The journal Frontiers in Plant Science recently shared an important article from researchers at Simon Fraser University in British Columbia, highlighting the “Pathogens and Molds Affecting Production and Quality of Cannabis Sativa.”
As a chemist focused on the science of preventing and mitigating mold in greenhouse and indoor cannabis grow facilities, this piece was fascinating to me. Like many others, it details and explains prevalent mold like Penicillium, Cladosporium and Aspergillus – things I see in grows every day.
But wait, there’s more fungi
The research and resulting article also brought up another type of fungi – endophytic mold. Endophytic mold usually lives symbiotically with plants, or is at least beneficial for both plant and fungi.
But not always.
In the past, the industry has believed that damaging mold spores were found on the outside of the flower. When moved, that flower would release the spores and send them flying – often creating massive cross-contamination issues for indoor grows.
“While cannabis is an incredibly powerful plant in terms of its medicinal properties, it is unfortunately highly susceptible to many pest and pathogens,” says Hope Jones, PhD, CEO, Adivina & ECS. “And it is this susceptibility that is so challenging to many inexperienced or undisciplined grow operations.”
Now, however, we know that there’s another culprit to add to the list: the inner parts of the plant can also be a source of endophytic cross contamination and mold.
Since it grows inside of the plant, this fungus creates high spore counts that can cross contaminate from outside, into the flower.
Treating mold in a facility
Here’s the good news:
This seemingly bad news – that there’s a new fungus to worry about, and it is inside the flower – may actually help cannabis grows struggling with mold, and those who are following the proper protocols already.
Effective mitigation protocols can include things like treating HVAC systems, controlling humidity, using products like chlorine dioxide to treat irrigation lines, enforcing protective clothing and shoe covers for employees, reducing the amount of in-and-out for employees around grow rooms.
These are important upstream and environmentally-focused integrated pest management (IPM) programs that will usually keep facilities clean and relatively mold-free.
But if these programs are in place, and there’s still an issue, Endophytic fungi may be to blame.
If you are having ongoing mold issues but have ruled out cross-contamination and a facility without proper protocol, look to the mother plant.
“Small mistakes in agricultural practices are amplified with cannabis,” Dr. Jones continues. “And today’s propagation practices of traditional cloning add to this vulnerability. Cannabis is an annual plant and by keeping mothers in a perpetual state of vegetative growth for years, and taking repetitive cuttings produces clones in a highly stressed state. This stressed state diminishes genetic potential and weakens a plant’s ability to fight disease and pests.”
Testing for and addressing endophytic fungi
If these concerns are ringing a bell, remember, there is also a way to test for Endophytic mold.
Checking cuttings from suspected mother plants over a period of time is the best way to see if the Endophytic mold is present.
A section of the mother plant cutting is placed into a solution (for example, as outlined by the article, a very concentrated hypochlorite followed by 70% Ethanol) that will kill all of the microorganisms that are present on the surface of the plant tissues.
From there, an unadulterated dissection of the internal tissues can be extracted and cultured for quantification and identification of endophytic fungi.
“Tissue culture offers a form of genetic rebooting returning the plant to its natural genetic potential and thereby strengthening its natural ability to defend against environment assault,” says Dr. Jones. “It also allows the breeder to conduct pathogenic disease testing which provides the entire industry with a higher level of scientific certainty and analysis.”
If you find this mold inside of the mother plant, your facility’s mold problem could be a systemic issue, not an environmental one.
If you do find that Endophytic mold is causing issues, of course, you may have to destroy the mother plant.
This should not mean the end of a strain. Tissue culture on a cutting is an option that can eliminate the unwanted fungi and save the genetics. Using those genetics to regrow a mother will start fresh and avoid the intrinsic mold that was plaguing the strain prior.
Growing knowledge
The practice of checking mother plants for Endophytic mold is not yet commonplace in cannabis, but the hemp business is leading the way.
They’re testing to create very clean plants, so you don’t have issues during cultivation.
Major growers in the U.S. could save millions in lost harvests with mold mitigation. If your current IPM program isn’t doing the trick, you may want to follow in hemp’s footsteps and look inside the plant.
Before you begin any large-scale cultivation project, you must necessarily consider the four factors highlighted below, among many others, to ensure your cultivation is successful. Failure to do so will cost you greatly in both time and money, and ultimately could lead to failure. While the four areas highlighted below may be the most important considerations to address, you should hire a cultivation advisor to determine the numerous other considerations you must deal with before you begin.
1. Genetics
Genetics will play a huge role in your cultivation plan, as they can ultimately make or break the success of your business. Access to quality, verified genetics will greatly affect your profits. All cannabis genetics grow differently and may require different conditions and nutrients. Further, consumers in today’s regulated market have greater awareness; they are much more knowledgeable about genetics and able to discern between quality cannabis versus commercially produced cannabis.
Market trends will dictate whether or not you’ll ultimately be able to sell your harvest at market rate. You need to project out at least one year in advance the genetics you will be growing. But often it is impossible to predict what consumers will be purchasing a year in advance so this part of your cultivation plan should be well thought out. Further compounding this difficulty is the fact that it may take six months to ramp up production of any given variety.
Genetics that are popular now may still be popular next year, but that also means there will be more competition for shelf space, as more competitors will also likely be growing these same genetics. Therefore, don’t rely on only one trendy variety as the bulk of your selection for the year, no matter how popular it is at the moment. Producing a single variety as the bulk of your crop is always risky, unless you have a contract with a sales outlet, in advance, for a set quantity of that one particular variety. Diversity in your genetics is beneficial, when chosen correctly.
Making proprietary genetics from your own seed collection can give you a big advantage in today’s competitive market. Having a variety with a distinct, unique and desirable smell, taste, effect or cannabinoid profile will allow you to distinguish your brand amongst others. Entire brands have been built off of a single variety: Cookies and Lemontree are two examples of companies that have done this. All it takes is one really good variety to attract a lot of attention to your brand. Having your own breeding project on site will allow you to look for and identify varieties that work for you and your business model, and ultimately will help to distinguish your brand apart from others.
Only buy seeds from reputable breeders! Any new varieties that you are going to be cultivating should be tested out at least three times, on a small scale, before being moved into a full production model. If you are growing from seed there is always the potential for your crop to get pollinated by male plants or hermaphrodites that went unnoticed, and therefore, they could be a potential risk to your entire harvest. Treat them accordingly, i.e. by cultivating them on a small scale in a separate, enclosed area.
Buying clones from a commercial nursery can be risky. Genetics are passed from one grower to another haphazardly, and names are changed far too easily. This can create a lot of confusion as to what variety you are actually purchasing and whether you are getting the best version of the genetics. Just because a clone is called “sour diesel” doesn’t mean you’re actually getting the real, authentic sour diesel. And to further complicate things, the same clone grown in different environments can produce a noticeable difference in flavor, smell and effect depending on your cultivation method. Always try your best to verify the authenticity of the genetics you purchase. Ask about the history and origin of the particular genetics you are purchasing. Better yet, ask for pictures, physical samples, and most importantly, certificates of analysis from a laboratory, indicating the potency. In many states anything under 20% THC is going to be hard to sell, while anything over 30% will easily sell and command the highest price. It’s a good idea to have a laboratory test the terpene profile in order to verify a variety is actually what the seller purports it to be.
Knowing the source of your genetics is imperative. It will help ensure that you actually have the variety that you were intending to grow, and therefore, allow you to achieve your intended results. Knowing what varieties you are going to cultivate, before you grow them, will also give you a better idea of the ideal growing conditions for that specific variety, as well as what nutrients will be required to achieve optimum output.
2. Automated Watering Systems
Installing an automated watering system, during build out, will by far be the most cost-effective use of your money, and will save you the most amount of time in labor. An automated watering system, commonly referred to as a “drip system” or “drip irrigation,” is necessary regardless of whether you are cultivating indoors or outdoors; it will allow you to water multiple different areas at once, or only water a few specific areas of the garden at one time. Hand watering a 22,000 square-foot cultivation site will take one person eight hours every single day, on average, to maintain. However, a properly designed drip system can water an entire large-scale garden in a couple of hours, without any employees, record all the relevant data and notify you if there is a problem. This enables you more time to spend closely inspecting the plants to ensure there are no bugs or other problems present, and that your plants are healthy and thriving. This attention to detail is necessary if you want to have consistent success.
Automated watering systems not only save a great deal of time but also eliminate the possibility of human error, like over watering, which can kill an entire crop quickly. There aresoil moisture sensors that can be placed in the soil to regulate the supply of water to the plants in a precise manner. Without an extremely skilled, experienced work force, damage to plants due to over watering is very common. A drip system will reduce the threat of human error by ensuring delivery of precisely the correct amount of water and nutrients to each plant every single time they are watered.
Not all drip systems are created equally. There are different types of automated watering systems. Designing the right drip system for your cultivation site(s) can be complicated. Make sure you do your research, or better yet, work with a cultivation advisor who has experience with automated irrigation systems in conjunction with a licensed plumber, to ensure you are installing the best system for your particular set up.
Adding a fertilizer injector to your drip system can further increase the efficiency of your operation and save you money on nutrients by using only what you need and ensuring correct application. Again, automating this process will save you time and money, and reduce the threat of human error.
3. Nutrients
The types of nutrients you use and the amount of nutrients you use, are going to directly affect the quality of your cannabis flower. Conventional agriculture and Dutch hydroponic cannabis cultivation have always used salt-based fertilizers. However, they can be toxic for the plant in high amounts. While cheap and easy to use, salt- based nutrients are made in big factories using chemical processes to manufacture. They are not good for the environment, and overall, they produce an inferior product. The highest quality cannabis, is grown with organic living soil. Although seemingly contrary to popular knowledge, when done properly, cultivating in organic living soil is more cost effective than using powdered or liquid salt-based fertilizers.
Yield and quality depend on the skills of the cultivator, more than the method they are using. Having healthy plants from the start, will always yield better results, no matter what way they were grown. In my 20 years of experience I have seen plants grown in balanced living soil yield just as much as plants grown with synthetic nutrients. Further, the quality is not comparable.
Always remember, it is the quality of your flower that will determine the price it is sold for, not the yield. Even if you produce more overall weight of chemically grown cannabis, if nobody wants to purchase that product, then you are going to yield far less profit than another company growing in the same amount of space using organic practices that yield a higher quality product.
The difference in quality between plants grown in balanced living soil versus any other method of cultivation is undeniable. It is really easy to post a pretty picture of a flower on Instagram but that picture doesn’t tell you anything about what went into producing it. When flower is produced using chemical nutrients, it is likely going to be harsh and not enjoyable to smoke. Lesson learned: don’t judge a bud by an Instagram photo! There is a stark difference between cannabis grown using synthetic nutrients versus cannabis grown in living soil. Once you’ve experienced the difference you will never want to consume cannabis that is grown any other way.
4. Plant Propagation
Having the ability to propagate your own clones, from mother plants that you have cultivated, can save you a staggering amount of money. In some states, having a cultivation license allows you to produce your own clones for your cultivation, while having a nursery permit will allow you to sell clones for commercial sales to other companies. The average price of a wholesale clone is around eight dollars. If you require 5000 plants for every harvest, that’s a $40,000 expense you must bear, every grow cycle. This can obviously add up quickly. And as previously mentioned there’s the risk of purchasing inferior genetics or unhealthy plants, both of which greatly affect your profit margins.
On the other hand, the cost of materials and labor to produce a healthy clone can be as low as one dollar when using advanced cloning techniques. Controlling your clone supply can ensure they are healthy and allow you to know exactly what you are growing each time. Further, it doesn’t take a lot of space to propagate your own cuttings. In a 400 square-foot space one could produce between 5,000 to 10,000 clones per month, all of which could be maintained by one person depending on your situation.
And last but definitely not least, the most important thing you can do to ensure the success of your cultivation, is hire an experienced knowledgeable grower who is passionate about cannabis. The success of your company depends on it. You need someone with the knowledge, experience, and skills to make your cultivation dreams a reality. You need someone who can plan your build-out and cultivation to ensure success from the start. And you need someone with the skills to handle the multitude of inevitable problems that will arise in a cost effective and efficient way.
These are just some of the many considerations you must account for when planning a large scale grow in the regulated market. An experienced cultivation advisor can help you with these, and many other considerations you will need to contend with before you begin your grow. Creating a well thought out plan at the outset can end up saving you thousands, if not hundreds of thousands of dollars down the road.
There are obvious upsides and downsides to cannabis regulation. Gone are the days when it was a free for all, for outlaws growing in California’s hills, under the limited protections California’s medical cannabis laws provided. While there is no longer the threat of arrest and incarceration, for the most part, there are also a lot of hoops to jump through, and new rules and standards to contend with. This article highlights three areas in which your cultivation plan must necessarily change due to the new regulations.
1. Integrated Pest Management (IPM) is limited
In the new regulated market, products that were once widely used are now no longer allowed. Prior to regulation, in the days of Prop 215, you could spray your plants with just about anything, since there was no testing mandated for the products that were being sold. However, people unfortunately got sick and experienced negative reactions, with products like Eagle 20, which contains mycobutinol, and Avid, which contains bifenthrin. Accordingly, under new regulations there are thankfully much more stringent standards dictating what pesticides can be used. It’s ironic that for most of the “medical marijuana” era in California there were no mandatory testing requirements for the THC content of your cannabis, let alone testing for toxins, including pesticides, molds or heavy metals.
You need to have a very thorough pest management plan to make sure your bug populations are always in check. Given that there are a small number of allowable products for pest control in the regulated market, this can be tricky. You need to be extremely familiar with what is and isn’t allowed in today’s regulations. You must also make sure that someone who is certified to apply pesticides is applying them.
As a word of caution, there have been instances where approved pesticides were found to have old unused chemicals (that are not approved for use) from the manufacturing process in them. They may have only occurred in very small amounts, but they are harmful to humans and there is no lawful way to dispose of them.
Further, the presence of these harmful chemicals can cause your finished product to fail when undergoing mandated testing.
Rather than using risky chemicals, the best solution for (early detected) control of pests is the use of beneficial insects. Although they may not be the best solution for an infestation, predator bugs like Neoseiulus Californicus can efficiently control small populations of spider mites while ladybugs are good to limit aphids. Strategic planning of your IPM is one of the best ways to keep pest levels in check.
2. Plant size and plant count matter more than ever
Despite widespread legalization in the past few years for both the medical and recreational markets in the United States, the black market is still rampant and most cannabis is still being produced illegally in the US and internationally.
Generally speaking, in the black market, the less plants you have the better, as high plant counts lead to longer sentences of incarceration. With the passage of prop 215 in 1996, many growers, especially outdoor, started growing their plants as big as they possibly could because most limitations were based on plant counts. Some outdoor growers were able to cultivate plants that yielded over 10 pounds per plant. These days regulations are based on canopy measurements, meaning you can grow as many plants as you want within a defined, limited square footage area. This is where “light deprivation,” a method used to force plants into flowering, becomes favorable as it allows 2-4 harvests per year instead of just one. It is a much more intensive way of growing when you have tens of thousands of plants. While it is easier to plant, cultivate and harvest a larger number of smaller plants, it also requires a much more detailed level of planning and organization.
In order to achieve 4 harvests per year, you must have a well thought out cultivation plan and an all-star staff, but if you are able to accomplish this, you can increase your revenue significantly. Maximizing plant canopy space is essential to a profitable business in today’s market, and to do that will require more detailed planning, better organization and proper crop management.
3. How you grow and what equipment you use
With regulation comes liability for defects or injury. It is essential that all equipment used is approved for its intended use. Traditionally, cannabis was cultivated in secrecy in the black market. This led to many unsafe grow rooms being built by people who did not have the proper skills to be undertaking projects such as converting a garage into a grow room or handling the electrical and plumbing running into them. Accordingly, there were many instances of damages to property or injuries to people because of this. Now that counties and states permit cannabis cultivation facilities, the infrastructure and labor that is done must meet regulated building codes and general safety requirements. It is therefore imperative to know the codes and regulations and hire a professional that does, to ensure you meet the standards in order to avoid potential liability.
Larger scale cultivation requires bigger and more expensive equipment. Cultivation facilities are more likely to have sophisticated equipment, such as chiller systems, that are designed to control the grow room environment. While very efficient, some are not intended to be used specifically for cannabis cultivation, and can therefore be difficult to control and maintain. They perform very specific functions, and when not properly tuned to your conditions, can malfunction by prioritizing dehumidification over cooling. This can be a real challenge in warmer climates when temperatures rise, requiring cooling, but also necessitate removal of moisture from the cultivation space.
On the other hand, there is new technology that can make a huge difference in the success of your cultivation. I recently worked with two different companies that specialize in root zone heating systems. One manufactured equipment for root zone heating and cooling of 10k sq ft raised beds that had never been used in California previously. The other company specialized in root zone heating using radiant floor heat. They both worked as intended to maintain a constant root zone temperature, which increased plant health, and ultimately increased yield.
Many counties require data collection from your cultivation, requiring you to track the amount of water and nutrients used. Therefore, another useful tool you can use to increase efficiency, is data collection software that will allow you to collect different information about the amount of water and nutrients used, as well as specific information about the conditions in your grow medium. You can also record and display temperature and humidity readings in your grow room, in real time remotely through Wi-Fi, that you can then access from your phone or computer from anywhere in the world. This can be a useful tool when documenting information that your county, state or investors may require from you. Further, the ability to collect and analyze data will allow you to identify areas of inefficiency in order to correct and optimize your grow room’s potential. While you can achieve these same goals with simple in-line water meters, keeping track of nutrients and pesticides is not as easy. Data collection in the most basic form, using a pen and paper, can be an inaccurate and an inefficient use of time, and can easily be misplaced or ruined. Therefore, simple data software collection programs are the best solution to make the process simple and hassle free.
While it is nice to have state of the art equipment, if it does not work properly, or cannot be easily maintained, it will not be worth it in the long run and you will never see a return on your investment. Innovation comes with a price; using equipment that is cutting edge can be risky, but on the flip side, when done properly it can give you a big advantage over your competitors.
In switching from the black market to the regulated market, these three areas have proven to be the biggest areas of change and have presented the biggest challenges. It is important you consider these necessary changes, and make a solid plan before you begin your cultivation. This is where a cultivation consultant can help.
Cannabis legalization has taken the United States by storm, with 33 states approved for medicinal cannabis use — 11 of which are also approved for recreational use for adults aged 21 and over. With new patients and consumers entering the market every day, it’s more important than ever for cannabis cultivators to establish more effective methods for mold and fungal prevention in their crops and to ensure consumer confidence in their brands.
Today, many cultivators address the risk of mold and fungus growth by testing crops for contaminants at the end stage of production. While this helps to catch some infected product before it reaches the market, this method is largely ineffective for mold and fungal prevention during the cultivation process. In fact, recent studies have shown an 80% failure rate in mold and fungal testing in Denver cannabis dispensaries. By relying on late-stage, pass/fail testing, cannabis entrepreneurs also expose themselves to increased risk of lost crops and profits.
However, emerging sensor technologies exist that can test plants during the grow process, significantly reducing the risks associated with cannabis cultivation while increasing the bottom line for commercial grow operations. By leveraging data from these monitoring sensors along with environmental automation systems that are integrated with data analytics platforms, cannabis professionals can take a proactive approach to achieve the ideal environmental conditions for their crops and prevent against mold and fungal infestation.
Common Causes for Bud Rot in Indoor Growing Systems
Botrytis cinerea — commonly known as “bud rot” — is a pathogenic fungi species that creates a gray mold infection in cannabis plants. An air-borne contaminant, it is among the most prevalent diseases affecting marijuana crops today and can lead to significant damages, particularly when left untreated during post-harvest storage. Bud rot is one of the most difficult challenges cannabis entrepreneurs face: Once plants have been affected, only 2% can be expected to recover. This is because Botrytis cinerea can use multiple methods for attacking host plants, including using the plant’s natural defenses against it to continue infestation.
While difficult to contain, bud rot is very easy to spot. Plants affected with the fungus will begin yellowing, experience impaired growth, and develop gray fungus around its buds. Overall crop yield will be significantly reduced, leading to decreased profit for cannabis cultivators. The biggest contributing factors to a Botrytis cinerea infestation are as follows:
Humidity: Indoor grow facilities that maintain humidity levels in excess of 45% are breeding grounds for mold and fungus. These environments can become perfect conditions for mold and fungal growth.
Temperature: Bud rot typically thrives in environments where temperatures fall between 65- and 75-degrees Fahrenheit, which is why greenhouses and grow rooms are often the victim of such infestations.
Ventilation: Poor airflow is another contributing factor to Botrytis cinerea Without proper ventilation, excess moisture buildup will eventually result in mold and mildew growth.
Strain: Some marijuana strains are better equipped to fend off bud rot infection. In particular, sativa plants have a higher resistance to mold development than their C. indica and C. ruderalis cousins.
Controlling mold and fungal growth in commercial grow facilities is a top priority for cannabis cultivators. Not only detrimental to their profitability and crop yield, infected plants can pose serious health risks to consumers, especially for immunocompromised patients. Consuming cannabis products that have been compromised by bud rot or other mold and fungal infections can cause a wide range of medical concerns, including pneumonitis, bronchitis, and other pulmonary diseases. As a result, growers are required to dispose of all infected plants without the possibility to sell.
Bud rot isn’t the only culprit responsible for cannabis plant destruction. Powdery mildew, Fusarium, sooty molds, and Pythium all contribute to the challenges faced by cannabis professionals. In fact, a recent study conducted by Steep Hill Labs and University of California, Davis – Medical Center found that in 20 randomly-selected samples submitted for testing, all samples showed detectable levels of microbial contamination7. Many of these samples also contained significant pathogenic microorganism contamination. Without proper detection and prevention methods in place, these pesky plant-killers will only continue to terrorize the cannabis cultivation industry.
The Current Cannabis Cultivation Landscape
The data is clear: Current practices for cannabis cultivation are insufficient for preventing against mold and fungal growth. Sterilization and pass/fail testing do not identify the root cause of harmful infestations in plants, therefore leaving cannabis professionals in the dark about how to better optimize their grow conditions for improved crop reliability and safety. In order to prevent against damages incurred from mold and fungal infestation, marijuana growers must be more diligent in their grow condition monitoring practices.
Many cannabis professionals rely on manual monitoring to identify environmental changes within their indoor grow facilities. While it’s important to collect data on your operation’s essential systems, doing so without the right tools can be time-consuming and ineffective. Manual monitoring often relies on past data and does not illustrate the relationship between different systems and their impact on environmental changes. The goal is to assemble data from all the grow systems and create correlations on actual bio-environmental conditions during the grow process to compare to yield results. This is only available when an information management platform is synthesizing data from all the systems within the grow facility and presenting meaningful information to the growers, facility operators and owners.
Especially as the cannabis industry is expected to grow exponentially in coming years, growers need more robust tools for tracking and manipulating environmental changes within their indoor growing systems.
Leveraging Building Automation Systems & Data Analytics in Cannabis Cultivation
A powerful approach to prevent environmental conditions that are known to lead to mold and fungus growth exists in leveraging the data produced from your grow facility’s various automation systems. Most commercial cultivation facilities have multiple stand-alone and proprietary systems to control their indoor environment, making it difficult to not only collect all of this valuable data, but also to achieve the level of grow condition monitoring necessary for mold and fungal prevention.
With some data analytics platforms, such as GrowFit Analytics, data is collected across disparate systems that don’t normally communicate with one another, providing access to the key insights necessary for achieving environmental perfection with your cannabis crops. A viable solution collects vital grow facility system data and relevant bio-environmental monitoring data, and delivers this information in one, centralized software interface. The software then will apply analytic algorithms to develop key performance indicators (KPIs) while working to detect system anomalies, faults, and environmental fluctuations. The right analytics solution should also be customizable, allowing you to track the KPIs that are most important to your unique facility, and to achieve the vision of your chief grower. Ultimately, the software should serve up actionable insights that empower facility management and growers.
Collecting reliable data from different grow facility systems and environmental sensors can be a complex process and the information collected illustrates more than just what’s working right and what isn’t. By implementing an advanced data analytics solution, cannabis cultivation professionals can now be empowered to track minute details about their indoor grow facility, providing a safer, healthier environment for their crops and avoiding those environmental conditions that lead to mold and fungus altogether.
An ideal data analytics platform won’t simply collect data to be analyzed at a later date, and simple trending of sensor data is not enough. Information — especially in a commercial grow facility — is time-sensitive, which is why growers should select a system that offers real-time analytics capabilities. Some platforms offering real-time analytics utilize cloud computing, allowing for easy access from anywhere while also providing enhanced security to protect sensitive facility data. The most robust data analytics platforms provide detailed historical data for your entire crop’s lifecycle that provide a “digital recipe” to replicate successful crops, and fine-tune the process for continuous improvement.
Data analytics tools can also impact the bottom line by lowering operational costs. GrowFit Analytics, for example, was born out of a software solution designed to lower energy costs for large complex buildings like commercial grow facilities.
The data and insights provided can help identify opportunities for greater energy efficiency, which can lead to significant utility savings. Grow facilities operate 24 hours/day, with energy expenses representing one of the largest operational costs. With data analytics tools at their disposal, facility managers are armed with the information they need to improve system efficiency, increase energy savings, and improve profitability.
Eliminating Mold & Fungus from the Future of Cannabis Cultivation
By focusing on grow condition monitoring using data analytics tools, cannabis professionals can effectively eliminate the risk of mold and fungus growth in their crops. Leading data analytics tools make tracking environmental changes simple and easy to manage, allowing cannabis professionals to take a proactive approach to mold and fungus prevention. As we look to the future of the cannabis cultivation industry, it’s paramount for professionals to explore the technological advancements available that can help them address their business’ most pressing challenges.
Success in the cannabis industry is driven by a company’s ability to adapt to an ever-changing market and meet the demands of the evolving consumer. Selecting the right business management solution to handle the complexities of the growing cycle as well as daily operations and compliance requirements necessitates diligent research. Ensuring that the selected technology solution has a centralized database in a secure platform designed to reinforce quality throughout company operations is essential in today’s competitive industry. An ERP solution with integrated CMS capabilities helps businesses strengthen supply chain management by seamlessly incorporating cannabis cultivation with day-to-day company operations to efficiently deliver seed to sale capabilities and meet marketplace demands.
What are ERP & CMS?
Enterprise resource planning (ERP) is a business system in which all data is centralized – including finances, human resources, quality, manufacturing, inventory, sales and reporting. A cultivation management system (CMS) is an extension of an ERP solution to manage cannabis greenhouse operations, including growing, inventory and labor needs. A CMS maintains a detailed level of tracking to account for continuous cannabis growth periods that require extensive monitoring and incur a multitude of expenses. In an integrated solution, both the ERP and CMS data are managed under the same secure database to provide a forward and backward audit trail of all business processes. This visibility encompasses the entire supply chain from the management of supplier relationships to distribution – including growing, cultivating, extracting, manufacturing and shipping.
How do ERP & CMS strengthen supply chain processes?
Tracks individual plants and growth stages – By tracking plant inventories at the individual plant level in real-time with a unique plant identifier, greenhouse operations are optimized – monitoring the entire lifecycle of the plant throughout the germination, seedling, vegetative and flowering stages. Audit trails maintain regulatory compliance, including information such as terpene profiles and THC and CBD potency. Monitoring genealogy, mother and cloning, crossbreeding, plant genetics and clone propagation are key to success in this industry. Strain tracking is equally important, including identifying which strains are performing best, producing the most yield and how they are received by the marketplace. Tracking of the entire supply chain includes the recording of plant health, harvesting techniques, production, growth, costs, lab testing and batch yields – without any gaps in information.
Optimizes growing conditions to increase yields – By automatically documenting and analyzing data, insights into plant and greenhouse activities create streamlined processes for an optimal cannabis cultivation environment. This includes the monitoring of all growing activities such as space, climate, light cycles, moisture content, nutrient applications, fertilizer and other resources, which all have an effect on plant growth and yields. Most importantly, labor costs are monitored, as it is the highest expense incurred by growers. In an industry for which many companies have limited budgets, enabling efficient greenhouse planning, automation and workflows reduces overhead costs.
Integrates with regulatory compliance systems – Compliance is a mandatory part of the cannabis business, and many companies haven’t expended the effort to ensure their processes are meeting regulations. This has placed their licensing and business at risk. An integration that automates the transfer of required reporting information from the ERP to state government approved software such as METRC, Biotrack THC and Leaf Data Systems to ensure regulatory compliance is imperative. This streamlined process assures that reporting is accurate, timely and meets changing requirements in this complex industry.
Facilitates safety and quality control – With an ERP solution tracking all aspects of growing, manufacturing, packaging, distribution and sales, safety and quality are effectively secured throughout the supply chain. Despite the lack of federal legality and regulatory guidelines, proactive cannabis producers can utilize an ERP’s automated processes and best practices to ensure safe and consistent products. By standardizing and documenting food safety procedures, manufacturers mitigate the risk of cannabis-specific concerns (such as aflatoxins, plant pesticide residue, pest contamination and inconsistent levels of THC/CBD potency) as well as dangers common to traditional food manufacturers (such as improper employee procedures and training) for those in the edibles marketplace. Food safety initiatives and quality control measures documented within the ERP strengthen the entire supply chain.
Maintains recipes and formulations – In manufacturing, to achieve product consistency in regards to taste, texture, appearance, potency and expected results, complex recipe and formula management is a necessity – including monitoring of THC and CBD percentages. The calculation of specific nutritional values to provide accurate labeling and product packaging provides necessary information for consumers. Cannabis businesses have to evolve with the consumer buying habits and marketplace saturation by getting creative with their product offerings. With integrated R&D functionality, the expansion of new and innovative edibles, beverages and forms of delivery, as well as new extractions, tinctures, concentrates and other derivatives, helps to meet consumer demands.
Handles inventory efficiently – Established inventory control measures such as tracking stock levels, expiration dates and product loss are effectively managed in an ERP solution across multiple warehouses and locations. Cannabis manufacturers are able to maintain raw material and product levels, reduce waste, facilitate rotation methods and avoid overproduction to control costs. With the use of plant tag IDs and serial and lot numbers with forward and backward traceability, barcode scanning automatically links product information to batch tickets, shipping documents and labels – providing the ability to locate goods quickly in the supply chain if necessary in the event of contamination or recall. The real-time and integrated information available helps mitigate the risk of unsafe products entering the marketplace.
Utilizes user-based software permissions – Access to data and ability to execute transactions throughout the growing stages, production and distribution are restricted to designated employees with proper authorization – ensuring security and accountability throughout the inventory chain.
Manages supplier approvals – Assurance of safety is enhanced with the maintenance of detailed supplier information lists with test results to meet in-house quality and product standards. Quality control testing ensures that critical control points are monitored and only approved materials and finished products are released – keeping undeclared substances, harmful chemicals and impure ingredients from infiltrating the supply chain. When standards are not met, the system alerts stakeholders and alternate vendors can be sought.
Delivers recall preparedness – As part of an edible company’s food safety plan, recall plans that include the practice of performing mock recalls ensures that cannabis businesses are implementing food safety procedures within their facilities. With seed to sale traceability in an ERP solution, mitigating the risk of inconsistent, unsafe or contaminated products is readily maintained. Integrated data from the CMS solution provides greater insight into contamination issues in the growth stages.
An ERP solution developed for the cannabis industry with supporting CMS functionality embodies the inventory and quality-driven system that growers, processors, manufacturers and distributors seek to strengthen supply chain management. Offering a centralized, secure database, seed to sale traceability, integration to compliance systems, in-application quality and inventory control, formula and recipe management functionality and the ability to conduct mock recalls, these robust business management solutions meet the needs of a demanding industry. With a variety of additional features designed to enhance processes in all aspects of your cannabis operation the solution provides a framework to deliver truly supportive supply chain management capabilities.
One goal all growers seem to agree on is the need to increase density in their houses. How that gets done, well, there are a variety of ways and here’s one way a grower chose to do it:
With 45,000 square feet of greenhouse space, Nathan Fumia, a cannabis grower and consultant for a commercial operation in California, wasn’t pleased with what he was seeing. “If I put my hand inside the canopy and I can see sunlight on it, I’m losing money,” was how he described the situation. Unfortunately, the operators and staff of the greenhouse disagreed. They thought increasing density would rob the leaves of needed light.
He chose to test his theory by increasing the number of plants on one of his benches from 140 to 150 plants. To ensure the validity of the research, Nathan grew the same strain on Bench 1 as Bench 2, and to make sure all the metrics were equal, he even processed the crops separately. After weighing, Bench 2 (his research bench) showed an 8% higher yield than Bench 1.
“The post-harvest data from the weight, yield confirmed my decision to maximize density by increasing the total number of plants per bench,” says Fumia. “Whenever I saw red on the canopy heat map from LUNA, I knew there was room for improvement and I knew that I wasn’t making the money that I should have from those areas.”
His next challenge was where to place the extra ten plants? Did it make a difference or could he just shove 150 plants in a space that was originally planned for 140? Again, his greenhouse system was able to pinpoint the best sub-sections on the benches and Nathan was able to see exactly which plants were growing the fastest. That also gave him the ability to understand why certain quadrants of the bench were doing better than others.
“We were able to determine which quadrant on which bench was already at 100% density, and determine which quadrant wasn’t. Without that data, it would have been pure guesswork.”
He dialed down even further to find out which cultivars grew the best on a particular bench in the greenhouse. “Some cannabis cultivars need more light, some need less, some need warmer climates, and some need cooler climates,” Fumia noted. “Additionally, in order to increase the density of flowering points/buds, we began focusing on better pruning techniques in the vegetative phase, directly increasing branches for flowering.”
With optimization even more important now than it was 12-18 months ago, Nathan summed up the impact on his bottom line. “With a crop cycle averaging just over six a year, at that time we were averaging $600-$800 a pound depending on the strain. Some were even more. Ten extra plants per bench per cycle was a nice bounce for us.”
Obviously, this isn’t the only way to increase density. What’s your suggestion? Share your ideas with the rest of us by posting your comments below.
For years, tetrahydrocannabinol (THC) got all the attention. While THC certainly delivers its own benefits (such as relaxation and pain relief), there’s a whole host of other – and often overlooked – compounds found in cannabis with important benefits as well. THC is truly only the tip of the iceberg when it comes to cannabis’s potential.
As the cannabis industry evolves with changing consumer tastes and developing medical research, growers may employ techniques to boost cannabinoid and terpene profiles in their harvests – beyond merely focusing on THC. Advanced LEDs allow growers to elicit specific biological responses in cannabis crops, including increased concentrations of these naturally occurring chemical compounds.
The Foundation of Cannabis’s Effects Whether used medicinally or otherwise, cannabis has changed our society and many of our lives – and there’s a collection of naturally occurring chemical compounds, known as cannabinoids and terpenes, to thank.
The cannabinoids THC and CBD are the most common and well-researched, however they are accompanied by more than 200 additional compounds, including cannabinol (CBN), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), among others.
The cannabis plant also contains terpenes. These structures are responsible for giving flowers (including cannabis), fruits and spices their distinctive flavors and aromas. Common terpenes include limonene, linalool, pinene and myrcene.
Both cannabinoids and terpenes are found in the cannabis plant’s glandular structures known as trichomes. Look closely, and you’ll notice trichomes coating the cannabis flowers and leaves, giving the plant an almost frosty appearance.
Trichomes – which are found across several plant species – are a key aspect of a cannabis plant’s survival. The specific combination of metabolites produced by trichomes may attract certain pollinators and repel plant-eating animals. Moreover, trichomes (and specifically THC) may act as the plant’s form of sunscreen and shield the plant from harmful ultraviolet rays.
While they play an essential part in the cannabis plant’s lifecycle, trichomes are volatile and easily influenced by a range of environmental factors, including light, heat, physical agitation and time. Therefore, environment is a defining variable in the development of these important structures.
How LEDs Support Cannabinoid and Terpene Development in Crops Spectrally tunable LEDs give indoor cannabis growers unparalleled control over their crops. As research has expanded about plants’ responses to the light spectrum, growers have discovered they are able to elicit certain physiological responses in the plant. This phenomenon is called photomorphogenesis. At its root, photomorphogenesis is a survival tactic – it’s how the plant responds to miniscule changes in its environment to increase the chances of reaching full maturity and, eventually, reproducing. While cultivated cannabis plants won’t reproduce at an indoor setting, growers can still use the light spectrum to encourage strong root and stem development, hasten the flowering process and the development of bigger, brightly colored flowers.
It makes sense that using the proper light spectrums may also have an impact on the production of specific cannabinoids and terpenes – an important factor when responding to highly specific consumer needs and desires, both within medical and adult-use markets.
Here are a few more reasons why utilizing full-spectrum LEDs can lead to higher quality cannabis:
Lower Heat, but the Same Intensity. When compared to HPS, fluorescent and other conventional lighting technologies, LEDs have a much lower heat output, but provide the same level of intensity (and often improved uniformity). This represents an enormous advantage for cannabis cultivators, as the lights can be hung much closer to the plant canopy without burning trichomes than they would be able to with other lighting technologies.
UV Light. Cannabinoids and terpenes are part of the cannabis plant’s natural defense mechanism, so it makes sense that lightly stressing plants can boost cannabinoid and terpene numbers. Some studies illustrate an increase in UV-B and UV-A light can lead to richer cannabinoid and terpene profiles.1 It’s a fine line to walk, though – too much UV can result in burned plants, which leads to a noticeable drop in cannabinoids.
Full-Spectrum Capabilities. The cannabis plant evolved over millions of years under the steady and reliable light of the sun. Full-spectrum is the closest thing to natural sunlight that growers will be able to find for indoor growing – and they’ve been shown to perform better in terms of cannabinoid development. A 2018 study titled “The Effect of Light Spectrum on the Morphology and Cannabinoid Content for Cannabis Sativa L.,” explored how an optimized light spectrum resulted in increased expression of cannabinoids CBG and THCV.2
This is the most important tip for indoor growers: your plants’ environment is everything. It can make or break a successful harvest. That means cultivators are responsible for ensuring the plants are kept in ideal conditions. Lights are certainly important at an indoor facility, but there are several other factors to consider that can affect your lights’ performance and the potency of your final product. This includes your temperature regulation, humidity, the density of plants within the space, CO2 concentration and many other variables. For the best results, your lights should be fully aligned with other environmental controls in your space. Nothing sabotages a once-promising crop like recurrent issues in the indoor environment.
Cannabinoids and terpenes take time to develop – so cultivators will want to avoid harvesting their plants too early. On the other hand, these compounds begin to degrade over time, so growers can’t wait too long either.
Cultivators seeking potent cannabinoid and terpene profiles must find a happy medium for the best results – and the best place to look is where cannabinoids and terpenes develop: the trichomes. With a microscope, cultivators can get up close and personal with these sparkly structures. Younger plants begin with clear trichomes, which eventually become opaque and change to amber. Once your plants show amber-hued trichomes, they’re ready for harvest.
The truth here is that there’s no perfect formula to elicit show-stopping cannabinoids and dizzying terpenes with every harvest. A lot of cannabis cultivation is based around trial-and-error, finding what works for your space, your business and your team. But understanding the basics around indoor environmental controls like lighting and temperature – and how they can affect the development of cannabinoids and terpenes – is an excellent place to start. Using high quality equipment, such as full-spectrum LED lighting can boost both cannabinoid and terpene production, resulting in richer, more potent and higher quality strains.
References:
Lyndon, John, Teramura, Alan H., Coffman, Benjamin C. “UV-B Radiation Effects on Photosynthesis, Growth and Cannabinoid Production of Two Cannabis Sativa Chemotypes.” August 1987. Photochemistry and photobiology. Web. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1987.tb04757.x?&sid=nlm%3Apubmed
Magagnini G., Grassi G., Kotiranta, S. “The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L.” 2018. Medical Cannabis and Cannabinoids. Web: https://www.karger.com/Article/FullText/489030
Secretary Perdue made the announcement in a YouTube video titled “USDA’s Hemp Policy.” Later in the week, an interim final rule formalizing the program will be published in the Federal Register, according to the USDA’s website. “The rule includes provisions for the U.S. Department of Agriculture (USDA) to approve hemp production plans developed by states and Indian tribes including: requirements for maintaining information on the land where hemp is produced; testing the levels of delta-9 tetrahydrocannabinol; disposing of plants not meeting necessary requirements; and licensing requirements,” reads the press release. “It also establishes a federal plan for hemp producers in states or territories of Indian tribes that do not have their own approved hemp production plan.” The interim final rule will go into effect as soon as it is published in the Federal Register, which should be by the end of this week.
You can find a preview of the rule here. The agency has also developed guidelines for sampling and testing procedures, which you can find here. Those documents are meant to provide more information for hemp testing laboratories.
You can watch the YouTube video and read the announcement he made below:
Hello everyone, as I travel across this great country of ours, I hear a lot about a strong interest in a new economic opportunity for America’s farmers: the production of hemp. Which is why today I am pleased to announce the USDA has published the rule establishing the US domestic hemp production program. We said we’d get it done in time for producers to make planning decisions for 2020 and we followed through. We have had teams operating with all hands-on-deck to develop a regulatory framework that meets Congressional intent while seeking to provide a fair, consistent and science-based process for states, tribes, and individual producers who want to participate in this program. As mandated by Congress, our program requires all hemp growers to be licensed and includes testing protocols to ensure that hemp grown under this program is hemp and nothing else. The USDA has also worked to provide licensed growers access to loans and risk management products available for other crops. As the interim final rule, the rule becomes effective immediately upon publication in the federal register. But we still want to hear from you. Help us make sure the regulations meet your needs. That’s why the publication of the interim final rule also includes a public comment period continuing a full and transparent rulemaking process that started with a hemp listening session all the way back in March 2019. At USDA, we are always excited when there are new economic opportunities for our farmers and we hope the ability to grow hemp will pave the way for new products and markets. And I encourage all producers to take the time to fully educate themselves on the processes, requirements and risk that come with any market or product before entering this new frontier. The Agricultural Marketing Service will be providing additional information, resources and educational opportunities on the new program. And I encourage you to visit the USDA hemp website for more information. As always, we thank you for your patience and input during this process.
Since medical cannabis was legalized in Ohio in 2016, companies that cultivate and process medical cannabis, as well as the plants themselves, have been popping up around the state.
Grow Ohio, a dual-licensed Level 1 cultivator and processor, was the first licensed processor in Ohio and the first to successfully bring product to market. From plant material to edibles, tinctures, oils, lotions and capsules, the company seeks to ensure that medical cannabis is cultivated and processed under the same strict standards as any pharmaceutical medication. As first to market, Grow Ohio found themselves navigating a complicated process by themselves.
As their first product was ready to be packaged, Executive Vice President (EVP) Justin Hunt and the team at Grow Ohio were focused on marketing, packaging and distributing their product. With the sheer number of items that required attention, it is easy to see how something like labelling can slip under the radar. With a variety of products and dosages, and the first delivery of the product slated for late April of 2019, Grow Ohio needed a consistent way to ensure their product complied with state law, and also satisfied their own brand standards.
As their April product launch date grew closer, Grow Ohio realized they needed help with executing on Ohio’s labeling requirements for medical cannabis products.
They turned to Adaptive Data Inc., a barcode and labeling systems supplier to provide labels, printers, and software. ADI’s task was to specify the right label materials for their branding and compliance needs and provide software and equipment to print compliance labels on demand. ADI’s proposed solution would slash the waste associated with printing and applying labels and create a lean process.
Compliance
Compliance labels must contain specific information and must be prominently visible and clearly legible. Containers have to be labeled with details including the specific quantity of product, dosage, THC levels, license #, testing lab name and ID #, and other details. Different sizes and shapes are required for the various packaging form factors.
Due to the large amount of content and a relatively small label area, ADI specified 300 dpi printer resolution so that 4 or 5 point fonts would be legible.
Hunt had all the information needed to comply with state regulations, but didn’t have a way to get that information, properly formatted, onto a finished label at the point of packaging. “It’s all about how you get the data from one source to the other in a way that is easily repeatable,” says Hunt. The solution provides the capability to handle all compliance requirements, for all types of product and all sizes/shapes of labels. The system is designed to minimize key entry of data, a typical source of content errors. All of Grow Ohio’s products contain THC and require the red THC compliance logo. Early on this requirement was met using a separate, hand-applied THC logo label, which was very costly. The labels now include the THC logo, all required compliance data, and the capability to include a 2d barcode.
At the time the products are packaged all compliance information is printed on demand with label printers. As retail expansion continues, the barcode on the plant material compliance label can be used with the POS systems of the dispensaries, to keep their systems fast and accurate.
Until the system is ready to receive data automatically from METRC, the State approved inventory system which tracks all medical cannabis plants and products grown or produced in Ohio, they used user interfaces that reduce the amount of data that is key entered to an absolute minimum. Using drop down lists, date pickers and calculated results, means that Grow Ohio only enters data in 5-10 fields, depending on product line. As the system evolves the next step will be to take data for compliance details automatically from METRC.
Branding
As the first to enter the medical marijuana market, Grow Ohio leadership knew that their brand image is as important to their success as the quality of their products. Their logo, color choice, and inclusion of the THC logo had to be consistent in appearance across all products, regardless of production method. They used full color branded product labels and blank labels that have the Grow Ohio and THC logo pre-printed. (Compliance data is added to the blank labels on demand.)
Label Application – Automatic, Semi-automatic and Manual
Grow Ohio packages in metal cans, glass bottles and in boxes. Each packaging type has specific requirements.
Metal Cans: Grow Ohio uses an automated packaging line for plant material in cans. That line includes two automatic apply-only machines (for brand labels). The compliance label is printed and dispensed and placed on the can as it is boxed.
Bottles: Cylindrical containers can be difficult to label. Grow Ohio originally packaged tinctures and oils in glass bottles which were pre-printed with their logo. The printed logo looked nice, but printing on the glass was expensive. This made placing the compliance label on the bottle more difficult, since the logo could not be covered. Positioning and straightness was critical for readability as well as aesthetics. Manual placement was time consuming (15 – 30 seconds per bottle).
Now, bottles are being processed with the help of a semi-automatic print-apply machine. The print-apply machine can label 18-20 bottles per minute.
By using plain bottles and pre-printing the blue Grow Ohio logo and red THC logo on the label, they were able to streamline the process. The semi-automatic print-apply machine adds the compliance data to the label and applies the label to the bottle.
The result is a lower total cost of the product. Plain bottles cost less without the logo and the labor to manually apply the labels has been greatly reduced. In addition, with the logos on the label instead of the bottle, orientation and spacing are no longer an issue. The label maintains the natural brand feel, which was important to Hunt.
Boxes: Only compliance labels are required for boxes as the branding information is pre-printed on the box. Compliance labels for boxes include a pre-printed, red THC logo. The printer prints the compliance data and presents the label with the liner removed, ready to be manually applied to the box.
Summary
With a broad product line, Grow Ohio’s label requirements are quite diverse. By specifying and sourcing the right hardware, software and label materials,
Adaptative Data provided an efficient, repeatable, cost-effective way to do brand and compliance labeling for Grow Ohio’s diverse product offering.
Hunt now understands the magnitude of work that goes into coming up with a compliant, cost-friendly compliance labeling approach – an appreciation he did not have at the outset. He is not alone in this regard as many companies come to this understanding late in the start-up process.
Hunt isn’t sure how fast the market will grow, but he is not worried. As the market expands and demand grows, he knows his systems can handle it.
You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”
You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.
“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”
You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.
This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.
“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”
You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.
The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,”
“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”
Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.
This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.
“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”
As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.