Tag Archives: procedure

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 6

By Phil Gibson
No Comments

This is Part 6 and the final chapter in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1, here to see Part 2, here to see Part 3, here for part 4 and here for Part 5.

Standard Operating Procedures (SOPs)

Figure 1: Precision aeroponics at FarmaGrowers GMP Facility, South Africa

Every objective has to have a vision and a vector of where you want to go and what you want to achieve. “Winging it” is okay for an innovative artistic endeavor where creativity is spontaneous and one-of-a-kind art is produced. Unfortunately, that is not how one creates a top-quality cultivation operation.

Customers expect guarantees of consistency; quality assurance means a purchase is safe to consume. Medicinal products around the world require Good Manufacturing Practices (GMP) certification. These are really just SOPs that document repeatable procedures to guarantee that the most recent batch offers the same results as the first certified effort. This brief covers the importance of documented operating procedures for a successful grow business with high quality customer results.

Figure 2: The objective – trichome covered flowers, DanCann, Denmark

Almost nobody gets excited about discussing quality, but experienced manufacturers know that quality control reduces waste and improves operations. Everyone learns that they have to implement feedback, improvement and quality control procedures to guarantee profitability and longevity in any business.

So, what is an SOP? A standard operating procedure defines ‘a task’ to be performed ‘at a location by a person or a role on a specific schedule.’ These definitions will include role definition, responsibilities, personnel training, equipment & service procedures, material handling, quality assurance controls, record keeping, approved procedures & instructions, documentation, references and appendices, all of which define your business and how it is to operate.

Now, you might ask, we are just growing plants, is all this really necessary? The short answer is, it depends. If you expect to export globally, do business in Europe and other markets, get licensed by Health Canada or some day be approved to ship to other States, then yes. If you are a regional craft cannabis supplier, maybe not, but there are many tasks that are required to grow where a better documented process can benefit your operation and the quality of the product delivered to your consumers.

Figure 3: Flower maintenance, DanCann, Denmark

We provide a bulleted list of recommendations in the full white paper but to touch on a few highlights that every operator should keep in mind, SOPs define the following structures for your business.

Personnel training is done for ‘this task, in this way’ & ‘this role is responsible’

Job descriptions reduce misunderstandings and increase worker ownership in your facility. Documenting your activities minimizes task overlap and conflicts that can lead to no one executing on something that may be important but not urgent. You want to eliminate employees thinking “I didn’t know it was my responsibility.”

Consultants or visitors must be aware of and follow the same requirements as your employees if you are to maintain the quality of your grow. Specific training should be given to anyone that handles or works around toxic chemicals. Safety sheets are not just paper; They keep people alive.

Equipment & Service Procedures

Be direct and specific in your task definitions, i.e., “Use 5ml of soap, clean until no plant matter or debris remains.”

Figure 4: Full GMP certified facility, FarmaGrowers, South Africa

Ideally, grow facilities, equipment and access will be designed with cleaning in mind from the start. This is not always possible but it is the mark of successful manufacturing or production companies.

Cleaning, cleaning, cleaning: think sterile, food safety and consumer consumption protections. SOPs should define cleaning methods and materials. This cleaning is done on schedule and aligned to your preventative maintenance and calibration requirements. Precise results require precise structure for any long-term operation.

We recommend that you integrate pictures and videos in the instructions for your procedures and training so that nothing is left to chance or misinterpreted.

Material Handling, Containers, Labels, Quality Assurance

Personnel contamination/cross-contamination are the death of any grow operation. Do everything you can to limit stray or wandering plant material, dust or debris from migrating from one grow room or area to another. Isolation is a good way to limit outbreaks to a specific room to minimize losses.

Figure 5: Documented SOPs must be followed & reviewed regularly

If something nasty happens to one of your rooms. Good labeling enforced by your quality assurance team is a simple way to increase the likelihood that employees will do a task as intended. This adds to your repeatability as people change jobs or roles are redefined.

Approved Procedures & Instructions

Quality assurance is all about repeatability and intended outcomes. Documenting procedures and intended use enables every new employee to follow the experience of the masters and duplicate their success. Testing, sampling and logging your results along the way enables you to know that you are on schedule and on process, so you can predict your results every time.

Part of your continuous improvement approach will be to deal with exceptions that are not covered by your procedures. Learning about those exceptions and capturing your experience with an improved method will lead to better outcomes the next time around.

Documentation, References, Appendices

Figure 6: Flower sealed & ready for export, DanCann, Denmark

You’ve done all of this hard work to capture your operation, so you need a complete library of your reference work and approach that employees can access. It does your operation no good if you capture your methods and no one ever looks at them again. Training cycles and reviewing your defined procedures is key to a consistent high-quality result.

Hero Award

Standard Operating Procedures (SOPs), Good Manufacturing Procedures (GMP) and Good Agricultural & Collection Practices (GACP), are all terms that will become more familiar as cannabis production joins into one global market. Professional results will be required and national or international certifications will be the guarantees that any global customer can trust that a product meets the standards they expect.

We have many customers in North America and around the world. but DanCann Pharma is the most aggressive when it comes to meeting international standards and results. Producing flower that is so pure that no irradiation is required for export, the DanCann operation is fully certified for production throughout Europe and they are sold-out of capacity for the coming year. They are currently expanding their operations in Denmark and are a solid example to follow for a well-defined repeatable operation. FarmaGrowers in South Africa is a close second in this race with multiple export certifications of their own. The future looks bright for both of these global operations.

For the complete white paper on Top Quality Cultivation Facilities, download the document here.

The 3-Legged Stool of Successful Grow Operations: Climate, Cultivation & Genetics – Part 4

By Phil Gibson
No Comments

This is Part 4 in The 3-Legged Stool of Successful Grow Operations series. Click here to see Part 1, here to see Part 2, and here to see Part 3. Stay tuned for Part 5, coming next week.

Integrated Pest Management (IPM)

Aeroponic & hydroponic systems can operate with little to no soil or media. This eliminates the pest vectors that coco-coir, peat moss/perlite and organic media can harbor as part of their healthy biome approach. Liquid nutrient systems come at the nutrient approach from a different direction. Pure nutrient salts (nitrogen, potassium, magnesium and trace metals) are provided to the plant roots in a liquid carrier form. This sounds ideal for integrated pest management programs, but cultivators have to be aware of water and airborne pathogens that can disrupt operations. I will summarize some aspects to consider in today’s summary.

The elimination of soil media intrinsically helps a pest management program as it reduces the labor required to maintain a grow and the number of times the grow room doors are opened. Join that with effective automation with sensors and software, and you have immediate improvements in pest access. Sounds perfect, but we still have staff to maintain a facility and people become the number one source of contamination in a grow operation.

Figure 1: Example of Pythium Infected & Healthy Roots

Insects do damage directly to plants as they grow and procreate in a grow room. They also carry other pathogens that infect your plants. For example, root aphids, a very common problem, are a known carrier of the root pathogen, Pythium.

Procedures

One of the most common ways for pests to access your sealed, sterile, perfectly managed facilities are in the root stock of outsourced clones. If you must start your grow cycles with externally sourced clones, it is strongly recommended that you quarantine those clones to make sure that they do not import pest production facilities into your operation. Your operation management procedures must be complete. If you take cuttings from an internal nursery of mother plants, any pathogens present in your mother room will migrate through cuttings into your clones, supply lines, and subsequently, flower rooms.

Figure 2: Healthy Mothers & Clones, Onyx Agronomics

Start your gating process with questioning your employees and visitors. Do they grow at home or have they been to another grow operation in the last week? In the last day? You may be surprised by how many people that gain access to your grow will answer these questions in the affirmative.

Developing standard operating procedures (SOPs) that are followed by every employee and every visitor will significantly reduce your pest access and infection rates, and hence, increase your healthy harvests and increase your profitability. Procedures should include clothing, quarantining new genetics and cleaning procedures, such as baking or irradiating rooms to guarantee you begin with a sterile facility. This is covered more in the complete white paper.

Engineering Controls

Figure 3: Access Control: Air Shower, FarmaGrowers

Technology is a wonderful thing but no replacement for regimented procedures. Considered a best practice, professional air showers, that bar access to internal facilities, provide an aggressive barrier for physical pests. These high velocity fan systems and exhaust methods blow off insects, pollen and debris before they proceed into your facility. From that access port into your grow space, positive air flow pressure should increase from the grow rooms, to the hallways, to the outside of your grow spaces. This positive airflow will always be pushing insects and airborne material out of your grow space and away from your plants.

Maintaining Oxidation Reduction Potential (ORP)

ORP is a relative measurement of water health. Perfect water is clear of all material, both inert and with life. Reverse osmosis (RO) is a standard way to clear water but it is not sufficient in removing microscopic biological organisms. UV and chemical methods are needed in addition to RO to clear water completely.

ORP is an electronic measurement in millivolts (mV) that represents the ability of a chemical substance to oxidize another substance. ORP meters are a developing area and when using a meter, it is important to track the change in ORP values rather than the absolute number. This is due to various methods that the different meters use to calculate the ORP values. More on this in the white paper.

Oxidizers

Figure 4: AEssenseGrows Aeroponic Nozzles

There are two significant ways to adjust the ORP of a fertilizer/irrigation (fertigation) solution. The first is by adding oxidizers. Examples are chemical oxidizers like hydrogen peroxide (H2O2), hypochlorous acid (HOCl), ozone (O3) and chlorine dioxide (ClO2). Adding these to a fertigation solution increases the ORP of the fertigation solution by oxidizing materials and organic matter. The key is to kill off the bad things and not affect the growth of plants. Again here, the absolute ORP metric is not the deciding factor in the health of a solution and the methods by which each chemical reaction occurs for each of these chemicals are different. This is compounded by the fact that different ORP meters will show different readings for the same solution.

Another wonderful thing about automation and aeroponic and hydroponic dosing systems is that they can automatically maintain oxidizing rates and our white papers explain the methods executed by today’s automation systems.

Water Chilling

Another way to adjust ORP is to reduce the water temperature of the reservoirs. Maintaining water temperature below the overall temperature of your grow rooms is imperative for minimal biological deposition and nutrient system health. Water chillers use a heat exchanger process to export heat from liquid nutrient dosing reservoirs and maintain desired temperatures.

The benefit of managing ORP in aeroponic and hydroponic grow systems is highly accelerated growth. This is enhanced in aeroponics due to the effectively infinite oxygen exchanging gases at the surface of the plant roots. Nutrient droplets are sprayed or vaporized in parallel and provided to these root surfaces. Maximizing the timing and the best mineral nutrients to the root combustion is the art of grow recipe development. Great recipes drive superior yields and when combined with superior genetics and solid environmental controls, these plants will deliver spectacular profits to a grow operation.

Another Hero Award

Before closing this chapter, we have many cultivators that are producing stellar results with their operational and IPM procedures, so it is hard to choose just one leader. That said, our hats are off to RAIR Systems again and their director of cultivation, Ashley Hubbard. She and her team are determined to be successful and drive pests out of their operations with positive “little critters” and the best water treatment and management that we have seen. You are welcome to view the 7-episode walkthrough of the RAIR facility and their procedures here.

To download the complete guide and get to the beef quickly, please request the complete white paper Top Quality Cultivation Facilities here.

Stay tuned for Part 5 coming next week where we’ll discuss Genetics.

cannabis close up

Benefits To Growing Cannabis In A Cleanroom Environment

By Steve Gonzales
1 Comment
cannabis close up

For commercial cannabis growers, consistent crop yields are vital to maintaining product profitability, as well as durable profitability. Since cannabis thrives under certain conditions, the more control a cultivator has over those conditions, the easier consistent harvests become.

While factors like humidity, light exposure and water may be easy enough to control in any indoor environment, other influential factors can be more difficult to control, such as mold or other contaminants. Growing in a controlled cleanroom environment ensures healthy, high-quality cannabis by mitigating some harder-to-control threats. For these reasons, growing cannabis in a cleanroom environment is rapidly becoming the gold standard in the industry.

A Closer Look at the Cleanroom Environment

A cleanroom facility is a specially designed room or modular addition designed to support a tightly controlled grow environment for crops. The design of the cleanroom relies on several design features to deter issues with pollutants, such as insects, mold, airborne microbes and dust. Even though cleanroom environments are often affiliated with cultivating certain types of crops, these facilities are also valuable in other industries, such as medicine, biology and pharmaceuticals.

Cleanrooms can be conservatively sized or massive. They can be configured to accommodate different processes, and they can be built to suit a specific grower’s preferences. However, several features are key, such as:

  • Cleanroom-rated HEPA (high-efficiency particulate arrestor) filtration
  • Contamination control mats
  • Positive-pressure airflow systems
  • Double-door air chambers at entry points
  • Moisture-resistant wall panels
control the room environment
Preventing contamination can save a business from extremely costly recalls.

One fundamental requirement of a cleanroom is to control the introduction of contaminants into the space. Contaminants can be carried in on the people who visit the space. Therefore, cleanroom implementation must come along with strict protocols when it comes to employee entry into the room. For example, air showers, special gowns, masks and other measures may be required. 

The Benefits of Cleanroom Environments for Cultivators

On the surface level, cleanrooms make it possible to achieve a well-controlled environment for cannabis cultivation. However, while this is undeniably important in terms of consistent crop yields and profitability, cleanrooms pose a number of broader advantages for cultivators and end customers.

Meet Laboratory Testing Guidelines and Protocols

For now, states create product testing regulations for cannabis. Most states that have legalized medical or adult use cannabis have created protocols for lab-testing products for pesticides and microbes. When batches of cannabis product do not meet state lab-testing standards, the product can be recalled or destroyed. In 2016, Steep Hill published an alarming study that showed they detected pesticides in roughly 70% of the samples they received and up to one third of all samples would have failed to meet regulatory standards. Cleanrooms reduce a grower’s reliance on pesticides.

Negate the Risk of Fungal Contamination

Cleanrooms negate the risk of fungal contamination through proper ventilation, particulate control and positive pressure.

Cannabis is prone to certain types of fungal spores that can cause severe illness in end customers. For example, Aspergillus mold spores are common in cannabis and can lead to cases of chronic pulmonary aspergillosis. In large doses, Aspergillus mold spores may even cause liver failure due to the carcinogenic mycotoxins the spores produce in the body. Cleanrooms negate the risk of fungal contamination through proper ventilation, particulate control and positive pressure. 

Create a Safer Work Environment for Employees

Employees who work in cultivation facilities in the cannabis industry face various occupational hazards. Many of these hazards are related to being in contact with fungicides, mold spores and chemical fertilizers. The exposure can result in issues such as allergic reactions, respiratory irritation and other physical threats. Cleanrooms and how they function can deter many of these risks. For example, the lack of need for fungicide use automatically lowers the risks due to lacking exposure. Further, because protective gear is required to maintain the integrity of the cleanroom, there is less of a chance an employee’s skin or respiratory system is exposed to irritants.

Cleanrooms: The Potential Future of Cannabis Cultivation

As cannabis becomes a more robust industry and regulations become more clearly defined, growing standards are bound to change. As speculations of national regulations veer closer to reality, growing cannabis industrially may even mean required cultivation facility upgrades. Cleanroom environments give growers firm control over the health of their crops while ensuring clean products for customers. Therefore, these innovative and health-forward implementations could easily become the norm in the cannabis industry in the future.

Cannabis Receiverships: A Viable Alternative to Bankruptcy

By Oren Bitan
No Comments

Doing business in California’s legal cannabis industry remains a risky endeavor. The majority of the industry is still unlicensed, tax rates at the state and local levels are high (notwithstanding a recent reprieve from California’s cultivation tax) and there are not enough licenses to meet geographic demand throughout the state. Outside financing remains difficult to secure for equipment, tenant improvements, account receivables and working capital because, under the federal Controlled Substances Act (CSA), cannabis remains a Schedule I narcotic. Therefore, entrepreneurs, investors and lenders who have stakes in state-sanctioned cannabis enterprises expect to see returns that justify the higher level of risk, which places additional financial pressure on cannabis businesses. In addition to the industry specific challenges, the United States economy is on the verge of a recession that may further hamper the industry notwithstanding the industry’s resiliency during the pandemic when it was deemed to be an “essential” industry that benefited from consumer spending of stimulus monies.

These outside pressures increasingly lead to ownership disputes and creditor defaults that result in litigation and the need for restructuring. In some instances, business partners cannot agree about control and finances of the licensed businesses and in other instances unpaid creditors file suit to enforce their interest in a company’s assets. And sometimes a local municipality discovers wrongdoing by an operator and initiates a health and safety lawsuit to cease the illegal condition.

Bankruptcy reorganization is an option typically utilized by struggling businesses to shed or restructure debt. Cannabis businesses, however, cannot take advantage of bankruptcy remedies because bankruptcy is a product of federal law and federal law still prohibits the sale of cannabis.

As a result, stakeholders in legal California cannabis enterprises must consider alternatives to bankruptcy to collect what they can on their loans and investments in the event the enterprise becomes insolvent or requires restructuring. A well-established alternative to bankruptcy is a state court remedy – the appointment of a receiver over the assets of a business or over the entire business operations. Through the receivership process, stakeholders may obtain many of the same protections available to them through bankruptcy

A. Federal Illegality Bars Access to Bankruptcy Protection

Over the past ten years, bankruptcy courts have routinely prohibited licensed cannabis businesses from seeking bankruptcy protection because cannabis remains illegal at the federal level under the Controlled Substances Act (CSA). Bankruptcy trustees are typically charged with managing and operating property in the same manner that the owner would be bound to do if in possession thereof. Because cannabis remains illegal at the federal level, trustees are not able to manage and operate licensed cannabis businesses.

B. Receivership as an Alternative to Bankruptcy

Under California law, a receiver is a neutral agent of the court appointed to preserve, control, manage and ultimately dispose of property that is subject to the litigation before the court.1 The receiver, therefore, holds property for the court, not the parties to the litigation.

Appointment of a receiver is a statutory provisional remedy. Other than corporate dissolutions under Code of Civil Procedure section 565, the law does not have a specific cause of action to appoint a receiver. Thus, the proponent of a receiver must have a valid cause of action in an underlying lawsuit.

1. The Appointment of a Receiver

The appointment of a receiver rests within the trial court’s discretion. Code of Civil Procedure section 564 contains the broadest statutory authority to appoint a receiver. Subdivision (b), details twelve possible situations in which a receiver may be appointed, most of which are beyond the scope of this article. The most common of these is a lender’s request to appoint a receiver when a borrower defaults on a loan and the lender seeks the appointment of a receiver over its collateral. The statute, however, clarifies that the situations listed in the statute are not exclusive: a court may appoint a receiver “[i]n all other cases where necessary to preserve the property or rights of any party.”

The receiver’s powers are limited by the statute under which the court appointed the receiver and those conferred by the court. The appointment order should, therefore, detail the duties the receiver owes to the court, and actions that the court authorizes the receiver to take to perform those tasks. The order should also specify the property that will be part of the receivership estate.

2. The Receiver’s Powers

The receiver has general statutory powers.2 The statutory powers include (i) commencing or defending litigation; (ii) taking and possessing property of the receivership estate, (iii) receiving rent, collecting debts, and making transfers, and (iv) acting in accordance with the court’s instruction with respect to the property.3 But the court’s authorization is necessary to sue the receiver and for the receiver to commence litigation.4 In the foregoing scenarios, the receiver is immunized personally from tort liability, but not in his or her official capacity as receiver.5

In addition to taking possession of property, the receiver may dispose of receivership property with the court’s approval.6 If the receiver is an equity receiver, the receiver may take possession and satisfy creditors from all the debtor’s assets.7

The court may further authorize the receiver to issue “certificates of indebtedness” to raise money to administer the receivership estate.8 This device permits the receiver to provide liquidity to the estate and gives the certificate holder an interest-bearing priority claim against the receivership estate.

3. Liquidating Cannabis Assets Through a Court Appointed Receiver

After the court appoints the receiver, the receiver should have sufficient powers to, among other things: (i) take over the management of the company; (ii) open bank accounts; (iii) borrow money by issuing receivership certificates; (iv) manage all of the company’s property; (v) hire counsel and other professionals; and (vi) sell the receivership estate’s assets for the benefit of the creditors. To maximize repayment to the creditors, the receiver may hold an auction to sell the assets and assist in facilitating the cancellation of company’s state license while the buyer of the assets secures its state license after the local license is transferred.

State cannabis licenses may not be sold or transferred.9 Yet, to maximize recovery for the creditors, the receiver may need to participate in the regulatory process to maintain a license during the pendency of the receivership and to assist in the amendment of a license while a prospective buyer seeks to obtain its own license. To do so, the receiver will first need to qualify as a licensee under state law to join as a licensee on the license and further the licensee as a going concern. Next, the principals of the prospective buyer will themselves need to qualify as licensees under the license. Then, once the sale of the company’s assets (including any interest in the license) to the buyer closes, the receiver and the company’s original owners will terminate their capacities as licensees of the license, leaving only the new owners as licensees. Thus, the proposed order should be written with attention to ensure the receiver has powers to further the foregoing and not diminish the value of the receivership estate.

After the conclusion of the sale of all assets, the receiver will need to obtain a discharge from the court of his or her duties as receiver. The receiver may do so by the parties’ stipulation or by motion. Together with the request for a discharge, the receiver should seek approval to pay: (i) any lenders to the receivership estate; (ii) professionals that the receiver hired; and (iii) him or herself for his or her services. Upon the court’s approval, the receivership will be terminated.

The conflict between federal and California law regarding cannabis continues to be an impediment for stakeholders in California’s cannabis market. Because of this conflict, stakeholders in California’s legal cannabis market lack access to vital traditional institutions, such as bankruptcy remedies. As a result, stakeholders must be prepared to consider alternatives such as a court appointed receiver, which can be a useful alternative to both secured creditors and unsecured creditors. Stakeholders who pursue a court appointed receiver will benefit from a long-established body of law and experienced professionals.


References

  1. Cal. Rules of Ct., r. 3.1179(a).
  2. Cal. Civ. Proc. Code §§ 568-570.
  3. Free Gold Mining Co. v. Spiers, 136 Cal. 484, 486 (1902); Steinberg v. Goldstein, 129 Cal. App. 2d 682, 685 (1954).
  4. Vitug v. Griffin, 214 Cal. App. 3d 488, 493 (1989).
  5. Chiesur v. Superior Court, 76 Cal. App. 2d 198, 201 (1946).
  6. Helvey v. U.S. Bldg. & Loan Ass’n, 81 Cal. App. 2d 647, 650 (1947).
  7. Turner v. Superior Court, 72 Cal. App. 3d 804, 812 (1977).
  8. Cal. Civ. Proc. Code § 568.
  9. See e.g., Cal. Code Regs. tit. 16, § 5023(c).

From Factory to Flower – 4 GMP Insights for the Grow House

By Tom Blaine
No Comments

At first glance, the layout of a grow room and a factory production line might seem to have little in common. But whether a facility is producing plants or parts, adopting good manufacturing practices (GMP) can benefit plant quality, harvest consistency and production economics.

What is GMP?

Simply defined, GMP refers to a production system made up of processes, standards and safeguards designed to consistently meet a defined quality standard. In the grow house, establishing, documenting and implementing GMPs can help guard against problems ranging from plant contamination to inconsistent harvests. GMPs can be organized into five key categories, each which contribute to cultivation:

  • People: The people working in the grow house understand their responsibilities
  • Processes: Production processes are clearly documented and consistent across harvests
  • Procedures: Guidelines are documented and communicated to all employees
  • Premises: Grow rooms and equipment are clean and maintained
  • Products: Materials used in cultivation (fertilizers, lighting, growing media, etc.) are assessed

Optimizing each of these five P’s in production can help cultivators protect their business and their margins even as flower prices in both legacy and emerging states continue to trend downward. Below, we look at four GMP insights that can help cultivators coordinate the five Ps to achieve quality, consistency and economic objectives harvest after harvest, without massive investments in capital, even during turbulent market conditions.

#1 Know your numbers and their value

Avoid the temptation to lump production costs into very broad categories, i.e., “cost of goods.” Understanding the exact cost of all inputs that go into a grow is a precedent to cost-effective production. The price of the plant material, energy consumed, labor, nutrients, fertigation and other inputs involved in the grow should be calculated to determine the actual cost of a grow room. If rooms are set up consistently, you can multiply to get an aggregate production cost across the facility.

Growing media

Look beyond the price tag when calculating costs and consider the value each input brings to the grow. Nutrition is a good example. Understanding the concentration of specific nutrients in a product can be a better way of evaluating its value than simply looking at the cost of the goods. And consider whether added nutrients are actually adding value to the product produced. More isn’t always more. In most cases, simple salts will supply the plant with what it needs to grow.

Growing media is another opportunity to evaluate the cost/benefit of cultivation inputs. How much yield can be achieved with a particular medium compared to a different choice? For example, a bag of coco may initially appear to be the low-cost choice for cultivation. Upon a deeper evaluation, though, the cost per plant of coco is generally higher when you factor in the amount of media used for each plant (and that doesn’t even factor in the labor to fill the pots).

# 2 Reduce time waste

Among the various inputs in each growing cycle, labor represents a significant cost.  Are labor hours being put to the best use and not wasted? American industrialist and innovator in mass production Henry Ford stated, “Time waste differs from material waste in that there can be no salvage. The easiest of all wastes and the hardest to correct is the waste of time, because wasted time does not litter the floor like wasted material.”

One way to see the cost of wasted labor dollars is to set up a camera and record a day of activity in the grow room during each step of a grow cycle. Or simply observe the responsibilities that are requiring workers’ time on a typical day. Watching employees’ work in the grow room may reveal how a room’s set-up is contributing to or hindering production. Are employees spending their time on tactics that add value or are they being slowed down by manual processes, such as filling containers, watering and relocating plants in the facility? Are there steps and process that could be automated, such as fertigation? Seeing how employees’ time is being used can identify opportunities to direct efforts toward functions that add value or cut costs. What would be the economic benefit of reducing a half-day of set-up time in the grow house or automating some processes?

GMPBeyond better allocation of human capital, understanding how time is used in the growing operation can suggest changes to materials used in the grow. For example, selecting a growing media that comes in plugs and blocks with pre-drilled holes for efficiently dropping in new plants can reduce time spent filling pots or configuring containers. Automating functions like fertigation and watering can not only reduce labor time but increase the precision of delivery when it comes to water and nutrients.

#3 Introduce incremental improvements

Many manufacturers rely on pilot plants to mitigate risk before process scale-up takes place across an enterprise. The same approach can benefit the grow house. Resist the temptation to overhaul the system and instead focus on introducing one change at a time. This disciplined approach will allow you to evaluate if a change is actually delivering value and should be applied more broadly. The wisdom of a cautious approach to improvements is reflected in a quote by innovation magnate Steve Jobs, co-founder of Apple. Observing that not every innovation will be a win, Jobs stated, “Sometimes when you innovate you make mistakes. It is best to admit them quickly and get on with improving your other innovations.”

When introducing a new element into the grow, pilot it in one “sample” area before adding it to the entire operation. Then give the innovation time to be evaluated before deploying it more widely. This measured approach can help reduce the risk that accompanies making a change to processes and will allow you to evaluate the relative benefit of any change or innovation. And as changes are introduced one at a time, it is easier to determine which changes are contributing value.

#4 Satisfy the market, not just the spec

Regulatory bodies set the compliance criteria for purity or quality standards in manufacturing, but the ultimate mark of approval is awarded by customers in the marketplace. A harvest may meet all of the quality specs, but if customers don’t want to buy it, achieving GMP metrics is a moot effort. The marketplace will always have the final say on a product’s commercial viability.

Understand what the market wants and be able to replicate it consistently harvest after harvest. Manufacturing a product that meets the market’s desired performance attributes is essential to sustaining and growing operations. Production quality is only as good as the last harvest and any degradation in product quality will diminish buyers’ trust. History shows that the challenge of achieving consistent production quality and reliability isn’t just a problem for cultivators. Among several factors that doomed the short-lived Edsel sedan introduced in 1957 were problems arising from assembly workers having to use different tools and techniques. A lack of consistency in producing cars or cultivars can turn off customers and profitability.

A tension exists between achieving production consistency and the opportunity to introduce changes that improve the grow. By integrating improvements into the production system one measured change at a time, cultivators can assess which improvements to continue and what needs to be tweaked. But as manufacturing has long demonstrated, continuous improvement is an ongoing journey.

As cultivators consider the 5 Ps of people, processes, procedures, premises and products, applying these four GMP insights can help growers in emerging and legacy markets navigate changing market conditions and drive continuous improvement.

Reducing Cross Contamination in Your Lab

By Nathan Libbey
No Comments

Cross Contamination

Cross Contamination – noun – “inadvertent transfer of bacteria or other contaminants from one surface, substance, etc., to another especially because of unsanitary handling procedures. – (Mariam Webster, 2021). Cross contamination is not a new concept in the clinical and food lab industries; many facilities have significant design aspects as well as SOPs to deliver the least amount of contaminants into the lab setting. For cannabis labs, however, often the exponential growth leads to a circumstance where the lab simply isn’t large enough for the number of samples processed and number of analytical instruments and personnel needed to process them. Cross contamination for cannabis labs can mean delayed results, heightened occurrences of false positives, and ultimately lost customers – why would you pay for analysis of your clean product in a dirty facility? The following steps can save you the headaches associated with cross contamination:

Wash (and dry) your hands properly

Flash back to early pandemic times when the Tik Tok “Ghen Co Vy” hand washing song was the hotness – we had little to no idea that the disease would be fueled mostly by aerosol transmission, but the premise is the same, good hand hygiene is good to reduce cross contamination. Hands are often the source of bacteria, both resident (here for the long haul; attached to your hands) and transient (easy to remove; just passing through), as they come into contact with surfaces from the bathroom to the pipettor daily (Robinson et al, 2016). Glove use coupled with adequate hand washing are good practices to reduce cross contamination from personnel to a product sample. Additionally, the type of hand drying technique can reduce the microbial load on the bathroom floors and, subsequently tracked into the lab. A 2013 study demonstrated almost double the contamination from air blade technology versus using a paper towel to dry your hands (Margas et al, 2013).

Design Your Lab for Separation

Microbes are migratory. In fact, E. coli can travel at speeds up to 15 body lengths per second. Compared to the fastest Olympians running the 4X100m relay, with an average speed of 35 feet per second or 6 body lengths, this bacterium is a gold medal winner, but we don’t want that in the lab setting (Milo and Phillips, 2021). New lab design keeps this idea of bacterial travel in mind, but for those labs without a new build, steps can be made to prevent contamination:

  • Try to keep traffic flow moving in one direction. Retracing steps can lead to contamination of a previous work station
  • Use separate equipment (e.g. cabinets, pipettes) for each process/step
  • Separate pre- and post-pcr areas
  • Physical separation – use different rooms, add walls, partitions, etc.

Establish, Train and Adhere to SOPs

Design SOPs that include everything- from hygiene to test procedures and sanitation.

High turnover for personnel in labs causes myriad issues. It doesn’t take long for a lab that is buttoned up with cohesive workflows to become a willy-nilly hodgepodge of poor lab practices. A lack of codified Standard Operating Procedures (SOPs) can lead to a lab rife with contaminants and no clear way to troubleshoot the issue. Labs should design strict SOPs that include everything from hand hygiene to test procedures and sanitation. Written SOPs, according to the WHO, should be available at all work stations in their most recent version in order to reduce biased results from testing (WHO, 2009). These SOPs should be relayed to each new employee and training on updated SOPs should be conducted on an ongoing basis. According to Sutton, 2010, laboratory SOPs can be broken down into the following categories:

  • Quality requirements
  • Media
  • Cultures
  • Equipment
  • Training
  • Sample handling
  • Lab operations
  • Testing methodology
  • Data handling/reporting/archiving
  • Investigations

Establish Controls and Monitor Results

Scanning electron micrograph shows a colony of Salmonella typhimurium bacteria. Photo courtesy of CDC, Janice Haney Carr
Scanning electron micrograph shows a colony of Salmonella typhimurium bacteria. Photo courtesy of CDC, Janice Haney Carr

It may be difficult for labs to keep tabs on positivity and fail rates, but these are important aspects of a QC regimen. For microbiological analysis, labs should use an internal positive control to validate that 1) the method is working properly and 2) positives are a result of target analytes found in the target matrix, not an internal lab contamination strain. Positive controls can be an organism of choice, such as Salmonella Tranoroa, and can be tagged with a marker, such as Green Fluorescent Protein in order to differentiate the control strain. These controls will allow a lab tech to discriminate between a naturally contaminated specimen vs. a positive as a result of cross-contamination.

Labs should, in addition to having good QC practices, keep track of fail rates and positivity rates. This can be done as total lab results by analysis, but also can be broken down into customers. For instance, a lab fail rate for pesticides averages 4% for dried flower samples. If, during a given period of review, this rate jumps past 6% or falls below 2%, their may be an issue with instrumentation, personnel or the product itself. Once contamination is ruled out, labs can then present evidence of spikes in fail rates to growers who can then remediate in their own facilities. These efforts in concert will inherently drive down fail rates, increase lab capacity and efficiency, and result in cost savings for all parties associated.

Continuous Improvement is the Key

Cannabis testing labs are, compared to their food and clinical counterparts, relatively new. The lack of consistent state and federal regulation coupled with unfathomable growth each year, means many labs have been in the “build the plane as you fly” mode. As the lab environment matures, simple QC, SOP and hygiene changes can make an incremental differences and drive improvements for labs as well as growers and manufacturers they support. Lab management can, and should, take steps to reduce cross contamination, increase efficiency and lower costs; The first step is always the hardest, but continuous improvement cannot begin until it has been taken.


References

Margas, E, Maguire, E, Berland, C. R, Welander, F, & Holah, J. T. (2013). Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer. Journal of Applied Microbiology, 115(2), 572-582.

Mariam Webster (2021. Cross contamination. Retrieved from https://www.merriam-webster.com/dictionary/cross%20contamination

Milo, M., and Phillips, R. (2021). How fast do cells move? Cell biology by the numbers. Retrieved from http://book.bionumbers.org/how-fast-do-cells-move/

Robinson, Andrew L, Lee, Hyun Jung, Kwon, Junehee, Todd, Ewen, Perez Rodriguez, Fernando, & Ryu, Dojin. (2016). Adequate Hand Washing and Glove Use Are Necessary To Reduce Cross-Contamination from Hands with High Bacterial Loads. Journal of Food Protection, 79(2), 304–308. https://doi.org/10.4315/0362-028X.JFP-15-342

Sutton, Scott. (2010). The importance of a strong SOP system in the QC microbiology lab. Journal of GXP Compliance, 14(2), 44.

World Health Organization. (2009). Good Laboratory Practice Handbook. Retrieved from https://www.who.int/tdr/publications/documents/glp-handbook.pdf

HACCP

HACCP for Cannabis: A Guide for Developing a Plan

By Radojka Barycki
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) is a systematic approach that evaluates hazards that may potentially be present in food products that can harm the consumer. The process used to manufacture the product is evaluated from raw material procurement, receiving and handling, to manufacturing, distribution and consumption of the finished product1. The documented process is what is known as HACCP plan. Although HACCP was designed to evaluate hazards in foods, it can be used to assess or evaluate hazards that may potentially be present in cannabis consumable products (edibles and vaping) that can cause harm to the consumer.

HACCP plan development requires a systematic approach that covers 5 preliminary steps and 7 principles. A systematic approach means that each step must be followed as outlined. Skipping a step will result in a HACCP plan that most likely will be ineffective to control potential hazards in the product.

The 5 preliminary steps are:

  1. Establish a HACCP team
  2. Describe the product
  3. Establish the intended use of the product
  4. Develop a flow diagram
  5. Verify the flow diagram

The 7 Principles are:HACCP

  1. Conduct a hazard analysis
  2. Identify the critical control points (CCPs)
  3. Establish critical limits (CL)
  4. Establish monitoring procedures
  5. Establish corrective actions
  6. Establish verification procedures
  7. Establish records and record keeping procedures1,2

It is important to mention that HACCP plans are supported by programs and procedures that establish the minimum operational and sanitary conditions to manufacture safe products. These programs and procedures are known as pre-requisite programs (PRP) or preventative controls1,2.

Figure 1. Flow Diagram

A multidisciplinary team must be established in order to ensure that all inputs of the product manufacturing process are considered during the hazards analysis discussions. The description of the product and its intended use provides detail information on ingredients, primary packaging material, methods of distribution, chemical characteristics, labeling and if any consumer might be vulnerable to the consumption of the product. A verified flow diagram is an accurate representation of the different steps followed during the product manufacturing process and will be used to conduct a hazard analysis. An inaccurate flow diagram will set the stage for an inadequate HACCP plan. Therefore, it is important that the HACCP team members verify the flow diagram. Figure 1 is a flow diagram for a fictional infused apple juice manufacturing plan that I will be using as an example.

The hazard analysis is the backbone of the HACCP plan. There are two elements that must be considered when conducting the hazard analysis:

  • Identification of the hazard associated with the ingredient(s) and/or the product manufacturing steps. These hazards have been categorized as: Biological, chemical (including radiological) and physical. Biological, chemical and physical hazards should be considered for each ingredient, primary packaging and process step. Also, it is important that the team is specific as to what hazard they are referring to. I often find that biological hazards are identified as “pathogens” for example. The team has to be specific on which pathogen is of concern. For example, if you are processing apple juice, the pathogens of concern are pathogenic coli and Salmonella sp. However, if you are processing carrot juice, you need to add Clostridium botulinum as a biological hazard also. If the choice of method to eliminate the hazards is pasteurization for example, the processing temperature-time combinations will differ greatly when manufacturing the apple juice vs. the carrot juice as C. botulinum is an organism that can sporulate and, therefore, is harder to kill.
  • Characterization of the hazard. This implies determining the significance of the potential hazard based on the severity of the consequence if it is consumed and the likelihood of occurrence in the ingredient or process step. Only steps in the process that has significant hazards should be considered further.
Table 1. Ingredient Hazard Analysis

In my professional experience, the hazard analysis is one of the most difficult steps to achieve because it requires the expertise of the multidisciplinary team and a lot of discussion to get to the conclusion of which hazard is significant. I find that a lot of teams get overwhelmed during this process because they consider that everything in the process may represent a hazard. So, when I am working with clients or providing training, I remind everyone that, in the bigger scheme of things, we can get stricken by a lighting in the middle of a thunderstorm. However, what will increase our chances would be whether we are close or not to a body of water for example. If I am swimming in the middle of a lake, I increase my chances to get stricken by the lighting. In comparison, if I am just sitting in my living room drinking a cup of coffee during the thunderstorm, the likelihood of being stricken by a lighting is a lot less. The same rationale should be applied when conducting the hazard analysis for manufactured products. You may have a hazard that will cause illness or death (high on the severity chart) but you also may have a program that mitigates the likelihood of introducing or having the hazard. The program will reduce the significance of the hazard to a level that may not need a critical control point to minimize or eliminate it.

Table 2. Process Hazard Analysis (1)

Clear as mud, right? So, how would this look like on the infused apple juice example? Table 1 shows the hazard analysis for the ingredients. Tables 2 and 3 show the hazard analysis for the part of the process. In addition, I have identified the CCPs: Patulin testing and pasteurization. There is a tool called the CCP decision tree that is often used to determine the CCPs in the process.

Once we have the CCPs, we need to establish the critical limits to ensure that the hazard is controlled. These limits must be validated. In the case of Patulin, the FDA has done several studies and has established 50 ppm as the maximum limit. In the case of pasteurization, a validation study can be conducted in the juice by a 3rd party laboratory. These studies typically are called thermal death studies (TDS) and provide the temperature and time combination to achieve the reduction of the pathogen(s) of concern to an acceptable level that they do not cause harm. In juice, the regulatory requirement is a 5-log reduction. So, let’s say that the TDS conducted in the infused apple juice determined that 165°F for 5 seconds is the critical limit for pasteurization. Note that the 5 seconds will be provided by the flow of the product through the holding tube of the pasteurizer. This is measured based on flow in gallons per minute.

Table 3. Process Hazard Analysis (2)

Monitoring is essential to ensure that the critical limits are met. A monitoring plan that outlines what, how, when and who is responsible for the monitoring is required.

Ideally, the system should not fail. However, in a manufacturing environment, failures can happen. Therefore, it is important to pre-establish steps that will be taken to ensure that the product is not out of the control of the facility in the event of a deviation from the HACCP plan. These steps are called corrective actions and must be verified once they are completed. Corrective actions procedures must address the control of the product, investigation of the event, corrective actions taken so the deviation doesn’t reoccur and product disposition.

Table 4. HACCP Plan Summary

Verification activities ensure that the HACCP plan is being followed as written. Typically, verification is done by reviewing the records associated with the plan. These records include but are not limited to monitoring records, calibration records, corrective action records, and preventive maintenance records for equipment associated with the CCPs. Record review must be done within 7 working days of the record being produced.

Finally, establishing records and record keeping procedures is the last step on developing HACCP plans. Records must be kept in a dry and secure location.

Table 4 show the summary of the HACCP plan for the infused apple juice example.

For more information on how to develop a HACCP plan for your facility, read the resources below:

  1. HACCP Principles and Application Guidelines – The National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
  2. ASTM D8250-19: Standard Practice for Applying a Hazard Analysis Critical Control Points (HACCP) Systems for Cannabis Consumable Products

Processes, Protocols and Layers of Protection: Essential Security Measures for the Medical Cannabis and Hemp Industries

By Joshua Wall
No Comments

As legalization of cannabis products from hemp to medical cannabis takes root across the U.S., there’s a growing need to understand and build good security practices. While many think of security as safeguarding assets like facilities and product, effective security does much more. It protects a business’ workers, providing them secure workplaces and incomes. Ideally, it reaches from supply chain to customers by ensuring consistently safe products.

To truly understand the value of this for a brand or for the industry as a whole, consider the opposite: the destructive effect – on a brand and on the industry at large – of unsafe or tampered product reaching customers, or of crimes occurring, just as the industry seeks to demonstrate its validity and benefits. Security is vital not only to individual farmers, processors or customers but to all who value what the industry brings to those who rely on CBD or medical cannabis products for their wellbeing.

Know the Threats.

Part of the learning process involves understanding the value of the product.Security is all about anticipating and reducing risks. These can include physical threats from natural sources – think flood, fire, tornado or crop fail – or from human threats. Human threats can arise from organized criminals, hackers, amateur thieves, vandals – or insiders.

As regulated industries, hemp and cannabis businesses also face risk of losses, which can be significant, from penalties ranging from fines to being shut down for non-compliance. While rules vary from state to state and continue to change, a disciplined approach to security is foundational to reducing risk at many levels. Rigorous operational processes must incorporate security that addresses risks at multiple points of access, transport and sale of products.

Learn the Rules.

In a rapidly evolving industry, one of the most important things producers can do is to learn. Security requirements vary by region and providers need to be aware of what is available. Get to know your state, local and federal resources for your operating area. California law, for example, specifies use of high-resolution video surveillance in dispensaries, while others do not.

Joshua Wall, Chief Operating Officer at Harvest Connect LLC

Part of the learning process involves understanding the value of the product. With medicinal cannabis, it’s helpful to grasp both its commodity value and the street value that could make it attractive to thieves. In “Why Marijuana Plant Value is So Important for Adjusters,” Canadian Underwriter Magazine gave examples that indicate the size of losses that may occur in growing and processing operations:

“In the medical marijuana space, ClaimsPro has already seen losses primarily between $150,000 and $750,000. These losses, mostly on Vancouver Island, were for fire and water damage, as well as boiler machinery issues, physical damage to buildings and specialized greenhouse equipment, as well as extra expense and business interruption.”

The same article notes a claim over $20 million at another single flower greenhouse. Security needs to reflect what’s present on our premises.

Educating the community can reduce risk as well. Producers of industrial hemp may need to inform would-be thieves that what they are looking at is not street-valued product. To protect the crops, which are generally grown outdoors and do not require a full security detail, a best practice is simply posting signs on the property that say explicitly “No THC.” 

Begin with a Risk Assessment.

Security begins with a professional evaluation of site vulnerabilities, examining key weaknesses that could be exploited by attackers. These include:

  • Monitoring access to the site is a foundational principle of security.
  • Design limited access points into the facility as well as prepare for possible facility breaches with perimeter access control, technological redundancies and ballistic glass for defensive architecture measures.
  • Look at route vulnerabilities as well.
  • Hedge site risk by not limiting your operation to a single site where one incident could wipe out an entire year’s crop.

The nature of threats is always changing. A 2018 Newsweek article described the struggles of legal cannabis farmers against illegal and potentially cartel-backed and violent operations in California. While a 2020 Business Insider report described indications that legalization was prompting some cartels to leave cannabis alone and move on to fentanyl and meth. “While Mexican drug cartels made their money predominantly from marijuana in past decades, the market has somewhat dissipated with the state-level legalization of cannabis in dozens of states across the US.”

Define Levels of Risk and Access.

The best security matches spending to risk in a commonsense way. Are you more at risk from the occasional smash and grab incident or is there reason to anticipate an organized assault? As in many industries, the greatest risk often comes from employee fraud or theft. Hiring carefully, paying fairly and training staff well are important to long term security.

Iron Protection Group in a training session
Image credit: Tampa Bay Times

How will the product be moved around within the facility and beyond it – and what staff are responsible for each part of the journey? Who can enter the cultivation areas and what protocols must they follow? On site staff should be trained on what to look for if they observe a security breach. Consider biometrics such as retinal scans, fingerprint scans or similar.

In cases where valuable product or cash is present, guards can play an important role. Harvest Connect uses only high-level former military or police officers in these roles, an approach recognized by many. Hunter Garth of Iron Protection Group notes they have “the ability to de-escalate a potentially harmful situation and the fortitude to see a mission through to completion, no matter what external circumstances may arise.”

Inventory and Transaction Controls

Inside threats from sloppy processes can be just as insidious as attacks. Poor tracking of inventory by Oregon’s legal cannabis producers made headlines in 2018 as The Oregonian reported, “U.S. Attorney Billy Williams told a large gathering that included Gov. Kate Brown, law enforcement officials and representatives of the cannabis industry that Oregon has an ‘identifiable and formidable overproduction and diversion problem.’’ Discipline, applied by state pressure but carried out by producers themselves, has begun to reduce the diversion of untracked product into the black market a year later.

Cannabis businesses need a professional approach to monitoring all product and money that moves through its systems. These operational processes can include time, date and attendance stamps on all inventory. Similarly, accounting systems and software must follow the highest professional standards. Lastly, when breaches occur, it is essential that fraud and theft are caught, eliminated and prosecuted as appropriate.

Nurturing an Emerging Industry

Security resources are an integral part of maintaining the integrity of a business’ supply chain. As the product moves from the fields to processing centers to consumers, purity assurance becomes an operational objective. Ultimately, protecting the product through secure and professional practices is the optimal way to serve customers, build a brand, and sustain the industry.

Radojka Barycki picture

Preparing Your Recall Strategies

By Radojka Barycki
No Comments
Radojka Barycki picture

A product recall is the removal of a defective product from the market because it can cause harm to the consumer or place the manufacturer at risk of legal action.

Although a recall is not something that companies want to be related to, preparing for it is very critical and it is an important part of crisis management.Product recalls can cost companies million dollars in profit loss and civil damages. The company senior management and employees can also face criminal action, if the investigation shows negligent acts. The company will also face loss of reputation and the trust of its customers.

Although a recall is not something that companies want to be related to, preparing for it is very critical and it is an important part of crisis management.

There are several phases when preparing a recall strategy:

Planning Phase

During the planning phase, a recall plan is developed. A recall plan is the procedure that will be followed by an appointed company’s team during an actual recall. A good recall plan will have the following components:

  • Definitions of the type of products recalls. According to federal regulations, there are three types of recalls. The company should know what type of recall they are performing to understand the risk the consumer is facing.
  • A Recall Team. The recall team is the key stakeholders that are responsible for different processes within the company. A good recall team will be multidisciplinary. A multidisciplinary team is a group of people that have different responsibilities within the manufacturing site (i.e. Receiving Manager, QA Manager, etc.) and/or outside (i.e. Legal Counsel, Public Relations, etc.) 
  • A description of the recall team member’s responsibilities must be outlined. A recall coordinator and a backup should be assigned to ensure that there is one person organizing all activities during the recall. 
  • A Communication Plan. It is important that only the appointed person that has the responsibility of external communications (i.e. media, regulators, customers, key stakeholders, etc.). In addition, there should be only one person appointed to handle all the communication within the team (internal communications.)
  • Documents to be used during the recall are:
    • Communication documents: Letters to customers, regulators and media must be drafted and kept on hand for use during the crisis.
    • Forms that will be used to keep track of product inventory on hand (still in the site), product being returned and product being destroyed.
  • A Traceability Procedure should be in place to ensure that materials used in the manufacturing of the finished good can be traced from the time of the delivery to the facility and throughout the product manufacturing process. In addition, traceability must also be provided for finished goods from the manufacturing site to its first point of distribution. This is known as traceability one step back (materials used) and one step forward (first point of distribution.)

    PlantTag
    A plant tagged with a barcode and date for tracking
  • A description of (or reference to) product quarantine (product hold) procedures that must be followed to ensure that the product that is still at the site do not leave the facility. 
  • Product Destruction The company must outline (or reference) how product will be destroyed during a recall process.

Implementation Phase

There are three processes that need to be followed when implementing the recall plan:

  • Training: The recall team must be trained on their roles and responsibilities. Employees working at the site will be receiving directives from the appointed recall team members. It is also important that they are aware about the recall plan and understand the importance of urgency during the situation.
  • Exercise: It is important that the company doesn’t wait until the incident occurs to ensure that everyone in the team understands their roles and responsibilities during the recall. Therefore, annual testing of the procedure is imperative. This implies creating a “mock recall” situation and providing the information to the team to evaluate if they fully understand their role and responsibilities. This also allows the testing of the traceability protocols and systems that have been put in place by the site. Ensure that the team understands that this is an exercise and not an actual recall. You don’t want the team members going through the emotions that an actual recall gives. However, stress the importance of their participation during this exercise. You do not communicate to customers, media or regulators during a recall exercise. 
  • Execution: This is the actual recall and full implementation of the plan. During the actual recall, you communicate to the regulators, customers and media. The company must also conduct daily recall effectiveness checks by using the forms developed for tracking product inventory, recovery and destruction. 
  • Identify root cause and implement corrective actions. Root cause(s) will be identified during the recall process by analyzing the information resulting from the investigation of the incident. Regulatory agencies will actively participate in the discussion for identifying in the implementation of corrective actions. 

Improvement Phase

The recall team should always meet after the recall exercise or the actual recall incident. The team must evaluate what positive or negative outcomes resulted from the process. If there are gaps identified, these need to be closed, so the process is improved.

Documentation: Are You Prepared?

By Radojka Barycki
No Comments

Documents play a key role in the world of regulations and global standards. Documents tell a story on programs development, implementation and verification during an inspection or audit. Documents are used as evidence to determine conformance to the law or standard. However, do you know what kind of documents may be reviewed during a regulatory inspection or a food safety audit? Are you prepared to show that the implementation of regulatory requirements or a standard is done efficiently at your facility?

Inspectors and auditors will look for compliance either to regulations or to a standard criterion. Regulations and standards require that documentation is controlled, secured and stored in an area where they cannot deteriorate. Therefore, writing a Document Management Program (DMP) will help a business owner ensure consistency in meeting this and other requirements.Radojka Barycki will host a a plenary session titled, “Cannabis: A Compliance Revolution” at the 2018 Food Safety Consortium | Learn More

A well-developed and implemented DMP provides control over documents by providing a number sequence and revision status to the document. In addition, ownership for development, review and distribution of the documents are assigned to specific individuals within the company to ensure that there are no inconsistencies in the program. Documents must also have the name of the company in addition to a space to write the date when the record is generated. It is recommended to include the address if there are multiple operational sites within the same company.

There are different types of documents that serve as support to the operations:

  1. Program: A written document indicating how a business will execute its activities. When it comes to the food industry, this is a written document that indicates how quality, food safety and business activities are controlled.
  2. Procedures: General actions conducted in a certain order. Standard Operational Procedures (SOPs) allow the employee to know what to do in general. For example, a truck receiving procedure only tells the employee what the expected conditions are when receiving a truck (cleanliness, temperature, etc.) However, it doesn’t tell the employee how to look for the expected conditions at the time of the truck arrival.
  3. Work Instructions: Detailed actions conducted in a certain order. For example, truck inspection work instruction tells the employee what steps are to be followed to perform the inspection.
  4. Forms: Documents used to record activities being performed. 
  5. Work Aids: are documents that provide additional information that is important to perform the job and can be used as a quick reference when performing the required activities within the job. 
Are you prepared to face document requirements now and in the future?

The inspectors and auditors base their role on the following saying: “Say what you do. Do what you say. Prove it!” The programs say what the company do. The procedures, work instructions and work aids provide information on implementation (Do what you say) and the forms become records that are evidence (prove) that the company is following their own written processes.

Regulatory requirements for cannabis vary from state to state. In general, an inspector may ask a cannabis business to provide the following documentation during an inspection:

  1. Business License(s)
  2. Product Traceability Programs and Documents
  3. Product Testing (Certificate of Analysis – COAs)
  4. Certification Documents (applicable mainly to cannabis testing labs)
  5. Proof of Destruction (if product needs to be destroyed due to non-compliance)
  6. Training Documents (competency evidence)
  7. Security Programs

As different states legalize cannabis, new regulatory requirements are being developed and modeled after the pharma, agriculture and food industries. In addition, standards will be in place that will provide more consistency to industry practices at a global level. The pharma, agriculture and food industries base their operations and product safety in programs such as cGMPs, GAPs, HACCP-based Food Safety Management Systems and Quality Management Systems. Documents required during an inspection or audit are related to:

  1. Good Agricultural Practices (GAPs)
  2. Current Good Manufacturing Practices (cGMPs)
  3. Food Safety Plan Documents
  4. Ingredient and Processing Aids Receiving
  5. Ingredient and Processing Aids Storage
  6. Operational Programs (Product Processing)
  7. Final Product Storage
  8. Final Product Transportation
  9. Defense Program
  10. Traceability Program
  11. Training Program
  12. Document Management Program

In the always evolving cannabis industry, are you prepared to face document requirements now and in the future?