is where the “craft” comes into play for both brewing and cannabis extraction. Precise instrumentation is what allows the brewer or extraction “artist” to manipulate and monitor the conditions required to meet recipe standards. Along with the quality of the ingredients (hops, cannabis, hemp, etc.), the quality of the equipment utilized to create the product is one critical element impacting the end result. “Imagine the impact in the marketplace when product-makers figure out how to do seasonal one-offs where engaged connoisseurs are willing to pay a premium for the art behind limited releases.”

In cannabis extraction, a second crucial decision is determining which solvent is the best solution for the recipe you’re using and the end result you’re hoping to achieve. This decision is a part of the “craft” of extraction, and determined according to a combination of criteria. There’s no question that each solvent has a business case it serves best, and there is ongoing debate about which approach is best. But overwhelmingly, the solvent that best serves the most business needs is CO2 due to its inherent versatility and ability to have its density tuned to target specific compounds.

“Control is what makes or breaks any craft product,” says Karen Devereux, Vice President of Northeast Kingdom Hemp. “We’re based in Vermont and love how Vermont is known for its quality craft beer, cheese and maple syrup. We wanted to bring that craft approach to hemp extraction, and everyone knows that any craft endeavor is focused on the details and getting them right again and again. You can’t do that without controlling every aspect of the process.”

Greater control of the process can also open up worlds of discovery. The inherent “tunability” of CO₂ enables the extraction technician to target specific compounds, enhancing the potential for experimentation and even whimsy. This can lead to entirely new products much in the way a brewer can control his process to create new, interesting beers.

American portrait photographer Richard Avedon famously declared that art is “about control,” describing the artistic process as “the encounter between control and the uncontrollable.” The same can be said for beer making and cannabis extraction. The more precisely you can control variables, the more options you’ll have for yourself and your customers. The more choices you’ll have with regard to different recipes and products. And the more loyalty you’ll ultimately generate among fans of your products.

Sustainable Hemp Packaging is the Future of Industrial Packaging

By Vishal Vivek
11 Comments

The future of packaging is ripe for capitalization by the drivers of sustainability culture. With the battle lines drawn and forces at play in motion, change is now inevitable. The question arises: how quickly can the industry grow in the space of the next decade?

With an increasing number of nations banning non-biodegradable and petroleum-based plastics in certain uses, the choices at hand have naturally led to bioplastics. Bioplastics are a major ingredient of the renewable packaging industry. We derive them from various renewable agricultural crops, of which hemp is among the chief examples.

The Change for Hemp

The legal ramifications of the European Green Deal and the American Farm Bill of 2018 have created a microcosm where the sustainability discussion has turned into corporate initiatives for crops like industrial hemp, which are a source for bioplastics and numerous other products. The smaller carbon footprint of industrial hemp plays its role in shaping consumer demands towards a greener future.

Farmers are now able to cultivate the plant in the U.S., due to its removal from the list of controlled substances. Agribusinesses and manufacturers are aware of the plant’s versatility, with uses in packaging, building construction, clothing, medicinal oils, edibles like protein powder and hemp hearts, hemp paper and rope. What was once George Washington’s strong consideration as a cash crop for his estate, may gradually become the world’s cash crop of choice.

Hemp’s Sustainability Beckons 

Why is the crop unanimously superior in the aspect of eco-friendliness? Its growing requirements are frugal: water, soil nutrients and pesticides are not needed in large quantities. It absorbs great quantities of carbon dioxide from the atmosphere, and uses it to create 65-75% cellulose content within its biomass. Cellulose is vital in the manufacture of bioplastics. Hemp is also flexible within crop cycles, due to its small harvesting period of only 4 months.

Thus, farmers use it as a rotational crop, allowing them to also cultivate other crops after its harvest. High-quality crops like cotton, though superior in cellulose content and fibrous softness, require far more water quantities, soil nutrients and pesticides. Farmers face greater difficulties in cultivating cotton as a rotational crop, because it requires far more space and time.

Hemp Bioplastics For Packaging                                

We manufacture bioplastics from the hurd and cellulose of the hemp plant. Hemp bioplastics are biodegradable, and take up to a maximum of 6 months to completely decompose; by contrast, normal fossil-fuel-based plastic takes up to 1000 years to decompose.

Manufacturers incorporate these ingredients into existing manufacturing processes for regular plastics, such as injection molding. Thus, we can apply bioplastic ingredients to similar plastics applications, such as packaging, paneling, medical equipment and more. New technologies aren’t necessarily needed, so companies and manufacturers do not have any reservations about its viability as an industry.

Here are a few types of bioplastics derived from hemp:

  1. Hemp Cellulose-based Bioplastics

This is a substance found in plant cell walls. We use cellulose to manufacture a broad range of unique plastics, including celluloid, rayon and cellophane. These plastics are usually entirely organic. We mix cellulose and its variations (such as nanocellulose, made from cellulose nanocrystals) with other ingredients, such as camphor, to produce thermoplastics and the like. Using natural polymer, we process a broad range of bioplastics and corresponding polymers. The difference in their chemical properties is down to the nature of the polymer chains and the extent of crystallization.

  1. Composite Hemp-based Bioplastics

Composite plastics comprise organic polymers like hemp cellulose, as well as an addition of synthetic polymers. They also have reinforcement fibers to improve the strength of the bioplastic, which are also either organic or synthetic. Sometimes, we blend hemp cellulose with other organic polymers like shellac and tree resins. Inorganic fillers include fiberglass, talc and mica.

We call any natural polymer, when blended with synthetic polymers, a “bio composite” plastic. We measure and calibrate these ingredients according to the desired stiffness, strength and density of the eventual plastic product. Apart from packaging, manufacturers use these bioplastics for furniture, car panels, building materials and biodegradable bags.

A composite of polypropylene (PP), reinforced with natural hemp fibers, showed that hemp has a tensile strength akin to that of conventional fiberglass composites. Furthermore, malleated polypropylene (MAPP) composites, fortified with hemp fibers, significantly improved stress-enduring properties compared to conventional fiberglass composites.

  1. Pure Organic Bioplastics With Hemp

We have already generated several bioplastics entirely from natural plant substances like hemp. Hemp fibers, when made alkaline with diluted sodium hydroxide in low concentrations, exhibit superior tensile strength. We have produced materials from polylactic acid (PLA) fortified with hemp fibers. These plastic materials showed superior strength than ones containing only PLA. For heavy-duty packaging, manufacturers use hemp fibers reinforced with biopolyhydroxybutyrate (BHP), which are sturdy enough.

With the world in a state of major change due to the coronavirus outbreak of 2020, the focus is back on packaging and delivery. In this volatile area, perhaps the industry can learn a few new tricks, instead of suffocating itself in old traditions and superficial opportunism. The permutations and combinations of bioplastic technology can serve a swath of packaging applications. We must thoroughly explore this technology.

Hemp’s Future in Packaging

Fossil fuel-based plastic polymers are non-renewable, highly pollutive and dangerous to ecosystems, due to their lifespans. They are some of the most destructive inventions of man, but thankfully could be held back by this crop. Industrial hemp upheld countless industries through human history and now is making a comeback. After existing in relative obscurity in the U.S. due to false connotations with the psychoactive properties of its cousin, it is now back in business.

With the American hemp industry on the verge of a revolution, hemp packaging is primed to take over a significant part of the global packaging sector. The political, economic and environmental incentives for companies to adopt bioplastics are legion. Its lower cost lends to its allure as well. Consumers and agribusinesses are following suit, making the choice to be environmentally-conscious. By 2030, it is estimated that 40% of the plastics industry will be bioplastics.

We can only mitigate the plastic pollution in oceans, landfills and elsewhere, with the use of biodegradable bioplastics; otherwise, animals, humans and plants are getting adversely affected by imperceptible microplastics that pervade vast regions of the Earth. With hemp bioplastics, we use the cleaner, renewable matter of plants to conserve the planet’s sanctity. We can expect this new technology to continue to light the way for other nations, societies and companies to build upon this sustainable plan.

european union states

Why Europe May Serve as an Important Bellwether for Hempcrete Use in the United States

By Stephanie McGraw
No Comments
european union states

Hemp-based construction materials are an attractive option for achieving environmentally friendly goals in construction, including reduced emissions and conservation of natural resources. Hemp construction materials dating back to the 6th Century have been discovered in France and it has long been eyed with interest by hemp growers and manufacturers, as well as environmentalists in the United States and abroad. As the European Union moves forward with its 2019 European Green Deal, United States hemp, construction and limestone industries, as well as regulatory agencies, will be provided with an important preview of the benefits, risks and issues arising out of the use of hemp in construction.

The European Green Deal and Circular Economy Action Plan

Hemp applications in construction are gaining increased interest as the EU seeks to neutralize its greenhouse gas emissions by 2050. Much of the specifics for this transition to zero emissions are outlined in the EU’s “A New Circular Economy Action Plan,” announced on March 11, 2020. According to the EU, “This Circular Economy Action Plan provides a future-oriented agenda for achieving a cleaner and more competitive Europe in co-creation with economic actors, consumers, citizens and civil society organisations.” The plan aims at accelerating the transformational change required by the European Green Deal and tackles emissions and sustainability issues across a number of industries and products, including construction.

Construction in the EU accounts for approximately 50% of all extracted natural resources and more than 35% of the EU’s total waste generation. According to the plan, greenhouse gas emissions from material extraction, manufacturing of construction products and construction and renovation of buildings are estimated at 5-12% of total national greenhouse gas emissions. It is estimated that greater material efficiency could save 80% of those emissions. To achieve those savings, the plan announces various efforts to address sustainability, improve durability and increase energy efficiency of construction materials.

How Hemp Could Help Europe Achieve Neutral Emissions

Hemp, and specifically hempcrete, is being eyed with heightened interest as the EU enacts its plan. Indeed, recent mergers and acquisitions in the European hemp industry signal just how attractive this hemp-based product may be as international, national and local green initiatives gain momentum. But how would hemp be utilized in construction and what types of legal issues will this industry face as it expands?

Image: National Hemp Association

The primary hemp-based construction material is “hempcrete.” Hempcrete is typically composed of hemp hurds (the center of the hemp plant’s stalk), water and lime (powdered limestone). These materials are mixed into a slurry. The slurry petrifies the hemp and the mixture turns into stone once it cures. Some applications mix other, traditional construction materials with the hempcrete. The material can be applied like stucco or turned into bricks. According to the National Hemp Association, hempcrete is non-toxic, does not release gaseous materials into the atmosphere, is mold-resistant, is fire– and pest-resistant, is energy-efficient and sustainable. To that last point, hemp, which is ready for harvest after approximately four months, provides clear advantages over modern construction materials, which are either mined or harvested from old forests. Furthermore, the use of lime instead of cement reduces the CO2 emissions of construction by about 80%.

Watching Europe with an Eye on Regulation and Liability Risks

Hempcrete indeed sounds like a wünder-product for the construction industry (and the hemp industry). Unfortunately, while it may alleviate some of the negative environmental impacts of the construction sector, it will not alleviate the threat of litigation in this industry, particularly in the litigious United States. The European Union’s experience with it will provide important insights for U.S. industries.

Hempcrete blocks being used in construction

Because hemp was only recently legalized in the United States with the passage of the 2018 Farm Bill, it is not included in mainstream building codes in the United States, the International Residential Code, nor the International Building Code. Fortunately, there are pathways for the consideration and use of non-traditional materials, like hempcrete, in building codes. However, construction applications of any form of hemp, including hempcrete, at this point would likely require extensive discussions with local building authorities and an application showing that the performance criteria for the building are satisfied by the material. Such criteria would include standards and testing relating to structural performance, thermal performance, and fire resistance. Importantly, the ASTM does have a subcommittee working on various performance standards for hemp in construction applications. European progress on this front would pave an important regulatory pathway for the United States, as well as provide base-line standards for evaluating hempcrete materials.

Insights into regulation and performance standards are not the only reason to watch the EU construction industry in the coming decades. Introduction of hempcrete and hemp-based building materials in the United States will likely stoke litigation surrounding these materials. Although there is no novel way to avoid the most common causes of construction litigation, including breach of contract, quality of construction, delays, non-payment and personal injury, the lessons learned in Europe could provide risk management and best-practice guidance for the U.S. industry. Of particular concern for the hemp industry should be the potential for product liability, warranty, and consumer protection litigation in the United States. The European experience with hempcrete’s structural performance, energy efficiency, mold-, pest- and fire-resistant properties will be informative, not just for the industry, but also for plaintiff attorneys. Ensuring that hempcrete has been tested appropriately and meets industry gold-standards will be paramount for the defense of such litigation and EU practices will be instructive.

The United States construction industry, and particularly hempcrete product manufacturers, should pay close attention as the EU expands green construction practices, including the use of hempcrete. The trials and errors of European industry counterparts will inform U.S. regulations, litigation and risk management best practices.

 

How to Properly Store Plastic Cannabis Packaging

By Danielle Antos
No Comments

Your plastic cannabis packaging has a big responsibility. It contains and protects your product, communicates pertinent product information and delivers the first brand impression to your consumers. In order for plastic packaging to fulfill these important roles, you must take care to store and handle it properly.

Following storage condition requirements for plastic bottles helps protect your cannabis product, your company and your customers. It doesn’t matter if your cannabis packaging is HDPE (high density polyethylene), PP (polyethylene) or PET (polyethylene terephthalate), proper storage is imperative to maintain the integrity of the product until you’re ready to fill it.

Bottle and closure storage conditions such as time, temperature and humidity can have an effect on plastic containers. The exposure and age of a sample can also affect shrinkage, impact properties and the stress crack resistance of the container. Not to mention the potential threat of contamination to your cannabis product and the poor impression of your brand in the eyes of your consumers.

You may be wondering how to obtain storage information. The best place to start is with your cannabis packaging partner. Your supplier should be ready and willing to share all vital storage information with you. The best suppliers realize that there is more to a business relationship than just the financial transaction of buying packaging. The first step in proper storage is to identify the type of material that was used to manufacture your bottles and closures.

Know Your Bottle Material Type – HDPE

If you are utilizing HDPE for your cannabis packaging, the storage time should be minimal and a strict first-in-first-out inventory should be maintained. Many end users will re-approve bottles after two or three years to ensure they are damage-free.

In addition, elevated storage temperatures allow plastic containers to further shrink and harsh conditions can actually cause severe distortion. The degree of distortion and shrinkage depends on the design and how the bottles have been stored. Higher storage temperatures also accelerate the aging process of the container. A moderate storage temperature should be provided to safeguard consistent bottle dimensions and properties. It is routinely reported that HDPE bottles can withstand temperatures of 110°F/33°C for brief periods.

Although humidity itself will not degrade the plastic container, a humid environment can have a direct impact on the secondary packaging, such as the cardboard cartons used for shipping. If you use stretch wrap and/or control warehouse conditions, secondary packaging problems can be alleviated.

HDPE bottles and closures should be kept as clean as possible – it is best to leave them in the original sealed cartons. The storage area should be kept clean, dry and dust, odor, insect, and rodent-free. Following this rule will help to build consumer trust in your brand. No one wants to purchase cannabis products in dirty, dusty contaminated packages.

Using PET Bottles?

PET bottles should also be used in a first-in-first-out system to limit the time in storage. Long-term storage should be accomplished using a sealed polyethylene plastic bag or lined drums, totes, bins, Gaylord containers, supersacks or seabulks. The plastic liner will help prevent dust and dirt from entering the bottles.

Elevated storage temperatures (above 100°F/38°C) allow empty PET bottles to shrink, mainly due to relaxation of the oriented and partially oriented regions of the bottle. Extreme temperature conditions (above 131°F/55°C) can cause severe distortion of the amorphous areas of the bottle, including the finish and neck. Moderate storage temperature should be maintained to ensure consistent bottle dimensions and properties.

To help protect PET bottles from contamination, the storage area should be kept clean, dry and dust, odor, insect, and rodent-free. Additionally, the storage area should be approved for food storage. PET bottles should not be stored in direct sunlight, and aromatic materials such as spices, solvents, ink, cleaning supplies and disinfectants should not be stored in the same area.

When empty PET bottles are shipped to or through areas where the outdoor temperature may exceed 90°/32°C, it is recommended that a temperature-controlled container or trailer capable of maintaining a temperature of 80°F/27°C or lower be used.

Polypropylene (PP) Closures

Closures are also an important part of your cannabis packaging. The storage time of unlined closures should be minimized. As with bottles, a strict first-in-first-out inventory should be maintained.

Elevated storage temperatures allow unlined PP closures to further shrink. Harsh conditions can actually cause severe distortion. The degree of distortion and shrinkage depends on the closure design and storage conditions. High storage temperatures accelerate the aging process of the closure; moderate storage temperatures should be provided to ensure consistent closure dimensions and properties. Like HDPE bottles, this type of closure can withstand temperatures of 110°F/43°C for brief periods.

When stored in humid conditions, pay attention to the integrity of the cardboard cartons the closures are stored in. The use of stretch wrap and/or controlling warehouse conditions will help alleviate damage to the cardboard. Just like their bottle counterparts, PP unlined closures should be kept as clean as possible and it is best to store in original sealed cartons.

Proper Storage Supports Your Bottom Line

Storing plastic bottles improperly can reduce the integrity of the plastic, therefore making it unsuitable to contain your cannabis product. Poor storage can also be detrimental to filling lines and cause production problems, which can result in reduced efficiencies and added costs.

Product recalls can also be a by-product of poor storage due to increased chances of product contamination. If plastic bottles and closures are not properly stored before using, distortion and shrinkage can damage the bottle labels used to identify your product. Shrinkage of your plastic closures result in a poor sealing surface which is detrimental to the freshness of your cannabis product. All of these side-effects can be very damaging to your brand image, from which it’s hard to recover. Consumers will lose confidence in your brand – leading to reduced profits for your bottom line.

Whether your cannabis business is in the early start-up stages or established with loyal customers, properly storing your plastic packaging will help protect your brand, decrease the risk of product recalls and increase your profitability.

Tips for Finding the Perfect Cannabis Packaging Partner for Your Business

By Danielle Antos
3 Comments

Whether your cannabis business is a start-up in its infancy, or established with a loyal customer following, the product packaging you use is essential to building and maintaining your brand. The packaging is the first thing a potential customer sees, and it creates that critical first impression. While the primary function is to contain, protect, and market your products, your packaging is a reflection of your company to the customer. In many ways, the package is the product. Partnering with a quality plastic packaging manufacturer for your cannabis products will increase your success.

Bottles made of high-density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polyethylene terephthalate (PET) have become widely-accepted packaging options within the cannabis industry. There are many plastic bottle manufacturers, but how do you find the right one? In short, seek a manufacturer who makes quality products that are unlikely to present downstream problems for your company, provides services and options that align with things you feel are important, and wants to build a long-term relationship with you so both of your businesses grow faster through strategic partnership.

What to Look for in a Plastic Bottle Manufacturer

Excess Bottom Flash creates a poor printing surface.

As you search for a packaging partner for your cannabis business, here are a few key things to look for:

Bottles That Visually Support Your Brand

It’s essential to partner with a manufacturer who understands the importance of defect-free plastic bottles. Does everything about your packaging convey a sense of trust for your customers? Defects in plastic bottles typically occur during the manufacturing process.

Excessive Side Taper results in uneven, wrinkled labels.

For instance, excessive side taper on the bottles can result in uneven, wrinkled labels that are hard to read and make your product look unprofessional. If flashing on the bottle bottom is not removed, it creates a poor printing surface and results in a poor brand impression.

Partnering with a manufacturer who understands that plastic bottle defects diminish brand presence and who continually strives to remove defect-producing problems out of their manufacturing process is of utmost importance. This avoids many downstream quality problems and helps to keep the focus on growth and off of damage control.

Bottles That Minimize Risk and Waste

Product recalls or safety concerns can be a result of cloudy bottles or material trapped in the resin that makes the plastic packaging look dirty or contaminated. These situations can erode consumer confidence in your brand or expose the customer to risk.

Foreign material trapped in the resin results in reduced customer confidence.

Sub-par plastic bottles can lead to inefficiencies on your filling lines, lost production time, and product that cannot be sold. These situations lead to reduced profitability and negatively impact your bottom line. It’s never good when filled packaging or product has to be thrown away because problems are identified on the filling line.

Uneven Sealing Surface results in poor closure seal and increased risk of product spoilage or contamination.

Worse yet is when your product reaches the point of sale and the problems are identified at the dispensary or by a consumer. For example, over time, an improper seal between the plastic bottle and cap can cause flower to be excessively dry. In turn, when this flower is dispensed to the consumer it can lead to overfilling to make up for weight loss. And some consumers just don’t like their flower to be too dry, resulting in lost sales. Does the defective product get shipped back or trashed at the point of sale location? In either case, this results in the dilemma of wasted product that can’t be used and extra costs that eat into your profitability. 

Closures That Work With The Bottle

The closures for the bottles are also an important part of your cannabis packaging. Can your packaging partner manufacture and supply plastic closures that assure complete functionality to protect your product? Closures produced by the same manufacturer as the bottles ensures that the closure and bottle function correctly together. A one-stop-shop approach will save you time and money.

The cannabis industry is growing quickly and faces many complex regulatory challenges, including regulations for child-resistant packaging. Many states have their own unique cannabis packaging requirements which must be strictly adhered to. Are their bottle and closure pairings compliant with current regulations and those that are under legislation for the future? 

Customization for Your Brand

Can the cannabis packaging manufacturer customize their products to your exact design and specifications? Your product is unique, and your packaging should reflect that. Make sure your brand stands out with the exact image you want to project. There should be “depth” in your supplier: can they do more than just sell you packaging that already exists?

A Safe Resin Source

Another important aspect of safety is country of origin. Plastic bottles and closures manufactured overseas may have impurities in the resin or colorant that could leach or bleed into your products. They may not have documentation of origin or comply with FDA regulations. Your plastic packaging partner should be able to provide this documentation so you can rest assured that your bottles are manufactured under strict guidelines for the safety of your consumers and that your product won’t be affected.

Commitment to Sustainability

To many consumers, packaging made from recycled materials is important. Does your packaging supplier have a strong commitment to environmental sustainability? There is strong market support for carbon-friendly alternatives. Progressive plastic packaging manufacturers are actively working to provide alternatives to plastics made from fossil fuels and instead, using resins produced from renewable resources (i.e. sugarcane). By partnering with a supplier that provides alternative and recycled materials, you enhance your brand by appealing to a growing segment of environmentally concerned consumers.the best cannabis packaging suppliers understand that consistency in the manufacturing process is essential.

Scalable Growth

As your business grows, can your packaging partner grow with you? It’s important that they are able to keep up with the demand for your product and that their supply chain can match your manufacturing needs. As you add to your product line, are they capable of continuing to offer new and innovative packaging? A manufacturer that has a strong business model for growth will benefit you now and for the future.

A Real Cannabis Packaging Partner

Your cannabis business should develop a true partnership with your packaging supplier. They should invest in your success and care about your business. Businesses depend on one another for continued growth – look for a knowledgeable partner that is responsive, courteous and dependable now and for years to come. The best suppliers realize that there is more to a relationship than just the financial transaction of buying packaging.

Additionally, the best cannabis packaging suppliers understand that consistency in the manufacturing process is essential. Using virtually perfect bottles time after time not only reduces waste but helps build consumers’ trust in your brand. Consistency saves you three precious commodities – time, hassle and money.

Remember, a brand consists of more than just a logo and company name. It identifies who you are, what your company stands for and the integrity of your product. Quality cannabis packaging will reinforce your company standards and attract consumers to your product – consistently defining you as a quality provider with integrity in the marketplace. Improving your bottom line and meeting your company’s financial goals is at stake. Is your cannabis packaging partner going to help you grow?

Disposable Gloves: The Unregulated Cannabis Threat

By Lynda Ronaldson
No Comments

Today in the states where medical and recreational cannabis is legal, cannabis products purchased from licensed facilities are required to have undergone testing by accredited labs. The compliance testing verifies advertised potency levels and checks for microbial contamination, herbicides, pesticides, fungicides and the presence of mold and mildew, among other potential contaminants.

Until recently, little attention has been given to disposable gloves and their possible involvement in the contamination of the products they handle.  What factors should you consider when purchasing gloves?

Disposable Gloves Facts

Disposable gloves, like cannabis products, are not made of equal quality. There are several different types of disposable gloves on the market, and huge variations in glove quality and chemical compositions exist between and within each glove type.

Recent scientific studies have revealed how gloves produced in factories with poor manufacturing standards and raw material ingredients can contaminate the products they handle. High-level toxins in disposable gloves were found to affect lab results, toxins in gloves contaminated the food they touched, and pathogen contamination of unused disposable gloves has been proven. Should the cannabis industry take more interest in the disposable gloves they are using? With so much at stake if compliance test results are compromised, we think so!

Glove Procurement: Factors to Consider

What factors should you consider when purchasing gloves?

  1. Industrial grade gloves- There is no such thing as an industrial grade glove certification, although it does give an incorrect impression that gloves are strong and resilient. Industrial grade means they have not been subjected to inspection nor have passed any specific testing requirements.
  2. Food contact gloves are certified under FDA Title 21 CFR Part 177, which states the components of the glove comply with the FDA regulations and the gloves consist of “substances generally recognized as safe for use in food or food packaging.” Few controls exist for glove manufacturing relating to the reliability of raw materials and manufacturing processes, and costs can be reduced with the use of cheap, toxic materials.
  3. Medical grade gloves have to pass a series of technical tests in order to meet the safety requirements specified by the FDA. Gloves are tested for puncture and abrasion resistance, must meet tension and elongation tests and are also tested for chemical substance resistance. Manufacturers of these gloves must receive 510k certification. As this study shows, even medical gloves can contain high levels of toxic ingredients, affecting laboratory test results.
  4. The Acceptable Quality Level (AQL) refers to a quality standard for measuring pinhole defects- the lower the AQL, the less defects the gloves have. There are no AQL requirements for food grade or industrial grade gloves, meaning there are no guidelines for the number of failures per box. Medical grade gloves must have an AQL of 2.5 or less, meaning 2.5 failed gloves per 100 gloves is an acceptable level.
  5. For Californian cannabis companies, are your disposable gloves Prop. 65 compliant? Accelerator chemicals, such as 2-Mercaptobenzothiazole (MBT) found in some nitrile gloves, have recently been added to the Prop. 65 chemicals known to cause cancer.

How Gloves Can Contaminate Products

Physical, chemical and microbiological hazards have been identified in disposable glove supply chains. Gloves of any grade are not tested for cleanliness (microbial and bioburden levels), raw material toxicity and chemical composition, or pathogen contamination.

100% of glove factories supplying the United States are based in Southeast Asia. These factories are generally self­-regulated, with FDA compliance required for a rough outline of the ingredients of the gloves rather than the final product. Few controls are required for glove manufacturing relating to the reliability of raw materials, manufacturing processes and factory compliance or conditions. A clear opportunity exists for accidental or intentional contamination within the glove-making process, especially to reduce costs.

In order to safeguard their customers from product contamination, a selection of tests and certifications, some of which are unique within the glove industry, are being implemented by glove supplier Eagle Protect. These tests make sure Eagle’s gloves coming into the United States are made in clean, well run factories, free of any type of contamination and are consistent in material makeup to original food safe specifications. This glove Fingerprint testing program, consists of a number of proprietary risk reduction steps and targeted third-party testing methods, includes gas chromatography combined with mass spectroscopy (GC/MS); surface free energy determination; in vitro cytotoxicity analysis; and microbial viability-linked metagenomic analysis.

With a great deal of faith placed on a glove supplier’s ability to deliver disposable gloves sight unseen, we believe these tests are essential to further reduce risks or pathogen contamination associated with them, keeping your cannabis products safe.