Tag Archives: pest

The Beginner’s Guide to Integrated Pest Management

By David Perkins
No Comments

Formulating a Plan

In this article you will learn how to control pests and improve the health of your cannabis plants using integrated pest management, commonly referred to as IPM. This involves a multi-point strategy – there is no quick fix, nor is there one solution that will wipe out all your pest problems. Proper pest management requires patience, consistency and determination.

It is important to understand that not all pesticides are bad. While many are incredibly harmful not only to pests, but also humans, in this article I will educate you about some of the safer alternatives to traditional pesticides. It is possible to safely control unwanted pests in your cannabis garden without harming yourself, your employees or the natural habitat around you.

Every cultivation facility should have a well-thought-out plan for their pest management program. This program should account for the prevention, and if necessary, eradication of: spider mites, russet mites, fungus gnats, root aphids, thrips and caterpillars. These are just a few of the more common pests you’ll find in a cannabis garden. There could also be many other less commonly known bugs, so you have to be vigilant in looking closely at your plants, and the soil, at all times. Complete eradication of a targeted pest can be difficult. Once a pest has established itself, decimating or decreasing the population will require an aggressive regimen that includes spraying daily to control populations and prevent other pests from getting established.

Spraying or applying pesticides to the foliage of plants isn’t the only way to control or eradicate pest populations. There are many other ways that you can minimize the spread of pests without the use of pesticides. In greenhouse and outdoor grows, growing specific types of plants around the cultivation area will attract both beneficial and predator bugs that will naturally control pest populations. Some plants that attract these bugs are: mint, peppers, and marigold. Beneficial and predator bugs, such as ladybugs, predator wasps and predator mites, can control unwanted pest populations in the area before they even have a chance to become a problem in your garden. Plants and flowers that attract bees, birds and insects will also create helpful bio- diversity, making it more difficult for the unwanted pests to thrive.

For indoor cultivation, it is imperative that you have your cultivation facility set up for a proper workflow. If you already have pests, you need to make sure you are not contaminating the rest of your facility when going from one area to the next. Make sure that you only go to contaminated areas at the very end of your day, and when you’re done working in that area, you must immediately exit the building. Do not ever walk back through the uncontaminated parts of your facility or the pests will spread quickly.

An aphid on a plant in a greenhouse

When most people think of pests in their cannabis garden they think of the more common varieties: spider mites, russet mites, aphids and thrips. However, there are also soil-dwelling pests that can exist, without your knowledge. These will decrease the health and vigor of your plants, without you even knowing they’re there, if you’re not careful to check for them. Some of the soil dwelling pests that plague cannabis plants are: root aphids, fungus gnat larvae and grubs. It is just as important to control the pests below the soil, feeding on your roots, as it is to control the pests that feed above soil on your plants.

Maintaining healthy plants is essential to controlling pest populations, both on the foliage and below the soil. Healthy plants will have an easier time fighting off pests than unhealthy plants. Plants have immune systems just like humans, and the stronger the plant’s immune system, the more likely it will be able to ward off pests and diseases. Allowing a plant to reach its full potential, by minimizing pests, means your plants will also have a better quality, smell and flavor, not to mention a bigger yield.

Worker Safety, Regulation and REI times

The application of pesticides requires certification from the state agricultural department. In certain situations, depending on the type of pesticide and method of application, a license may even be required. The application of pesticides without proper certification is against the law. Applying pesticides in a manner that is not in accordance with the label and instructions is also a violation of law.

The proper personal protective equipment (PPE) is required for anybody handling, mixing or applying pesticides. Employees can be a liability to your company if they are applying pesticides improperly. Make sure you and your entire staff are well educated about pesticide use requirements and limitations, prior to usage, and that only a properly certified person is handling the mixing and application at your facility.

The author, David Perkins, In his greenhouse after using insect killing soap.

After a pesticide is applied, you must abide by the re-entry interval (REI). This is the required time period limiting all workers from re-entry into areas where pesticides have been applied. This time period will vary depending on the type of pesticide used and the method of application. In some instances, pesticides applied in the last 30 days may require employee training before work can be done in those areas.

The misuse of or improper handling of pesticides is not only unlawful and dangerous to human health, but can also cause environmental damage to waterways and wildlife. The direct effects of pesticides on wildlife include acute poisoning, immunotoxicity, endocrine disruption, reproductive failure, altered morphology and growth rates and changes in behavior. Pesticides can indirectly impact wildlife through reduction of food resources and refuses, starvation due to decreased prey availability, hypothermia and secondary poisoning. Section 1602 of the California Fish and Game Code governs requirements for permitting of any project where pesticides will be used, and strictly regulates the disposal of all waste and run-off. It is imperative to know the regulations and to abide by them, or heavy fines will ensue!

Using Pesticides in a Regulated Market

Knowing which pesticides you can’t use, to avoid failing mandatory state testing, is just as important as knowing which ones you can use safely to pass required testing. Most states with regulated markets have strict limitations on the pesticides that can be used in cannabis cultivation. Pesticide use in the cultivation of cannabis is the most strictly regulated in the agriculture industry; the pesticides allowed for use in cannabis cultivation are far more limited than any other crop.

Photo: Michelle Tribe, Flickr

Just because a product is certified organic does not mean that it can be used, or that it is safe to be consumed or ingested. Oftentimes when cannabis flower alone is tested it will not fail or show a detectable amount of pesticides or heavy metals. However, when that flower is turned into concentrates, banned substances are then detected in testing, leading to test failures.

Cannabis cultivation facilities that are located on land that was previously used for conventional agriculture, or located near vineyards or other agricultural crops that are heavily sprayed with harmful pesticides, run a very high-risk failing testing. This is because of either spray drift from nearby agriculture, or residual pesticides and heavy metals left in the soil from previous crops that were using pesticides banned for cannabis cultivation. Accordingly, if you’re going to be growing outdoors or in a greenhouse, it is imperative that you get a soil and water test prior to cultivation, so you can determine if there is any potential for test failures due to pesticides or heavy metals in the soil or water in that area. 

Proper Application – Using the Right Tools in the Right Way at the Right Time

One of the most important factors in pest management is proper identification of pests and proper application and coverage of pesticides. It does not require an entomology degree to identify insects, these days there is a lot of information online that can help you identify cannabis pests. Proper identification of insects can make the difference between success and failure. With a good eye and a microscope, if you do your research, you can control most insects in your garden.

In order to control pests in your garden you must get proper coverage of the foliage of the plant when you are applying pesticides. There are different types of equipment that are commonly used to apply pesticides in cannabis cultivation: backpack sprayers, foggers, and airless paint sprayers are the most common. An alternative method involves using an automated dosing system such as a dosatron, which injects fertilizer or pesticides at a specific ratio into your water lines, allowing you to use only the exact amount of pesticide you need. That way you avoid wasting money on unused pesticides. It is also safer for employees because it minimizes employee exposure, since there is no mixing required, and it allows for a large volume to be sprayed, without refilling a tank or a backpack sprayer.

No matter what you are using you must ensure you get the proper coverage on your plants in order to control pests. The temperature and humidity of your cultivation area, as well as the PH and temperature of the pesticide solution, all factor into the success of your IPM. For example, PFR 97 needs to be applied at a higher humidity range, around 70% to be most effective. In some areas this is not possible so repeated applications may be required to ensure the application is effective. A high PH or alkaline PH can cause alkaline hydrolysis which will make your pesticide solution less effective and will dictate how long your pesticides remain effective after they are mixed. It is therefore important to use your pesticide solution as soon as you make it; don’t let it sit around for long periods of time before use or it will be less effective.

In cannabis cultivation there are two different primary growth cycles: vegetative and flower. These cycles require different IPM strategies. In general, during the flowering cycle, pesticides should not be applied after the second week, with some limited exceptions i.e. for outdoor cultivation there is a longer window to spray since the flower set takes longer than a plant being grown inside, or in a light deprivation greenhouse, where there is a 12/12 flowering cycle.

Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle.

For the vegetative (non-flowering) cycle, a strict rotation of foliage spray applications targeting not only pests, but also molds and pathogens, will be necessary to avoid a quick onset of infestation. Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle. Preventative sprays that are safe for use include: safer soap (contact kill) for soft bodied chewing insects; Regalia (biological control) for powdery mildew; and PFR 97 (biological control) for soft bodied chewing insects. It is also helpful to spray kelp, which strengthens the cell walls of plants, making the plant healthier, and thus enabling the plant to better defend itself from pests and diseases. Also, Bacillus thuringiensis (Bt) is useful to prevent or kill caterpillars.

The best way to control a pest infestation in the flowering cycle is at the very beginning on day one. You must start aggressively, with a three-way control consisting of a contact kill and preventative during days 1-14; preventative and biological control during days 10-18; and then release predator bugs on day 25, for optimal results. Knocking back the population with an effective contact kill pesticide early on is essential to ultimately lowering populations throughout the grow cycle, so that you can spray a biological control to preclude them from returning, before you release the predatory bugs at the end of the cycle.

Biological controls can take anywhere from 3 to 10 days before they are effective. Biological pesticides are selected strains of bacteria or fungus. When the plant tissue is eaten by a targeted pest, the bacteria kills the pest from the inside providing control without having to spray pesticides repeatedly. Predator bugs are the last line of defense, used in late flowering. They can be used indoors, outdoors and in greenhouses. An example of a common predator bug is Amblyseius californicus used to control low populations of spider mites, but there are many different varieties and they are specific depending on the type of pest population you seek to control.

A common concern with the use of predatory bugs, is whether they will be present when the flowers are harvested. However, if there is no food for the bugs (i.e. pests) the predator bugs will leave in search of food elsewhere. Further, indoor predator bugs are usually very small in size and difficult to see to an untrained eye. It is very unlikely to see any signs of predator bugs near the end of the flowering cycle, or in the finished flower product. Even when using bigger predator bugs, the bugs will leave the plants when harvested and dried.

Having pests can be very stressful. It is not uncommon to have bugs, pests, rodents, animals and birds cause damage in cannabis gardens. Making an informed decision based on science and not on unproven assumptions can determine how successful you are at pest management. There are many factors that go into pest management and no one situation is the same. You must be dedicated and consistent; pest management never stops. You will always have something ready to invade your garden. Prepare, plan, prevent and repeat!

Product Safety Hazards: Looking Beyond Food Safety in Cannabis

By Radojka Barycki
No Comments

I think that we need to start changing the terminology around the hazards associated with cannabis from food safety hazards to product safety hazards. These hazards have not only been associated with harmful effects for those that ingest cannabis infused products, but also for those that consume the cannabis products in other ways such as inhalation (vaping or smoking). So, when we refer to these hazards as food safety hazards, the immediate thought is edibles, which misleads cultivators, manufacturers and consumers to have a false sense of security around the safety of products that are consumed in other ways.

Food processing and sanitation
By standardizing and documenting safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

There are several product safety hazards that have been associated with cannabis. These hazards can become a public health problem if not controlled as they could harm the consumer, regardless of the method of consumption.

Let’s take a look at the different types of hazards associated cannabis:

Biological Hazards refer to those microorganisms that can cause illness to the consumer of a product that contain them. They are not visible to the naked eye and are very dangerous when their metabolic by-products (toxins) are ingested or their spores are inhaled. The symptoms for illnesses caused by these microorganisms will vary. Consumers may experience gastrointestinal discomfort (vomiting, diarrhea), headaches, fever and other symptoms. The ingestion of these pathogens, allergens or their by-products may lead to death, if the illness is not treated on time or if the consumer of the product is immunocompromised. In addition, the inhalation of mold spores when smoking cannabis products, can lead to lung disease and death. Some of the biological hazards associated with cannabis are: Salmonella sp., E. coli, Clostridium botulinum, Aspergillus sp. and Penicillium sp.

Chemical Hazards refer to those chemicals that can be present in the plant or finished product due to human applications (pesticides), operational processes (extraction solvents and cleaning chemicals), soil properties (heavy metals), environmental contamination (radiological chemicals) or as a result of occurring naturally (mycotoxins and allergens). Consuming high concentrations of cleaning chemicals in a product can lead to a wide range of symptoms from mild rash, burning sensation in the oral-respiratory system, gastrointestinal discomfort or death. In addition, long term exposure to chemicals such as pesticides, heavy metals, radiological contaminants and mycotoxins may lead to the development of cancers.

Physical Hazards refer to those foreign materials that may be present in the plant or finished product. Foreign materials such as rocks, plastics or metals can cause harm to the consumer by chipping teeth or laceration of the mouth membranes (lips, inner cheeks, tong, esophagus, etc.) In the worst-case scenario, physical hazards may lead to choking, which can cause death due to asphyxiation.

These hazards can be prevented, eliminated or reduced to an acceptable level when foundational programs (Good Agricultural/Cultivation Practices, Good Manufacturing Practices, Allergen Management Program, Pest Control, etc.) are combined with a Food [Product] Safety Plan. These lead to a Food [Product] Safety Management System that is designed to keep consumers safe, regardless of the method of consumption.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 3

By Carl Silverberg
No Comments

Part 1 in this series went into a discussion of resource management for cannabis growers. Part 2 presented the idea of land use and conservation. In Part 3 below, we dive into pesticide use and integrated pest management for growers, through an environmental lens.

Rachel Carson’s book Silent Spring in 1962, is often credited with helping launch the environmental movement. Ten years later, VP Edmund Muskie elevated the environment to a major issue in his 1972 Presidential campaign against Richard Nixon. 57 years after Ms. Carson’s book, we’re still having the same problems. Over 13,000 lawsuits have been filed against Monsanto and last month a jury in Alameda County ruled that a couple came down with non-Hodgkin’s lymphoma because of their use of Roundup. The jury awarded them one billion dollars each in punitive damages. Is there a safer alternative?

“Effectively replacing the need for pesticides, we use Integrated Pest Management (IPM) which is a proactive program designed to control the population of undesirable pests with the use of natural predators, a system commonly known as “good bugs (such as ladybugs) fighting bad bugs”, states the website of Mucci Farms, a greenhouse grower. While this applies to cannabis as well, there is one major problem with the crop that isn’t faced by other crops.

Rachel Carson’s Silent Spring- often credited with starting the environmental movement of the 20th century.

While states are moving rapidly to legalize it, the EPA is currently not regulating cannabis. That is in the hands of each state. According to a story in the Denver Post in 2016, “Although pesticides are widely used on crops, their use on cannabis remains problematic and controversial as no safety standards exist.” Keep in mind that it takes a lot more pesticides to keep unwarranted guests off your cannabis plant when it’s outdoors than when it’s in a controlled environment.

We’re accustomed to using endless products under the assumption that a range of governmental acronyms such as NIH, FDA, OSHA, EPA, USDA are protecting us. We don’t even think about looking for their labels because we naturally assume that a product we’re about to ingest has been thoroughly tested, approved and vetted by one of those agencies. But what if it’s not?

Again, cannabis regulation is at the state level and here’s why that’s critical. The budget of the EPA is $6.14 billion while Colorado’s EPA-equivalent agency has a budget of $616 million. According to the federal budget summary, “A major component of our FY 2019 budget request is funding for drinking water and clean water infrastructure as well as for Brownfields and Superfund projects.” In short, federal dollars aren’t going towards pesticide testing and they’re certainly got going towards a product that’s illegal at the federal level. That should make you wonder how effective oversight is at the state level.

What impact does this have on our health and what impact do pesticides have on the environment? A former Dean of Science and Medical School at a major university told me, “Many pesticides are neurotoxins that affect your nervous system and liver. These are drugs. The good news is that they kill insects faster than they kill people.” Quite a sobering thought.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”Assuming that he’d be totally supportive of greenhouses, I pushed to see if he agreed. “There’s always a downside with nature. An enclosure helps you monitor access. If you’re growing only one variety, your greenhouse is actually more susceptible to pests because it’s only one variety.” The problem for most growers is that absent some kind of a computer vision system in your greenhouse, usually by the time you realize that you have a problem it’s already taken a toll on your crop.

Following up on the concept of monitoring, I reached out to Dr. Jacques White, the executive director of Long Live the Kings, an organization dedicated to restoring wild salmon in the Pacific Northwest. Obviously, you can’t monitor access to a river, but you certainly can see the effects of fertilizer runoff, chemicals and pesticides into the areas where fish live and eventually, return to spawn.

“Because salmon travel such extraordinary long distances through rivers, streams, estuaries and into oceans they are one of the best health indicators for people. If salmon aren’t doing well, then we should think about whether people should be drinking or using that same water. The salmon population in the area around Puget Sound is not doing well.”

We talked a bit more about pesticides in general and Dr. White summed up the essence of the entire indoor-outdoor farming and pesticides debate succinctly.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”

If you extrapolate that thought, the same applies to agriculture. Greenhouse farming, while subject to some problems not endemic to outdoor farming, quite simply puts a lot fewer chemicals in the air we breathe, the water we drink and the food we eat.

Food processing and sanitation

Sanitation Starting Points: More Than Sweeping the Floors and Wiping Down the Table

By Ellice Ogle
No Comments
Food processing and sanitation

Sanitation is not just sweeping the floors and wiping down the table – sanitation has a wide-ranging function in a cannabis food manufacturing facility. For example, sanitation covers the employees (and unwanted pests), food-contact equipment (and non-food-contact equipment), trash disposal (including sewage), and more. Ultimately, sanitation systems maintain a clean environment to prevent foodborne illness from affecting human health. Fortunately, there are resources and tools to ease into establishing a robust sanitation program.

Overall, the main goal of sanitation is to produce safe food, to keep consumers healthy and safe from foodborne illness. With the cannabis industry growing and gaining legalization, cannabis reaches a larger, wider audience. This population includes consumers most vulnerable to foodborne illness such as people with immunocompromised systems, the elderly, the pregnant, or the young. These consumers, and all consumers, need and deserve safe cannabis products every experience.

FDAlogoTo produce safe food, food manufacturing facilities in the United States must at least follow the Food and Drug Administration (FDA)’s Code of Federal Regulations Title 21 Chapter I Subchapter B Part 117, current good manufacturing practice, hazard analysis, and risk-based preventive controls for human food. Although cannabis is currently not federally regulated, these regulations are still relevant for a cannabis food manufacturing facility since the same basic principles still apply. Also, these regulations are a good resource to simplify a comprehensive sanitation program into more manageable components, between sanitary operations and sanitary facilities. With more manageable components, the transition is smoother to then identify the appropriate tools that will achieve a thorough sanitation program.

Sanitary operations

1) General maintenance of the facilities: The buildings and fixtures of the food manufacturing facility cover a lot of ground – hiring a maintenance team will divide the responsibility, ensuring the entire facility can be maintained in a clean and sanitary condition. Furthermore, a team can build out a tool like a preventative maintenance program to restrict issues from ever becoming issues.

Figure 1: Dirty Cloth Towel in Dirty “Sanitizer” Solution
Dirty Cloth Towel in Dirty “Sanitizer” Solution (an example of what NOT to do)

2) Control of the chemicals used for cleaning and sanitizing: Not all chemicals are equal – select the appropriate cleaning and sanitizing chemicals from reputable suppliers. Obtain the right knowledge and training on proper use, storage, and proper protective equipment (PPE). This ensures the safe and effective application of the chemicals in minimizing the risk of foodborne illness.

3) Pest control: Understand the environment within the facility and outside the facility. This will aid in identifying the most common or likely pests, in order to focus the pest control efforts. Keep in mind that internal pest management programs can be just as successful as hiring external pest control services.

4) Procedures for sanitation of both food-contact and non-food-contact surfaces: Developing sanitation standard operating procedures (SSOPs) provides guidance to employees on appropriate cleaning and sanitizing practices, to balance effective and efficient operations. A master sanitation schedule can control the frequency of indicated sanitation procedures.

5) Storage and handling of cleaned portable equipment and utensils: Cross contamination in storage can be minimized with tools such as controlled traffic flow, signage, training, color coding, and more.

Sanitary facilities

6) Water supply, plumbing, and sewage disposal: Routine inspections of plumbing, floor drainage, and sewage systems prevent unintended water flow and damage.

7) Toilet facilities: Clearly defining standards for the toilet facilities and setting accountability to everyone who uses them will ensure that the toilet facilities are not a source of contamination for the food products.

Food processing and sanitation
PPE for all employees at every stage of processing is essential

8) Hand-washing facilities: Good manufacturing practices (GMPs) include proper hand washing and proper hand washing starts with suitable hand-washing facilities. For example, frequent checks on running water, hand soap, and single use towels ensure that all hands are clean and ready to produce safe food.

9) Trash disposal: While trash can be a source of cross contamination, trash can also attract and harbor pests. Scheduling regular trash disposal and controlling traffic flow of waste are two ways to minimize the risk of cross contamination from trash.

Bonus

Even after meeting these requirements, sanitation programs can be more sophisticated. An example is to institute an environmental monitoring program to verify and validate that the sanitation program is effective. Another example is in identifying and measuring key performance indicators (KPIs) within the sanitation program that can improve not just the sanitation processes, but the operations as a whole. Principally, sanitation is cleanliness on the most basic level, but waste management can encompass sanitation and grow into a larger discussion on sustainability. All in all, sanitation programs must reshape and evolve alongside the company growth.

Sanitation is interwoven throughout the food manufacturing process; sanitation is not a single task to be carried out by a sole individual. As such, it is beneficial to incorporate sanitation practices into cannabis food manufacturing processes from the beginning. Protect your brand from product rework or recalls and, most importantly, protect your consumers from foodborne illness, by practicing proper sanitation.

HACCP

Implementing a HACCP Plan to Address Audit Concerns in the Infused Market

By Daniel Erickson
1 Comment
HACCP

The increasing appeal and public acceptance of medical and recreational cannabis has increased the focus on the possible food safety hazards of cannabis-infused products. Foodborne illnesses from edible consumption have become more commonplace, causing auditors to focus on the various stages of the supply chain to ensure that companies are identifying and mitigating risks throughout their operations. Hazard Analysis and Critical Control Points (HACCP) plans developed and monitored within a cannabis ERP software solution play an essential role in reducing common hazards in a market currently lacking federal regulation.

What are cannabis-infused products?

Cannabis infusions come in a variety of forms including edibles (food and beverages), tinctures (drops applied in the mouth), sprays (applied under the tongue), powders (dissolved into liquids) and inhalers. Manufacturing of these products resembles farm-to-fork manufacturing processes common in the food and beverage industry, in which best practices for compliance with food safety regulations have been established. Anticipated regulations in the seed-to-sale marketplace and consumer expectations are driving cannabis infused product manufacturers to adopt safety initiatives to address audit concerns.

What are auditors targeting in the cannabis space?

The cannabis auditing landscape encompasses several areas of focus to ensure companies have standard operating procedures (SOP’s) in place. These areas include:

  • Regulatory compliance – meeting state and local jurisdictional requirements
  • Storage and product release – identifying, storing and securing products properly
  • Seed-to-sale traceability –  lot numbers and plant identifiers
  • Product development – including risk analysis and release
  • Accurate labeling –  allergen statements and potency
  • Product sampling – pathogenic indicator and heavy metal testing
  • Water and air quality –  accounting for residual solvents, yeasts and mold
  • Pest control – pesticides and contamination

In addition, auditors commonly access the reliability of suppliers, quality of ingredients, sanitary handling of materials, cleanliness of facilities, product testing and cross-contamination concerns in the food and beverage industry, making these also important in cannabis manufacturers’ safety plans.

How a HACCP plan can help

HACCPWhether you are cultivating, harvesting, extracting or infusing cannabis into edible products, it is important to engage in proactive measures in hazard management, which include a HACCP plan developed by a company’s safety team. A HACCP plan provides effective procedures that protect consumers from hazards inherent in the production and distribution of cannabis-infused products – including biological, chemical and physical dangers. With the lack of federal regulation in the marketplace, it is recommended that companies adopt these best practices to reduce the severity and likelihood of compromised food safety.

Automating processes and documenting critical control points within an ERP solution prevents hazards before food safety is compromised. Parameters determined within the ERP system are utilized for identification of potential hazards before further contamination can occur. Applying best practices historically used by food and beverage manufacturers provides an enhanced level of food safety protocols to ensure quality, consistency and safety of consumables.

Hazards of cannabis products by life-cycle and production stage

Since the identification of hazards is the first step in HACCP plan development, it is important to identify potential issues at each stage. For cannabis-infused products, these include cultivation, harvesting, extraction and edibles production. Auditors expect detailed documentation of HACCP steps taken to mitigate hazards through the entire seed-to-sale process, taking into account transactions of cannabis co-products and finished goods at any stage.

Cultivation– In this stage, pesticides, pest contamination and heavy metals are of concern and should be adequately addressed. Listeria, E. coli, Salmonella and other bacteria can also be introduced during the grow cycle requiring that pathogenic indicator testing be conducted to ensure a bacteria-free environment.

Harvesting– Yeast and mold (aflatoxins) are possible during the drying and curing processes. Due to the fact that a minimal amount of moisture is optimal for prevention, testing for water activity is essential during harvesting.

Extraction – Residual solvents such as butane and ethanol are hazards to be addressed during extraction, as they are byproducts of the process and can be harmful. Each state has different allowable limits and effective testing is a necessity to prevent consumer exposure to dangerous chemical residues.

Edibles– Hazards in cannabis-infused manufacturing are similar to other food and beverage products and should be treated as such. A risk assessment should be completed for every ingredient (i.e. flour, eggs, etc.), with inherent hazards or allergens identified and a plan for addressing approved supplier lists, obtaining quality ingredients, sanitary handling of materials and cross-contamination.

GMPFollowing and documenting the HACCP plan through all of the stages is essential, including a sampling testing plan that represents the beginning, middle and end of each cannabis infused product. As the last and most important step before products are introduced to the market, finished goods testing is conducted to ensure goods are safe for consumption. All information is recorded efficiently within a streamlined ERP solution that provides real-time data to stakeholders across the organization.

Besides hazards that are specific to each stage in the manufacturing of cannabis-infused products, there are recurring common procedures throughout the seed-to-sale process that can be addressed using current Good Manufacturing Practices (cGMP’s).  cGMPs provide preventative measures for clean work environments, training, establishing SOPs, detecting product deviations and maintaining reliable testing. Ensuring that employees are knowledgeable of potential hazards throughout the stages is essential.Lacking, inadequate or undocumented training in these areas are red flags for auditors who subscribe to the philosophy of “if it isn’t documented, it didn’t happen.” Training, re-training (if necessary) and documented information contained within cannabis ERP ensures that companies are audit-ready. 

Labeling

The importance of proper labeling in the cannabis space cannot be understated as it is a key issue related to product inconsistency in the marketplace. Similar to the food and beverage industry, accurate package labeling, including ingredient and allergen statements, should reflect the product’s contents. Adequate labeling to identify cannabis products and detailed dosing information is essential as unintentional ingestion is a reportable foodborne illness. Integrating an ERP solution with quality control checks and following best practices ensures product labeling remains compliant and transparent in the marketplace.

Due to the inherent hazards of cannabis-infused products, it’s necessary for savvy cannabis companies to employ the proper tools to keep their products and consumers safe. Utilizing an ERP solution that effectively manages HACCP plans meets auditing requirements and helps to keep cannabis operations one step ahead of the competition.

Soleil control panel

IoT & Environmental Controls: urban-gro Launches Soleil Technologies Portfolio

By Aaron G. Biros
No Comments
Soleil control panel

Back in November of 2017, urban-gro announced the development of their Soleil Technologies platform, the first technology line for cannabis growers utilizing Internet-of-Things (IoT). Today, urban-gro is announcing that line is now officially available.

Soleil control panel
Screenshot of the data you’d see on the Soleil control panel

The technology portfolio, aimed at larger, commercial-scale growers, is essentially a network of monitors, sensors and controls that give cultivators real-time data on things like temperature, humidity, light, barometric pressure and other key factors. The idea of using IoT and hypersensitive monitoring is not new to horticulture, food or agriculture, but this is certainly a very new development for the cannabis growing space.

sensor
Substrate sensors, used for monitoring Ph, soil moisture & electrical conductivity.

According to Brad Nattrass, chief executive officer and co-founder of urban-gro, it’s technology like this that’ll help growers control microclimates, helping them make the minor adjustments needed to ultimately improve yield and quality. “As ROI and optimized yields become increasingly important for commercial cultivators, the need for technologies that deliver rich granular data and real-time insights becomes critical,” says Nattrass. “With the ability to comprehensively sense, monitor, and control the microclimates throughout your facility in real-time, cultivators will be able to make proactive decisions to maximize yields.”

heat map
The heat map allows you to find problem microclimates throughout the grow space.

One of the more exciting aspects of this platform is the integration of sensors, and controls with automation. With the system monitoring and controlling fertigation, lighting and climate, it can detect when conditions are not ideal, which gives a cultivator valuable insights for directing pest management or HVAC decisions, according to Dan Droller, vice president of corporate development with urban-gro. “As we add more data, for example, adding alerts for when temperatures falls or humidity spikes can tell a grower to be on the lookout for powdery mildew,” says Droller. “We saw a corner of a bench get hot in the system’s monitoring, based on predefined alerts, which told us a bench fan was broken.” Hooking up a lot of these nodes and sensors with IoT and their platform allows the grower to get real-time monitoring on the entire operation, from anywhere with an Internet connection.

soleil visuals
Figures in the system, showing temperature/time, humidity/time and light voltage

Droller says using more and more sensors creates super high-density data, which translates to being able to see a problem quickly and regroup on the fly. “Cannabis growers need to maintain ideal conditions, usually they do that with a handful of sensors right now,” says Droller. “They get peace of mind based on two or three sensors sending data points back. Our technology scales to the plant and bench level, connecting all of the aggregate data in one automated system.”

In the future, urban-gro is anticipating this will lay the groundwork for using artificial intelligence to learn when controls need to be adjusted based on the monitoring. Droller hopes to see the data from environmental conditions mapped with yield and by strain type, which could allow for ultra-precise breeding based on environmental conditions. “As we add more and more data and develop the platform further, we can deliver some elements of AI in the future, with increased controls and more scientific data,” says Droller.

urban-gro Launches Cannabis Industry’s First Line Of IoT Solutions

By Aaron G. Biros
No Comments

Last week at the MJBizCon, a major cannabis industry event held annually in Las Vegas, urban-gro launched the first technology line for cannabis growers utilizing Internet-of-Things (IoT). urban-gro, a cultivation technology company for commercial-scale growers, announced the launch of announced Soleil® Technologies, an integrated portfolio of hardware, software, and services that uses IoT.

“The solution suite includes per-plant sensing, environmental monitoring, machine diagnostics, fertigation management, lighting controls, inventory management, and seed-to-sale tracking,” reads the press release. IoT is essentially a network of devices embedded with sensors and software that allow the devices to connect and exchange data. IoT devices are used extensively in the food industry, including for integrated pest management, restaurant food safety and management and tracking product conditions such as temperature and humidity throughout the supply chain, among other uses.

Soleil consists of three primary lines:

  • Soleil 360 is the cloud-based software-as-a-service (SASS) platform that integrates all Soleil solutions.
  • Soleil Sense is the brand for all of urban-gro’s low-power wireless sensors that deliver data with the scale, precision and resolution needed for analytics and machine learning.
  • Soleil Controls is urban-gro’s product set for climate and irrigation controls, lighting systems, and other focused controls.

The core, low-power sensor that makes this unique was licensed from Edyza, a wireless innovator that specializes in low-power wireless grids that scale. urban-gro then developed on top of that sensor, including its cloud-based management, analytics, what the sensors detect and cover, etc., to make it ideal for cannabis growers.

According to Brad Nattrass, urban-gro’s chief executive officer, finding an IoT solution that can easily scale was a key goal for their business. “When evaluating the most advanced market-ready sensor technology available, it was crucial that we deliver a solution that can easily scale to thousands of sensors in order to satisfy the needs of large-scale commercial cultivators,” says Nattrass. “The introduction of Soleil demonstrates urban-gro’s commitment to going beyond simply supplying equipment, to truly serving our clients as an ongoing technological innovator and advisor, enabling cultivators to leverage today’s more advanced technologies to rise above the competition.”

“Cultivators will be able to monitor substrate moisture and EC (electrical conductivity) levels on a per plant basis, as well as track key environmental metrics like temperature, humidity, air movement, and probability of infestation,” reads the press release. “With multiple device options, cultivators can choose between several deployment options.” With the data hosted on the cloud, users can access it through web browsers, Android and iOS devices.

According to Jay Nichols, a representative of urban-gro, they have hired (and is hiring) code developers, product developers, etc. in order to expand this unit. Plant sensors are just one piece of the system, with the goal to automate the entire cultivation process, including controlling lights, pest management, irrigation and fertigation. They say it will be available in late Q1/early Q2.

durnagofacility

Solutions for Cannabis Cultivation: Integrated Pest Management

By Aaron G. Biros
3 Comments
durnagofacility

Pest problems in cultivating cannabis such as spider mites and powdery mildew are major concerns facing growers on a daily basis. Colorado’s ongoing recalls for cannabis products containing pesticides serve as a reminder that pest problems continue to plague growers. Utilizing integrated pest management (IPM) can help reduce the need to use any pesticides, as well as mitigate the risk of unwanted pests wreaking havoc on a cannabis harvest. urban-gro, a solutions provider for commercial cannabis cultivation, builds IPM plans for large-scale cannabis growers tailored to meet specific needs in regulatory compliance for different states.

durnagofacility
urban-gro helped design this facility in Durango, Colorado.

Biological controls are essential to any proper IPM solution for growers. Beneficial living organisms such as insects, mites, nematodes or entomopathogenic fungi can all be applied as a method for controlling pests. Biological controls like those can reduce the need to use pesticides on cannabis. John Chandler, vice president of cultivation technologies at urban-gro, believes IPM requires a broad, systematic approach to eliminate the need for pesticides. “IPM is a combination of cultural, chemical and biological control,” says Chandler. “We start by evaluating the air flow of the facility, how plants are transported, any exclusion barriers and air filtration.” A robust IPM plan begins in the design phase of a new facility. “We can make key adjustments in floor plans, layouts and mechanical systems to optimize that first line of defense that is critical to mitigating the risk of pest issues.” Incorporating good agricultural practices can also help mitigate those risks.

durangopot
A close-up of a plant entering flowering at the Durango facility

“We help develop standard operating procedures with good agricultural practices in mind, including preventing cross contamination, which is the biggest pest issue facing cannabis growers,” says Chandler. “I encourage clients to set up harvest and vegetative rooms so that the plants are moving in one specific direction between rooms rather than back and forth.” Using positive air pressure with proper ventilation can further prevent cross contamination. Chandler also recommends scrubbing air coming into the building with gaseous hydrogen peroxide to keep filtering air in ventilation.

urban-gro
IPM plans require thinking in terms of systems to find the right balance of biological controls.

According to Mark Doherty, director of sales at urban-gro, their IPM plans are customized to meet different states’ rules and regulations, including each list of approved pesticides. “We work to design a system that meets each individual grower’s needs, while helping them navigate regulations in any given state,” says Doherty. “It is important to make cannabis safe for patients and IPM is critical in building a healthy ecosystem for plants to be grown in a safe, yet cost-effective manner.” Proper use of IPM can reduce the need to use pesticides, which could impact a cultivator’s bottom line, but ultimately protect patients’ wellbeing by providing safe and pesticide-free cannabis.

prosodic
Procidic works on contact and with residual action.

When all else fails and pests still find their way onto cannabis, there is a solution to address major losses. urban-gro distributes a product called Procidic2®, a broad-spectrum bactericide and fungicide compound, manufactured by Greenspire Global. The advanced commercial formula is designed to eliminate pathogenic bacteria and fungi. Procidic2® can be applied as a preventive and a curative. WSDA Organic Program has approved Procidic2® for use in organic agriculture production and handling. According to Steve Knauss, president of Greenspire Global, “Procidic2® works in sync with the plant through two modes of action: First it controls powdery mildew and gray mold on contact, and secondly it is absorbed systemically into the plant to control disease infection such as root rot,” says Knauss.

Implementing a comprehensive IPM system requires making key changes in cultural, biological and chemical controls. In doing so, growers can successfully mitigate the risk of pest problems, thus reducing the need for potentially harmful pesticides.

AdamKohcultivation

A Case for Compartmentalization: Problems with Perpetual Harvest Models in Cultivation, Part II

By Adam Koh
3 Comments
AdamKohcultivation

In the first part of this series, I presented some issues with perpetual harvest models for cultivation with respect to inefficiencies in technology and environmental monitoring. I made the case for compartmentalizing cultivation facilities to not only increase energy efficiency, but also to mitigate contamination and control risks for pest incursions. In the second part of this series, I will elaborate on how compartmentalizing your facility can help you stay compliant with pesticide use regulations and promote worker safety.

AdamKohcultivation
Photo credit: Denver Post

Problems with Pesticide Use and Worker Safety Regulations

Where there are pests there are pesticides, whether they are low-toxicity materials derived from natural sources or chemical products that are illegal to use on cannabis. Even in the case of growers that are following current pesticide guidelines and using only products approved by their state department of agriculture, perpetual harvest models present issues in ensuring that the workplace is safe for employees and compliant with pesticide use regulations.

One obvious difficulty is the impossibility of containing drift from pesticides applied as foliar sprays. At this point, due to the lack of research performed on pesticides and cannabis, there are currently no defined pre-harvest intervals (PHI), even for products allowed for use on cannabis. A pesticide’s PHI is the number of days that must pass between the time of the last application of a pesticide and when the crop is cut for harvest. While no official, research-based PHIs have been outlined for pesticide use on cannabis, most conscientious cultivators refrain from spraying their crops with anything once flowers have emerged, as the resinous, sticky buds and their many crevices would presumably retain a great amount of any material applied to them. However, flowers do not generally emerge fully until the third week of the flowering process, and many growers apply preventative applications in the first two weeks of flower. In a perpetual harvest facility, what is to stop drift from applications made early in flower from contacting plants close to harvest? One could simply not spray in flower at all, but eliminating early-flower preventative treatments could increase the chances of a pest incursion, which, as discussed above, can be seemingly intractable in this type of facility.

It is important to consider the restricted entry interval (REI) when dealing with pesticide use. The REI of a pesticide is the period of time after an area is treated during which restrictions on entry are in effect to protect people from exposure to hazardous levels of pesticide residues. Most of the products and materials approved for use on cannabis in Colorado have no REI or a relatively short one. At the time I left my former facility, the longest REI for any product in use was twelve hours (for Evergreen Pyrethrum Concentrate), though most had REIs of four hours or less. This issue could be avoided in a perpetual harvest facility by simply always scheduling pesticide applications at the end of the workday; if a product is sprayed at 6 PM, for example, then the treated area should be safe for entry by the following morning when employees arrive. However, what is to be done if a pest incursion is discovered in the middle of the day and an immediate treatment is necessary to prevent its spread? Would the management or ownership of such a facility be willing to clear out the entire perpetual harvest area for 4-12 hours, potentially leaving other tasks unperformed or incomplete, so that a few plants could be sprayed? Even if operators went to such lengths to observe REIs properly, instances such as the hypothetical described above would create massive interruptions in daily workflows and scheduled tasks that are highly undesirable in a well-managed commercial setting. Compartmentalization allows for essential tasks in a single room that might need an emergency treatment to be completed in a timely manner, and cordoned off after the pesticide application to observe the REI.

A final point concerning this topic is that perpetual harvest facility designs make it difficult to observe certain requirements of the Worker Protection Standard (WPS). WPS is administered by the EPA (but is enforced by the Colorado Department of Agriculture (CDA) in that state) and consists of training intended to reduce the risk of pesticide poisoning and injury among agricultural workers and pesticide handlers. WPS training is required for all agricultural workers and pesticide handlers, including those in the legal cannabis industry. One requirement of WPS is that employers provide decontamination supplies for their employees in case of accidental pesticide exposure or poisoning. Sandra McDonald is a pesticide safety expert and owner of Mountain West PEST, which provides WPS and other training to farmers of all crops in Colorado. She states that decontamination supplies cannot be stored in areas that are to be or have been treated by pesticides (such as perpetual harvest rooms, for the purposes of this discussion), as the applications could possibly contaminate the decontamination supplies with pesticide residues, making them useless or even dangerous.

So, in a perpetual harvest facility, where does one store decontamination materials? Again, while there are solutions to this question, they are not ideal. The materials would of course have to be located outside the perpetual harvest room, the entirety of which is a “treated area” at one time or another. But, in facilities the size of the ones under discussion, it could be difficult for an employee who has been exposed to pesticides to reach an eyewash station if he or she has to navigate the expansive perpetual harvest room, as well as a doorway or two, in order to gain access to safety supplies located somewhere that pesticide contamination is not a risk. McDonald notes that most of the products approved for use on cannabis by the CDA would not require immediate decontamination. However, as not to downplay the very real risks posed by some approved products, she also points out that first aid statements on the labels of such pesticides recommend at least 15-20 minutes of continuous rinsing in the case of a worker getting pesticides in his or her eyes, and treatment that takes place sooner rather than later is obviously preferable. Additionally, there are some approved materials with high pH levels that could be immediately damaging if a worker splashed them in his or her eyes.

The issues raised by perpetual harvest designs in respect to pesticide use and worker safety are amplified greatly if businesses operating perpetual harvest facilities employ or have employed chemical pesticides that are illegal for use on cannabis. Unfortunately, the illegal application of restricted-use pesticides has revealed itself to be widespread, as examples from Colorado and Washington illustrate. One of the most commonly used illegal products, Eagle 20EW, carries with it a 24 hour REI. This means that to properly observe this safety measure, employees would be required to keep clear of the treated area for a full day, which I find unlikely to be enforced considering the daily requirements of a cultivation facility. Drift again poses a problem, but a much more serious one compared to the products on the CDA’s approved list.

Recommendations

It should be obvious by now that, when considering facility or site design, compartmentalization is desirable and necessary. This goes for greenhouse and outdoor production, as well as indoor. In fact, some outdoor farmers in the Emerald Triangle area of northern California work multiple, separate parcels to hedge against the threat of crop loss wiping out their entire year’s efforts. Though the discussion above focused mostly on flowering plants; propagation, vegetative, and mother areas should be separate as well, as they effectively contain all future harvests and are therefore of paramount importance.

The appropriate amount of compartmentalization will vary depending on the operation. In most agricultural businesses, some amount of loss is expected and incorporated into plans and budgets. In terms of areas for flowering plants, they should be compartmentalized to an extent that, should a severe infestation or systems failure occur, the loss of expected revenue from one or more rooms or areas will not cripple the business. Such loss should not happen often in a well-run, well-equipped facility. However, I have seen the drastic damage that russet mites can cause, in addition to experiencing the dread that permeates an entirely darkened warehouse after a transformer explosion, and would advise that cash flow projections take into account the possible loss of a harvest or two from a single room per year, just to be safe.

In cannabis farming, as in all agriculture, we must plan for the worst and hope for the best. Compartmentalization is a fundamental and effective safeguard against small pest incursions becoming widespread infestations, while allowing for grow areas to be fully sterilized and decontaminated after a harvest without completely interrupting all operations. It also allows for the observance of REIs, PHIs (even self-imposed ones), and certain WPS guidelines much more easily than perpetual harvest models. Finally, while costing more up front, ongoing operational expenses can be lessened, with a greater return on the energy that is used. While the benefits of wide-open spaces are frequently touted in a variety of contexts, cannabis cultivation is one where being boxed in is preferable to ensure that your employees, plants, and investment are protected.