Tag Archives: mold

Preventing Mold & Fungus in Cannabis with Data Analytics

By Leighton Wolffe
No Comments

Cannabis legalization has taken the United States by storm, with 33 states approved for medicinal cannabis use — 11 of which are also approved for recreational use for adults aged 21 and over. With new patients and consumers entering the market every day, it’s more important than ever for cannabis cultivators to establish more effective methods for mold and fungal prevention in their crops and to ensure consumer confidence in their brands.

Today, many cultivators address the risk of mold and fungus growth by testing crops for contaminants at the end stage of production. While this helps to catch some infected product before it reaches the market, this method is largely ineffective for mold and fungal prevention during the cultivation process. In fact, recent studies have shown an 80% failure rate in mold and fungal testing in Denver cannabis dispensaries. By relying on late-stage, pass/fail testing, cannabis entrepreneurs also expose themselves to increased risk of lost crops and profits.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

However, emerging sensor technologies exist that can test plants during the grow process, significantly reducing the risks associated with cannabis cultivation while increasing the bottom line for commercial grow operations. By leveraging data from these monitoring sensors along with environmental automation systems that are integrated with data analytics platforms, cannabis professionals can take a proactive approach to achieve the ideal environmental conditions for their crops and prevent against mold and fungal infestation.

Common Causes for Bud Rot in Indoor Growing Systems 

Botrytis cinerea — commonly known as “bud rot” — is a pathogenic fungi species that creates a gray mold infection in cannabis plants. An air-borne contaminant, it is among the most prevalent diseases affecting marijuana crops today and can lead to significant damages, particularly when left untreated during post-harvest storage. Bud rot is one of the most difficult challenges cannabis entrepreneurs face: Once plants have been affected, only 2% can be expected to recover. This is because Botrytis cinerea can use multiple methods for attacking host plants, including using the plant’s natural defenses against it to continue infestation.

While difficult to contain, bud rot is very easy to spot. Plants affected with the fungus will begin yellowing, experience impaired growth, and develop gray fungus around its buds. Overall crop yield will be significantly reduced, leading to decreased profit for cannabis cultivators. The biggest contributing factors to a Botrytis cinerea infestation are as follows:

  • Humidity: Indoor grow facilities that maintain humidity levels in excess of 45% are breeding grounds for mold and fungus. These environments can become perfect conditions for mold and fungal growth.
  • Temperature: Bud rot typically thrives in environments where temperatures fall between 65- and 75-degrees Fahrenheit, which is why greenhouses and grow rooms are often the victim of such infestations.
  • Ventilation: Poor airflow is another contributing factor to Botrytis cinerea Without proper ventilation, excess moisture buildup will eventually result in mold and mildew growth.
  • Strain: Some marijuana strains are better equipped to fend off bud rot infection. In particular, sativa plants have a higher resistance to mold development than their C. indica and C. ruderalis cousins.

Controlling mold and fungal growth in commercial grow facilities is a top priority for cannabis cultivators. Not only detrimental to their profitability and crop yield, infected plants can pose serious health risks to consumers, especially for immunocompromised patients. Consuming cannabis products that have been compromised by bud rot or other mold and fungal infections can cause a wide range of medical concerns, including pneumonitis, bronchitis, and other pulmonary diseases. As a result, growers are required to dispose of all infected plants without the possibility to sell.

Bud rot isn’t the only culprit responsible for cannabis plant destruction. Powdery mildew, Fusarium, sooty molds, and Pythium all contribute to the challenges faced by cannabis professionals. In fact, a recent study conducted by Steep Hill Labs and University of California, Davis – Medical Center found that in 20 randomly-selected samples submitted for testing, all samples showed detectable levels of microbial contamination7. Many of these samples also contained significant pathogenic microorganism contamination. Without proper detection and prevention methods in place, these pesky plant-killers will only continue to terrorize the cannabis cultivation industry.

The Current Cannabis Cultivation Landscape 

The data is clear: Current practices for cannabis cultivation are insufficient for preventing against mold and fungal growth. Sterilization and pass/fail testing do not identify the root cause of harmful infestations in plants, therefore leaving cannabis professionals in the dark about how to better optimize their grow conditions for improved crop reliability and safety. In order to prevent against damages incurred from mold and fungal infestation, marijuana growers must be more diligent in their grow condition monitoring practices.

Many cannabis professionals rely on manual monitoring to identify environmental changes within their indoor grow facilities. While it’s important to collect data on your operation’s essential systems, doing so without the right tools can be time-consuming and ineffective. Manual monitoring often relies on past data and does not illustrate the relationship between different systems and their impact on environmental changes. The goal is to assemble data from all the grow systems and create correlations on actual bio-environmental conditions during the grow process to compare to yield results. This is only available when an information management platform is synthesizing data from all the systems within the grow facility and presenting meaningful information to the growers, facility operators and owners.

Especially as the cannabis industry is expected to grow exponentially in coming years, growers need more robust tools for tracking and manipulating environmental changes within their indoor growing systems.

Leveraging Building Automation Systems & Data Analytics in Cannabis Cultivation 

A powerful approach to prevent environmental conditions that are known to lead to mold and fungus growth exists in leveraging the data produced from your grow facility’s various automation systems. Most commercial cultivation facilities have multiple stand-alone and proprietary systems to control their indoor environment, making it difficult to not only collect all of this valuable data, but also to achieve the level of grow condition monitoring necessary for mold and fungal prevention.

With some data analytics platforms, such as GrowFit Analytics, data is collected across disparate systems that don’t normally communicate with one another, providing access to the key insights necessary for achieving environmental perfection with your cannabis crops. A viable solution collects vital grow facility system data and relevant bio-environmental monitoring data, and delivers this information in one, centralized software interface. The software then will apply analytic algorithms to develop key performance indicators (KPIs) while working to detect system anomalies, faults, and environmental fluctuations. The right analytics solution should also be customizable, allowing you to track the KPIs that are most important to your unique facility, and to achieve the vision of your chief grower. Ultimately, the software should serve up actionable insights that empower facility management and growers.

Sample data visualization dashboard from GrowFit Analytics showing real-time Temperature and Relative Humidity readings and indicating potential Mold Risk as defined by the Grower.

Collecting reliable data from different grow facility systems and environmental sensors can be a complex process and the information collected illustrates more than just what’s working right and what isn’t. By implementing an advanced data analytics solution, cannabis cultivation professionals can now be empowered to track minute details about their indoor grow facility, providing a safer, healthier environment for their crops and avoiding those environmental conditions that lead to mold and fungus altogether.

An ideal data analytics platform won’t simply collect data to be analyzed at a later date, and simple trending of sensor data is not enough. Information — especially in a commercial grow facility — is time-sensitive, which is why growers should select a system that offers real-time analytics capabilities. Some platforms offering real-time analytics utilize cloud computing, allowing for easy access from anywhere while also providing enhanced security to protect sensitive facility data. The most robust data analytics platforms provide detailed historical data for your entire crop’s lifecycle that provide a “digital recipe” to replicate successful crops, and fine-tune the process for continuous improvement.

Data analytics tools can also impact the bottom line by lowering operational costs. GrowFit Analytics, for example, was born out of a software solution designed to lower energy costs for large complex buildings like commercial grow facilities.

The data and insights provided can help identify opportunities for greater energy efficiency, which can lead to significant utility savings. Grow facilities operate 24 hours/day, with energy expenses representing one of the largest operational costs. With data analytics tools at their disposal, facility managers are armed with the information they need to improve system efficiency, increase energy savings, and improve profitability.

Eliminating Mold & Fungus from the Future of Cannabis Cultivation 

By focusing on grow condition monitoring using data analytics tools, cannabis professionals can effectively eliminate the risk of mold and fungus growth in their crops. Leading data analytics tools make tracking environmental changes simple and easy to manage, allowing cannabis professionals to take a proactive approach to mold and fungus prevention. As we look to the future of the cannabis cultivation industry, it’s paramount for professionals to explore the technological advancements available that can help them address their business’ most pressing challenges.

Soapbox

3 Food Safety Precautions for Edibles

By Cindy Rice
No Comments

You’ve survived seasons of cannabis cultivations, bringing in quality plants in spite of mold, mites, drought and other challenges that had to be conquered. Extraction methods are sometimes challenging, but you are proud to have a cannabinoid extract that can be added into your own products for sale. Edibles are just waiting to be infused with the cannabinoids, for consumers demanding brownies, gummies, tinctures and almost any food and beverage imaginable. You’ve been through the fire, and now the rest is easy peasy, right?

Food processing and sanitation
Avoiding cross contamination should be a priority for edibles manufacturing

Actually, producing edibles may not be so seamless as you think. Just as in the rest of the food industry, food safety practices have to be considered when you’re producing edibles for public consumption, regardless of the THC, CBD, terpene or cannabinoid profile. Once you’ve acquired the extract (a “food grade ingredient”) containing the active compounds, there are three types of hazards that could still contribute to foodborne illness from your final product if you’re not careful- Biological, Chemical and Physical.

Biological hazards include pathogenic bacteria, viruses, mold, mildew (and the toxins that they can produce) that can come in ingredients naturally or contaminate foods from an outside source. Chemical hazards are often present in the kitchen environment, including detergents, floor cleaners, disinfectants and caustic chemicals, which can be harmful if ingested- they are not destroyed through cooking. Physical objects abound in food production facilities, including plastic bits, metal fragments from equipment, staples or twist ties from ingredient packages, and personal objects (e.g., buttons, jewelry, hair, nails.)

There are three main safety precautions that can help control these hazards during all the stages of food production, from receiving ingredients to packaging your final products:

1. Avoid Cross Contamination

  • Prevent biological, chemical or physical hazards from coming into contact with foods
  • Keep equipment, utensils and work surfaces clean and sanitized.
  • Prevent raw foods (as they usually carry bacteria) from coming into contact with “Ready-to-eat” foods (foods that will not be cooked further before consuming).
  • Keep chemicals away from food areas.

2. Personal Hygiene

  • Don’t work around foods if you’re sick with fever, vomiting or diarrhea. These could be signs of contagious illness and can contaminate foods or other staff, and contribute to an outbreak.
  • Do not handle ready-to-eat foods with bare hands, but use a barrier such as utensils, tissues or gloves when handling final products such as pastries or candies.
  • Wash hands and change gloves when soiled or contaminated.
  • Wear hair restraints and clean uniforms, and remove jewelry from hands and arms.

3. Time & Temperature control

  • Prevent bacterial growth in perishable foods such as eggs, dairy, meats, chicken (TCS “Time and Temperature Control for Safety” foods according to the FDA Model Food Code) by keeping cold foods cold and hot foods hot.
  • Refrigerate TCS foods at 41˚ F or below, and cook TCS foods to proper internal temperatures to kill bacteria to safe levels, per state regulations for retail food establishments.
  • If TCS foods have been exposed to room temperature for longer than four hours (Temperature Danger Zone 41˚ F – 135˚ F,) these foods should be discarded, as bacteria could have grown to dangerous levels during this time.

As cannabis companies strive for acceptance and legalization on a federal level, adopting these food safety practices and staff training is a major step in the right direction, on par with standards maintained by the rest of the retail food industry. The only difference is your one specially extracted cannabinoid ingredient that separates you from the rest of the crowd… with safe and healthy edibles for all.

dry cannabis plants

Moisture Matters: Why Humidity Can Make or Break a Cannabis Cultivator’s Bottom Line

By Sean Knutsen
1 Comment
dry cannabis plants

Vintners have known for centuries that every step in the winemaking process—from cultivation and harvest techniques to fermentation, aging and bottling—has immense impact on the quality and value of the final product.

And that same level of scrutiny is now being applied to cannabis production.

As someone who has worked in the consumer-packaged goods (CPG) space for decades, I’ve been interested in finding out how post-harvest storage and packaging affect the quality and value of cannabis flower. After digging into the issue some more, storage conditions and humidity levels have indeed come into focus as major factors, beyond just the challenges of preventing mold.

Weighty Matters

I enlisted my research team at Boveda, which has studied moisture control in all manner of manufactured and natural CPG products, to look closer at what’s happening with cannabis once it leaves the cultivation room. There’s not a lot of research on cannabis storage—we checked—and so we explored this aspect further. We were frankly surprised by what a big effect evaporation has on quality and how this is playing out on the retail level.

We suspected moisture loss could affect the bottom line too, and so we did some number-crunching.

It’s well understood that the weight of cannabis flower directly correlates with its profitability—the heavier the yield, the higher the market value. Here’s what our analysis found: A mere 5% dip below the optimal relative humidity (RH) storage environment eliminates six pounds per every 1,000 pounds of cannabis flower. At $5 per gram wholesale, that works out to upwards of $13,500 in lost revenue—and that’s with just a 5% drop in RH below the target range of 55-65% established by ASTM International, an independent industry standards organization.

We also purchased flower at retailers in multiple state markets and commissioned a lab to test the samples, which revealed that most strains sold today are well below the optimal RH range (55-65%). Regardless of fluctuating wholesale prices, when you do the math it’s clear that tens of thousands of dollars in revenue are simply evaporating into thin air.

Why So Dry?

Historically, cultivators, processors and packagers have emphasized keeping flower below a particular humidity “ceiling” for a reason: Flower that’s too moist is prone to hazardous mold and microbial growth, so it’s understandable that many operators err on the side of being overly dry.

The misconception that cannabis flower can be “rehydrated” is another cause of dryness damage. But this method irrevocably damages the quality of the flower through trichome damage.

trichome close up
The fine outgrowths, referred to as trichomes, house the majority of the plant’s resin

Those delicate plant structures that house the all-important cannabinoids and terpenes become brittle and fragile when stored in an overly dry environment, and are prone to breaking off from the flower; they cannot not be recovered even if the flower is later rehydrated.

When trichomes are compromised, terpenes responsible for the aroma, taste and scent of cannabis also can evaporate. Overly dried-out cannabis doesn’t just lose weight and efficacy—it loses shelf appeal, which is particularly risky in today’s market.

Today’s consumers have an appreciation for how premium flower should look, smell and taste. Rehydration cannot put terpenes back in the flower, nor can it re-attach trichomes to the flower, which is why preservation of these elements is so key.

Cannabis Humidity Control

Cured cannabis flower can remain in storage potentially for months prior to sale or consumption. By the time it reaches the end consumer, much of the cannabis sold in regulated environments in the U.S. and Canada has suffered from dry damage.

dry cannabis plants
Rows of cannabis plants drying and curing following harvest

There are various humidity controls available for cannabis cultivators: desiccants that absorb water vapor; mechanical equipment that alters RH on a larger scale; or two-way humidity-control packets designed for storage containers.

In the CPG sector, with other moisture-sensitive products such as foods and electronics, we’ve seen that employing humidity controls will preserve quality, and cannabis flower is no different.

Saltwater-based humidity control solutions with two-way vapor-phase osmosis technology automatically add or remove water vapor as needed to maintain a constant, predetermined RH level and ensures a consistent level of moisture weight inside the cannabis flower.

Here’s one more notable finding we discovered in our storage research: Third-party lab tests commissioned by Boveda showed cannabis stored with humidity control had terpene and cannabinoid levels that were 15% higher than cannabis stored without.

Cannabis stored within the optimal humidity range maximizes all the qualities that attract and retain customers. Similar to wine-making, when cannabis cultivators focus on quality control they need to look beyond the harvest.

Rapid Pathogen Detection for the 21st Century: A Look at PathogenDx

By Aaron G. Biros
No Comments

In 1887, Julius Petri invented a couple of glass dishes, designed to grow bacteria in a reproducible, consistent environment. The Petri dish, as it came to be known, birthed the scientific practice of agar cultures, allowing scientists to study bacteria and viruses. The field of microbiology was able to flourish with this handy new tool. The Petri dish, along with advancements in our understanding of microbiology, later developed into the modern field of microbial testing, allowing scientists to understand and measure microbial colonies to detect harmful pathogens in our food and water, like E. coli and Salmonella, for example.

The global food supply chain moves much faster today than it did in the late 19th century. According to Milan Patel, CEO of PathogenDx, this calls for something a little quicker. “Traditional microbial testing is tedious and lengthy,” says Patel. “We need 21st century pathogen detection solutions.”

Milan Patel first joined the parent company of PathogenDx back in 2012, when they were more focused on clinical diagnostics. “The company was predominantly built on grant funding [a $12 million grant from the National Institute of Health] and focused on a niche market that was very specialized and small in terms of market size and opportunity,” says Patel. “I realized that the technology had a much greater opportunity in a larger market.”

Milan Patel, CEO of PathogenDx
Photo: Michael Chansley

He thought that other markets could benefit from that technology greatly, so the parent company licensed the technology and that is how PathogenDx was formed. Him and his team wanted to bring the product to market without having to obtain FDA regulatory approval, so they looked to the cannabis market. “What we realized was we were solving a ‘massive’ bottleneck issue where the microbial test was the ‘longest test’ out of all the tests required in that industry, taking 3-6 days,” says Patel. “We ultimately realized that this challenge was endemic in every market – food, agriculture, water, etc. – and that the world was using a 140-year-old solution in the form of petri dish testing for microbial organisms to address challenges of industries and markets demanding faster turnaround of results, better accuracy, and lower cost- and that is the technology PathogenDx has invented and developed.”

While originally a spinoff technology designed for clinical diagnostics, they deployed the technology in cannabis testing labs early on. The purpose was to simplify the process of testing in an easy approach, with an ultra-low cost and higher throughput. Their technology delivers microbial results in less than 6 hours compared to 24-36 hours for next best option.

The PathogenDx Microarray

Out of all the tests performed in a licensed cannabis testing laboratory, microbial tests are the longest, sometimes taking up to a few days. “Other tests in the laboratory can usually be done in 2-4 hours, so growers would never get their microbial testing results on time,” says Patel. “We developed this technology that gets results in 6 hours. The FDA has never seen something like this. It is a very disruptive technology.”

When it comes to microbial contamination, timing is everything. “By the time Petri dish results are in, the supply chain is already in motion and products are moving downstream to distributors and retailers,” Patel says. “With a 6-hour turnaround time, we can identify where exactly in the supply chain contaminant is occurring and spreading.”

The technology is easy to use for a lab technician, which allows for a standard process on one platform that is accurate, consistent and reproduceable. The technology can deliver results with essentially just 12 steps:

  1. Take 1 gram of cannabis flower or non-flower sample. Or take environmental swab
  2. Drop sample in solution. Swab should already be in solution
  3. Vortex
  4. Transfer 1ml of solution into 1.5ml tube

    A look at how the sample is added to the microarray
  5. Conduct two 3-minute centrifugation steps to separate leaf material, free-floating DNA and create a small pellet with live cells
  6. Conduct cell lysis by adding digestion buffer to sample on heat blocks for 1 hour
  7. Conduct Loci enhancement PCR of sample for 1 hour
  8. Conduct Labelling PCR which essentially attaches a fluorescent tag on the analyte DNA for 1 hour
  9. Pipette into the Multiplex microarray well where hybridization of sample to probes for 30 minutes
  10. Conduct wash cycle for 15 minutes
  11. Dry and image the slide in imager
  12. The imager will create a TIFF file where software will analyze and deliver results and a report

Their DetectX product can test for a number of pathogens in parallel in the same sample at the same time down to 1 colony forming unit (CFU) per gram. For bacteria, the bacterial kit can detect E. coli, E. coli/Shigella spp., Salmonella enterica, Listeria and Staph aureus, Stec 1 and Stec 2 E.coli. For yeast and mold, the fungal kit can test for Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus.

Their QuantX is the world’s first and only multiplex quantification microarray product that can quantify the microbial contamination load for key organisms such as total aerobic bacteria, total yeast & mold, bile tolerant gram negative, total coliform and total Enterobacteriaceae over a dynamic range from 100 CFU/mL up to 1,000,000 CFU/mL.

Not all of the PathogenDx technology is designed for just microbial testing of cannabis or food products. Their EnviroX technology is designed to help growers, processors or producers across any industry identify areas of microbial contamination, being used as a tool for quality assurance and hazard analysis. They conducted industry-wide surveys of the pathogens that are creating problems for cultivators and came up with a list of more than 50 bacterial and fungal pathogens that the EnviroX assay can test for to help growers identify contamination hotspots in their facilities.

Using the EnviroX assay, growers can swab surfaces like vents, fans, racks, workbenches and other potential areas of contamination where plants come in contact. This helps growers identify potential areas of contamination and remediate those locations. Patel says the tool could help growers employ more efficient standard operating procedures with sanitation and sterilization, reducing the facility’s incidence of pathogens winding up on crops, as well as reduction in use of pesticides and fungicides on the product.

Deploying this technology in the cannabis industry allowed Milan Patel and the PathogenDx team to bring something new to the world of microbial testing. Their products are now in more than 90 laboratories throughout the country. The success of this technology provides another shining example of how the cannabis market produces innovative and disruptive ideas that have a major impact on the world, far beyond cannabis itself.

3 Essential Components of Microbial Safety Testing

By Heather Ebling
No Comments

Microbial contamination on cannabis products represents one of the most significant threats to cannabis consumers, particularly immunocompromised patients who are at risk of developing harmful and potentially fatal infections.

As a result, regulatory bodies in the United States and Canada mandate testing cannabis products for certain microbes. The two most popular methods for microbial safety testing in the cannabis industry are culture-based testing and quantitative polymerase chain reaction (qPCR).

When considering patient safety, labs should choose a method that provides an accurate account of what is living on the sample and can specifically target the most harmful microbes, regardless of the matrix.

1. The Method’s Results Must Accurately Reflect the Microbial Population on the Sample

The main objective of any microbial safety test is to give the operator an indication of the microbial population present on the sample.

Figure 1: MA data collected directly from plant material before and after culture on 3M petrifilm and culture-based platforms.

Culture-based methods measure contamination by observing how many organisms grow in a given medium. However, not all microbial organisms grow at the same rate. In some cases, certain organisms will out-compete others and as a result, the population in a post-culture environment is radically different than what was on the original sample.

One study analyzed fifteen medicinal cannabis samples using two commercially available culture-based methods. To enumerate and differentiate bacteria and fungi present before and after growth on culture-based media, all samples were further subjected to next-generation sequencing (NGS) and metagenomic analyses (MA). Figure 1 illustrates MA data collected directly from plant material before and after culture on 3M petrifilm and culture-based platforms.

The results demonstrate substantial shifts in bacterial and fungal growth after culturing on the 3M petrifilm and culture-based platforms. Thus, the final composition of microbes after culturing is markedly different from the starting sample. Most concerning is the frequent identification of bacterial species in systems designed for the exclusive quantification of yeast and mold, as quantified by elevated total aerobic count (TAC) Cq values after culture in the total yeast and mold (TYM) medium. The presence of bacterial colonies on TYM growth plates or cartridges may falsely increase the rejection rate of cannabis samples for fungal contamination. These observations call into question the specificity claims of these platforms.

The Live Dead Problem

Figure 2: The enzyme is instantaneously inactivated when lysis buffer is added

One of the common objections to using qPCR for microbial safety testing is the fact that the method does not distinguish between live and dead DNA. PCR primers and probes will amplify any DNA in the sample that matches the target sequence, regardless of viability. Critics claim that this can lead to false positives because DNA from non-viable organisms can inflate results. This is often called the Live-Dead problem. However, scientists have developed multiple solutions to this problem. Most recently, Medicinal Genomics developed the Grim Reefer Free DNA Removal Kit, which eliminates free DNA contained in a sample by simply adding an enzyme and buffer and incubating for 10 minutes. The enzyme is instantaneously inactivated when lysis buffer is added, which prevents the Grim Reefer Enzyme from eliminating DNA when the viable cells are lysed (see Figure 2).

2. Method Must Be Able to Detect Specific Harmful Species 

Toxic Aspergillus spp., which is responsible for at least one confirmed death of a cannabis patient, grows poorly in culture mediums and is severely underreported by current culture-based platforms. And even when Aspergillus does grow in culture, there is a certain non-pathogenic Aspergillus species that look remarkably similar to their pathogenic cousins, making it difficult to speciate using visual identification alone.

Figure 3: The team spiked a known amount of live E. coli into three different environments

Conversely, qPCR assays, such as the PathoSEEK, are designed to target DNA sequences that are unique to pathogenic Aspergillus species, and they can be run using standard qPCR instruments such as the Agilent AriaMx. The primers are so specific that a single DNA base difference in the sequence can determine whether binding occurs. This specificity reduces the frequency of false positives in pathogen detection, a frequent problem with culture-based cannabis testing methods.

Additionally, Medicinal Genomics has developed a multiplex assay that can detect the four pathogenic species of Aspergillus (A. flavus, A. fumigatus, A. niger, and A. terreus) in a single reaction.

3. The Method Must Work on Multiple Matrices 

Figure 4: The team also placed TSB without any E. coli onto a petrifilm to serve as a control.

Marijuana infused products (MIPs) are a very diverse class of matrices that behave very differently than cannabis flowers. Gummy bears, chocolates, oils and tinctures all present different challenges to culture-based techniques as the sugars and carbohydrates can radically alter the carbon sources available for growth. To assess the impact of MIPs on colony-forming units per gram of sample (CFU/g) enumeration, The Medicinal Genomics team spiked a known amount of live E. coli into three different environments: tryptic soy broth (TSB), hemp oil and hard candy. The team then homogenized the samples, pipetted amounts from each onto 3M™ Petrifilm E. coli / Coliform Count (EC) Plates, and incubated for 96 hours. The team also placed TSB without any E. coli onto a petrifilm to serve as a control. Figures 3 and 4 show the results in 24-hour intervals.

Table 1: DNA was spiked into various MIPs

This implies the MIPs are interfering with the reporter assay on the films or that the MIPs are antiseptic in nature.

Many MIPs use citric acid as a flavoring ingredient which may interfere with 3M reporter chemistry. In contrast, the qPCR signal from the Agilent AriaMx was constant, implying there is microbial contamination present on the films, but the colony formation or reporting is inhibited.

Table 3: SenSATIVAx DNA extraction can successfully lyse the cells of the microbes
Table 2: Different numbers of DNA copies spiked into chocolate

This is not an issue with DNA-based methods, so long as the DNA extraction method has been validated on these matrices. For example, the SenSATIVAx DNA extraction method is efficient in different matrices, DNA was spiked into various MIPs as shown in Table 1, and at different numbers of DNA copies into chocolate (Table 2). The SenSATIVAx DNA extraction kit successfully captures the varying levels of DNA, and the PathoSEEK detection assay can successfully detect that range of DNA. Table 3 demonstrates that SenSATIVAx DNA extraction can successfully lyse the cells of the microbes that may be present on cannabis for a variety of organisms spiked onto cannabis flower samples.

The Best Way to Remediate Moldy Cannabis is No Remediation at All

By Ingo Mueller
1 Comment

Consumers are largely unaware that most commercial cannabis grown today undergoes some form of decontamination to treat the industry’s growing problem of mold, yeast and other microbial pathogens. As more cannabis brands fail regulatory testing for contaminants, businesses are increasingly turning to radiation, ozone gas, hydrogen peroxide or other damaging remediation methods to ensure compliance and avoid product recalls. It has made cannabis cultivation and extraction more challenging and more expensive than ever, not to mention inflaming the industry’s ongoing supply problem.

The problem is only going to get worse as states like Nevada and California are beginning to implement more regulations including even tougher microbial contamination limits. The technological and economic burdens are becoming too much for some cultivators, driving some of them out of business. It’s also putting an even greater strain on them to meet product demand.

It’s critical that the industry establishes new product standards to reassure consumers that the cannabis products they buy are safe. But it is even more critical that the industry look beyond traditional agricultural remediation methods to solve the microbial problems.

Compounding Risks

Mold and other microbial pathogens are found everywhere in the environment, including the air, food and water that people consume. While there is no consensus yet on the health consequences of consuming these contaminants through cannabis, risks are certainly emerging. According to a 2015 study by the Cannabis Safety Institutei, molds are generally harmless in the environment, but some may present a health threat when inhaled, particularly to immunocompromised individuals. Mycotoxins resulting from molds such as Aspergillus can cause illnesses such as allergic bronchopulmonary aspergillosis. Even when killed with treatment, the dead pathogens could trigger allergies or asthma.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

There is an abundance of pathogens that can affect cannabis cultivation, but the most common types are Botrytis (bud rot, sometimes called gray mold) and Powdery Mildew. They are also among the most devastating blights to cannabis crops. Numerous chemical controls are available to help prevent or stem an outbreak, ranging from fungicides and horticultural oils to bicarbonates and biological controls. While these controls may save an otherwise doomed crop, they introduce their own potential health risks through the overexposure and consumption of chemical residues.

The issue is further compounded by the fact that the states in which cannabis is legal can’t agree on which microbial pathogens to test for, nor how to test. Colorado, for instance, requires only three pathogen tests (for salmonella, E. coli, and mycotoxins from mold), while Massachusetts has exceedingly strict testing regulations for clean products. Massachusetts-based testing lab, ProVerde Laboratories, reports that approximately 30% of the cannabis flowers it tests have some kind of mold or yeast contamination.

If a cannabis product fails required microbial testing and can’t be remedied in a compliant way, the grower will inevitably experience a severe – and potentially crippling – financial hit to a lost crop. Willow Industries, a microbial remediation company, says that cannabis microbial contamination is projected to be a $3 billion problem by 2020ii.

Remediation Falls Short
With the financial stakes so high, the cannabis industry has taken cues from the food industry and adopted a variety of ways to remediate cannabis harvests contaminated with pathogens. Ketch DeGabrielle of Qloris Consulting spent two years studying cannabis microbial remediation methods and summarized their pros and consiii.

He found that some common sterilization approaches like autoclaves, steam and dry heat are impractical for cannabis due the decarboxylation and harsh damage they inflict on the product. Some growers spray or immerse cannabis flowers in hydrogen peroxide, but the resulting moisture can actually cause more spores to germinate, while the chemical reduces the terpene content in the flowers.

Powdery mildew starts with white/grey spots seen on the upper leaves surface

The more favored, technologically advanced remediation approaches include ozone or similar gas treatment, which is relatively inexpensive and treats the entire plant. However, it’s difficult to gas products on a large scale, and gas results in terpene loss. Microwaves can kill pathogens effectively through cellular rupture, but can burn the product. Ionizing radiation kills microbial life by destroying their DNA, but the process can create carcinogenic chemical compounds and harmful free radicals. Radio frequency (which DeGabrielle considers the best method) effectively kills yeast and mold by oscillating the water in them, but it can result in moisture and terpene loss.

The bottom line: no remediation method is perfect. Prevention of microbial contamination is a better approach. But all three conventional approaches to cannabis cultivation – outdoors, greenhouses and indoor grow operations – make it extremely difficult to control contamination. Mold spores can easily gain a foothold both indoors and out through air, water, food and human contact, quickly spreading into an epidemic.

The industry needs to establish new quality standards for product purity and employ new growing practices to meet them. Advanced technologies can help create near perfect growing ecosystems and microclimates for growing cannabis free of mold contamination. Internet of Things sensors combined with AI-driven robotics and automation can dramatically reduce human intervention in the growing process, along with human-induced contamination. Natural sunlight supplemented with new lighting technologies that provide near full-light and UV spectrum can stimulate robust growth more resistant to disease. Computational fluid dynamic models can help growers achieve optimal temperature, humidity, velocity, filtration and sanitation of air flow. And tissue culture micropropagation of plant stock can eliminate virus and pathogen threats, to name just a few of the latest innovations.

Growing legal cannabis today is a risky business that can cost growers millions of dollars if pathogens contaminate a crop. Remediation methods to remove microbial contamination may work to varying degrees, but they introduce another set of problems that can impact consumer health and comprise product quality.


References

i. Holmes M, Vyas JM, Steinbach W, McPartland J. 2015. Microbiological Safety Testing of Cannabis. Cannabis Safety Institute. http://cannabissafetyinstitute.org/wp-content/uploads/2015/06/Microbiological-Safety-Testing-of-Cannabis.pdf

ii. Jill Ellsworth, June 2019, Eliminating Microbials in Marijuana, Willow Industries, https://willowindustries.com/eliminating-microbials-in-marijuana/#

iii. Ketch DeGabrielle, April 2018, Largest U.S. Cannabis Farm Shares Two Years of Mold Remediation Research, Analytical Cannabis, https://www.analyticalcannabis.com/articles/largest-us-cannabis-farm-shares-two-years-of-mold-remediation-research-299842

 

Fungal Monitoring: An Upstream Approach to Testing Requirements

By Bernie Lorenz, PhD
1 Comment

Mold is ubiquitous in nature and can be found everywhere.1 Cannabis growers know this all too well – the cannabis plant, by nature, is an extremely mold-susceptible crop, and growers battle it constantly.

Of course, managing mold doesn’t mean eradicating mold entirely – that’s impossible. Instead, cultivation professionals must work to minimize the amount of mold to the point where plants can thrive, and finished products are safe for consumption.

Let’s begin with that end in mind – a healthy plant, grown, cured and packaged for sale. In a growing number of states, there’s a hurdle to clear before the product can be sold to consumers – state-mandated testing.

So how do you ensure that the product clears the testing process within guidelines for mold? And what tools can be employed in biological warfare?

Mold: At Home in Cannabis Plants

It helps to first understand how the cannabis plant becomes an optimal environment.

The cannabis flower was designed to capture pollen floating in the air or brought by a pollinating insect.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

Once a mold spore has landed in a flower, the spore will begin to grow. The flower will continue to grow as well, and eventually, encapsulate the mold. Once the mold is growing in the middle of the flower, there is no way to get rid of it without damaging the flower.

A Name with Many Varieties

The types of spores found in or around a plant can make or break whether mold will end with bad product.

Aspergillus for example, is a mold that can produce mycotoxins, which are toxic to humans2. For this reason, California has mandatory testing3for certain aspergillus molds.

Another example, Basidiospores, are found outside, in the air. These are spores released from mushrooms and have no adverse effects on cannabis or a cannabis cultivation facility.

Fungi like powdery mildew and botrytis (PM and Bud Rot) typically release spores in the air before they are physically noticed on plants. Mold spores like these can survive from one harvest to the next – they can be suspended in the air for hours and be viable for years.

How Mold Travels

Different types of spores – the reproductive parts of mold – get released from different types of mold. Similar to plants and animals, mold reproduces when resources are deemed sufficient.

The opposite is also true that if the mold is under enough stress, such as a depleting nutrient source, it can be forced into reproduction to save itself.4

In the end, mold spores are released naturally into the air for many reasons, including physical manipulation of a plant, which, of course, is an unavoidable task in a cultivation facility.5

Trimming Areas: A Grow’s Highest Risk for Mold

Because of the almost-constant physical manipulation of plants that happen inside its walls, a grow’s trimming areas typically have the highest spore counts. Even the cleanest of plants will release spores during trimming.

Best practices include quality control protocols while trimming

These rooms also have the highest risk for cross contamination, since frequently, growers dry flower in the same room as they trim. Plus, because trimming can be labor intensive, with a large number of people entering and leaving the space regularly, spores are brought in and pushed out and into another space.

The Battle Against Mold

The prevalence and ubiquitous nature of mold in a cannabis facility means that the fight against it must be smart, and it must be thorough.

By incorporating an upstream approach to facility biosecurity, cultivators can protect themselves against testing failures and profit losses.

Biosecurity must be all encompassing, including everything from standard operating procedures and proper environmental controls, to fresh air exchange and surface sanitation/disinfection.

One of the most effective tactics in an upstream biosecurity effort is fungal monitoring.

Ways to Monitor Mold

Determining the load or amount of mold that is in a facility is and always will be common practice. This occurs in a few ways.

Post-harvest testing is in place to ensure the safety of consumers, but during the growing process, is typically done using “scouting reports.” A scouting report is a human report: when personnel physically inspect all or a portion of the crop. A human report, unfortunately, can lead to human error, and this often doesn’t give a robust view of the facility mold picture.

Another tool is agar plates. These petri dishes can be opened and set in areas suspected to have mold. Air moves past the plate and the mold spores that are viable land on the dishes. However, this process is time intensive, and still doesn’t give a complete picture.

Alternatively, growers can use spore traps to monitor for mold.

Spore traps draw a known volume of air through a cassette.The inside of the cassette is designed to force the air toward a sticky surface, which is capable of capturing spores and other materials. The cassette is sent to a laboratory for analysis, where they will physically count and identify what was captured using a microscope.

Spore trap results can show the entire picture of a facility’s mold concerns. This tool is also fast, able to be read on your own or sent to a third party for quick and unbiased review. The information yielded is a useful indicator for mold load and which types are prevalent in the facility.

Spore Trap Results: A Story Told

What’s going on inside of a facility has a direct correlation to what’s happening outside, since facility air comes infromthe outside. Thus, spore traps are most effective when you compare a trap inside with one set outside.

When comparing the two, you can see what the plants are doing, view propagating mold, and understand which of the spore types are only found inside.

Similar to its use in homes and businesses for human health purposes, monitoring can indicate the location of mold growth in a particular area within a facility.

These counts can be used to determine the efficacy of cleaning and disinfecting a space, or to find water leaks or areas that are consistently wet (mold will grow quickly and produce spores in these areas).

Using Spore Traps to See Seasonality Changes, Learn CCPs

Utilizing spore traps for regular, facility-wide mold monitoring is advantageous for many reasons.

One example: Traps can help determine critical control points (CCP) for mold.

What does this look like? If the spore count is two times higher than usual, mitigating action needs to take place. Integrated Pest Management (IPM) strategies like cleaning and disinfecting the space, or spraying a fungicide, are needed to bring the spore count down to its baseline.

For example, most facilities will see a spike in spore counts during the times of initial flower production/formation (weeks two to three of the flower cycle).

Seasonal trends can be determined, as well, since summer heat and rain will increase the mold load while winter cold may minimize it.

Using Fungal Monitoring in an IPM Strategy

Fungal monitoring – especially using a spore trap – is a critical upstream step in a successful IPM strategy. But it’s not the only step. In fact, there are five:

  • Identify/Monitor… Using a spore trap.
  • Evaluate…Spore trap results will indicate if an action is needed. Elevated spore counts will be the action threshold, but it can also depend on the type of spores found.
  • Prevention…Avoiding mold on plants using quality disinfection protocols as often as possible.
  • Action…What will be done to remedy the presence of mold? Examples include adding disinfection protocols, applying a fungicide, increasing air exchanges, and adding a HEPA filter.
  • Monitor…Constant monitoring is key. More eyes monitoring is better, and will help find Critical Control Points.

Each step must be followed to succeed in the battle against mold.

Of course, in the battle, there may be losses. If you experience a failed mandatory product testing result, use the data from the failure to fix your facility and improve for the future.

The data can be used to determine efficacy of standard operating procedures, action thresholds, and other appropriate actions. Plus, you can add a spore trap analysis for pre- and post- disinfection protocols, showing whether the space was really cleaned and disinfected after application. This will also tell you whether your products are working.

Leveraging all of the tools available will ensure a safe, clean cannabis product for consumers.


References

  1. ASTM D8219-2019: Standard Guide for Cleaning and Disinfection at a Cannabis Cultivation Center (B. Lorenz): http://www.astm.org/cgi-bin/resolver.cgi?D8219-19
  2. Mycotoxin, Aspergillus: https://www.who.int/news-room/fact-sheets/detail/mycotoxins
  3. State of California Cannabis Regulations: https://cannabis.ca.gov/cannabis-regulations/
  4. Asexual Sporulation in Aspergillus nidulans (Thomas H. Adams,* Jenny K. Wieser, and Jae-Hyuk Yu):  https://pdfs.semanticscholar.org/7eb1/05e73d77ef251f44a2ae91d0595e85c3445e.pdf?_ga=2.38699363.1960083875.1568395121-721294556.1562683339
  5. ASTM standard “Assessment of fungal growth in buildings” Miller, J. D., et al., “Air Sampling Results in Relation to Extent of Fungal Colonization of Building Materials in Some Water Damaged Buildings,” Indoor Air, Vol 10, 2000, pp. 146–151.
  6. Zefon Air O Cell Cassettes: https://www.zefon.com/iaq-sampling-cassettes

Denver Plans Crackdown on Contaminants

By Aaron G. Biros
1 Comment

Earlier this month, Colorado cannabis producer Herbal Wellness LLC recalled dozens of batches of cannabis due to positive yeast and mold tests. The Colorado Department of Public Health and Environment (CDPHE) issued a health and safety advisory following the news of microbial contamination.

The Colorado Department of Revenue then identified batches of both medical and recreational cannabis produced by Herbal Wellness that were not even tested for microbial contaminants, which is a requirement for licensed producers in the state. Just a few days later, the Denver Department of Public Health & Environment (DDPHE) issued a bulletin announcing their plans to conduct random tests at dozens of dispensaries.

“In the coming weeks, the Denver Department of Public Health & Environment (DDPHE) will be conducting an assessment in approximately 25 retail marijuana stores to evaluate contaminants in products on store shelves,” reads the bulletin. “DDPHE has worked with epidemiological partners at Denver Public Heath to create the assessment methodology. Participating stores will be randomly identified for inclusion in the assessment.”

“Current METRC inventory lists for each store will be used to randomly identify samples of flower, trim/shake, and pre-rolls. Each sample will be tested for pesticides and total yeast and mold by a state- and ISO-certified marijuana testing facility. Results of their respective testing will be shared with each facility and will also be shared broadly within a write-up of results.”

Keeping Your Environment Clean: Preventative Measures Against Contamination

By Jeff Scheir
2 Comments

For years we have heard about and sometimes experienced, white powdery mildew when growing cannabis. It is a problem we can see, and we have numerous ways to combat it. But now more and more states are introducing regulatory testing on our harvests and they are looking for harmful substances like Escherichia coli., Aspergillis Fumigatus, Aspergillis terreus, …  just to name a few. Mycotoxins, mold and bacteria can render a harvest unusable and even unsellable- and you can’t see these problems with the naked eye. How much would it cost you to have to throw away an entire crop?

You bring in equipment to control the humidity. You treat the soil and create just the right amount of light to grow a superior product. You secure and protect the growing, harvesting, drying and production areas of your facility. You do everything you can to secure a superior yield… but do you?

Many of the organisms that can hurt our harvest are being multiplied, concentrated and introduced to the plants by the very equipment we use to control the growing environment. This happens inherently in HVAC equipment.

Your air conditioning equipment cools the air circulating around your harvest in a process that pulls moisture from the air and creates a perfect breeding ground in the wet cooling coil for growth of many of the organisms that can destroy your yield. As these organisms multiply and concentrate in the HVAC system, they then spew out into the very environment you are trying to protect at concentrated levels far greater than outside air. In effect, you are inoculating the very plants you need to keep safe from these toxins if you want to sell your product.

The cannabis industry is starting to take a page from the healthcare and food safety industries who have discovered the best way to mitigate these dangers is the installation of a proper UVC solution inside their air conditioning equipment.

Why? How does UVC help? What is UVC?

What is Ultraviolet?

Ultraviolet (UV) light is one form of electromagnetic energy produced naturally by the sun. UV is a spectrum of light just below the visible light and it is split into four distinct spectral areas – Vacuum UV or UVV (100 to 200 nm), UVC (200 to 280 nm), UVB (280 to 315 nm) and UVA (315 to 400 nm). UVA & UVB have been used in the industry to help promote growth of cannabis.

What is UVC (Ultraviolet C)?

The entire UV spectrum can kill or inactivate many microorganism species, preventing them from replicating. UVC energy at 253.7 nanometers provides the most germicidal effect. The application of UVC energy to inactivate microorganisms is also known as Germicidal Irradiation or UVGI.

UVC exposure inactivates microbial organisms such as mold, bacteria and viruses by altering the structure and the molecular bonds of their DNA (deoxyribonucleic acid). DNA is a “blue print” these organisms use to develop, function and reproduce. By destroying the organism’s ability to reproduce, it becomes harmless since it cannot colonize. After UVC exposure, the organism dies off leaving no offspring, and the population of the microorganism diminishes rapidly.

Ultraviolet germicidal lamps provide a much more powerful and concentrated effect of ultraviolet energy than can be found naturally. Germicidal UV provides a highly effective method of destroying microorganisms.

To better understand how Steril-Aire UVC works, it is important to understand the recommended design. Directed at a cooling coil and drain pan, UVC energy destroys surface biofilm, a gluey matrix of microorganisms that grows in the presence of moisture. Biofilm is prevalent in HVAC systems and leads to a host of indoor air quality (IAQ) and HVAC operational problems. UVC also destroys airborne viruses and bacteria that circulate through an HVAC system and feed out onto the crop. HVAC cooling coils are the largest reservoir and amplification device for microorganisms in any facility.

For the most effective microbial control, UV germicidal Emitters are installed on the supply side of the system, downstream from the cooling coil and above the drain pan. This location provides more effective biofilm and microbial control than in-duct UVC installations. By irradiating the contaminants at the source – the cooling coils and drain pans – UVC delivers simultaneous cleaning of surface microorganisms as well as destruction of airborne microorganisms and mycotoxins. Steril-Aire patented this installation configuration in 1998.

The recirculating air in HVAC systems create redundancy in exposing microorganisms and mycotoxins to UVC, ensuring multiple passes so the light energy is effective against large quantities of airborne mycotoxins and cleaning the air your plants live by.

Where are these mycotoxins coming from?

Aspergillus favors environments with ample oxygen and moisture. Most pre-harvest strategies to prevent these mycotoxins involve chemical treatment and are therefore not ideal for the cannabis industry.

Despite the lack of cannabis protocols and guidelines for reducing mycotoxin contamination, there are some basic practices that can be utilized from other agricultural groups that will help avoid the production of aflatoxins and ochratoxins.

When guidelines are applied correctly to the cannabis industry, the threat of aflatoxin and ochratoxin contamination can be significantly reduced. The place to start is a clean air environment.

Design to win

The design of indoor grow rooms for cannabis is critical to the control of airborne fungal spores and although most existing greenhouses allow for the ingress of fungal spores, experience has shown that they can be retrofitted with air filters, fans, and UVC systems to make them relatively free of these spores. Proper designs have shown clearly that:

  1. Prevention via air and surface disinfection using germicidal UVC is much better than chemical spot treatment on the surface of plants
  2. High levels of air changes per hour enhance UVC system performance in reducing airborne spores
  3. Cooling coil inner surfaces are a hidden reservoir of spores, a fertile breeding ground and constitute an ecosystem for a wide variety of molds. Continuous UVC surface decontamination of all coils should be the first system to be installed in greenhouses to reduce mildew outbreaks.

UVC can virtually eliminate airborne contaminants

Steril-Aire graphic 4

Steril-Aire was the first and is the market leader in using UVC light to eliminate mold and spores to ensure your product will not be ruined or test positive.

  1. Mold and spores grow in your air handler and are present in air entering your HVAC system.
  2. Steril-Aire UVC system installs quickly and easily in your existing system.
  3. The Steril-Aire UVC system destroys up to 99.999% of mold/spores.
  4. Plants are less likely to be affected by mold…with a low cost and no down time solution.

It’s time to protect your harvest before it gets sick. It’s time to be confident your yield will not test positive for the contaminants that will render it unusable. It’s time to win the testing battle. It’s time for a proper UVC solution to be incorporated throughout your facilities.

Disposable Gloves: The Unregulated Cannabis Threat

By Lynda Ronaldson
No Comments

Today in the states where medical and recreational cannabis is legal, cannabis products purchased from licensed facilities are required to have undergone testing by accredited labs. The compliance testing verifies advertised potency levels and checks for microbial contamination, herbicides, pesticides, fungicides and the presence of mold and mildew, among other potential contaminants.

Until recently, little attention has been given to disposable gloves and their possible involvement in the contamination of the products they handle.  What factors should you consider when purchasing gloves?

Disposable Gloves Facts

Disposable gloves, like cannabis products, are not made of equal quality. There are several different types of disposable gloves on the market, and huge variations in glove quality and chemical compositions exist between and within each glove type.

Recent scientific studies have revealed how gloves produced in factories with poor manufacturing standards and raw material ingredients can contaminate the products they handle. High-level toxins in disposable gloves were found to affect lab results, toxins in gloves contaminated the food they touched, and pathogen contamination of unused disposable gloves has been proven. Should the cannabis industry take more interest in the disposable gloves they are using? With so much at stake if compliance test results are compromised, we think so!

Glove Procurement: Factors to Consider

What factors should you consider when purchasing gloves?

  1. Industrial grade gloves- There is no such thing as an industrial grade glove certification, although it does give an incorrect impression that gloves are strong and resilient. Industrial grade means they have not been subjected to inspection nor have passed any specific testing requirements.
  2. Food contact gloves are certified under FDA Title 21 CFR Part 177, which states the components of the glove comply with the FDA regulations and the gloves consist of “substances generally recognized as safe for use in food or food packaging.” Few controls exist for glove manufacturing relating to the reliability of raw materials and manufacturing processes, and costs can be reduced with the use of cheap, toxic materials.
  3. Medical grade gloves have to pass a series of technical tests in order to meet the safety requirements specified by the FDA. Gloves are tested for puncture and abrasion resistance, must meet tension and elongation tests and are also tested for chemical substance resistance. Manufacturers of these gloves must receive 510k certification. As this study shows, even medical gloves can contain high levels of toxic ingredients, affecting laboratory test results.
  4. The Acceptable Quality Level (AQL) refers to a quality standard for measuring pinhole defects- the lower the AQL, the less defects the gloves have. There are no AQL requirements for food grade or industrial grade gloves, meaning there are no guidelines for the number of failures per box. Medical grade gloves must have an AQL of 2.5 or less, meaning 2.5 failed gloves per 100 gloves is an acceptable level.
  5. For Californian cannabis companies, are your disposable gloves Prop. 65 compliant? Accelerator chemicals, such as 2-Mercaptobenzothiazole (MBT) found in some nitrile gloves, have recently been added to the Prop. 65 chemicals known to cause cancer.

How Gloves Can Contaminate Products

Physical, chemical and microbiological hazards have been identified in disposable glove supply chains. Gloves of any grade are not tested for cleanliness (microbial and bioburden levels), raw material toxicity and chemical composition, or pathogen contamination.

100% of glove factories supplying the United States are based in Southeast Asia. These factories are generally self­-regulated, with FDA compliance required for a rough outline of the ingredients of the gloves rather than the final product. Few controls are required for glove manufacturing relating to the reliability of raw materials, manufacturing processes and factory compliance or conditions. A clear opportunity exists for accidental or intentional contamination within the glove-making process, especially to reduce costs.

In order to safeguard their customers from product contamination, a selection of tests and certifications, some of which are unique within the glove industry, are being implemented by glove supplier Eagle Protect. These tests make sure Eagle’s gloves coming into the United States are made in clean, well run factories, free of any type of contamination and are consistent in material makeup to original food safe specifications. This glove Fingerprint testing program, consists of a number of proprietary risk reduction steps and targeted third-party testing methods, includes gas chromatography combined with mass spectroscopy (GC/MS); surface free energy determination; in vitro cytotoxicity analysis; and microbial viability-linked metagenomic analysis.

With a great deal of faith placed on a glove supplier’s ability to deliver disposable gloves sight unseen, we believe these tests are essential to further reduce risks or pathogen contamination associated with them, keeping your cannabis products safe.