Tag Archives: quality assurance

The Need for Standardization in Medical Cannabis Testing

By Andrew James
2 Comments

There has been a move towards the legalization of cannabis for medical and/or recreational use across many countries and US states in recent years, leading to greater demand for accurate potency and safety testing. Despite this, there are currently no standardized regulations between states or countries for quality control including content, composition, adulterants, potency or levels of toxic residues. As such, in many cases where regulations are in place, testing is generally carried out at a small number of approved independent testing laboratories.

The need for self-regulation has led to the growth of portable gas chromatography (GC) being used in the field of cannabis testing.This lack of clarity makes it difficult for consumers to make informed decisions about what they are purchasing, an issue which could be damaging to the industry’s changing reputation. As it stands, producers of cannabis and cannabis-derived products can supply goods with potentially harmful contaminants such as fungi or pesticide residues, which are potentially threatening to human health. Most cannabis products sold legally in the US are required to be tested and labelled for THC, the chemical responsible for most of cannabis’s psychoactive effects. A US study found that as few as 20% of recreational cannabis products are accurately labelled with only 17% of products reviewed accurately labelled for THC content (i.e. within 10% of the labeled value). It also found 23% were under labelled, and 60% were over labelled.

If cannabis were to be categorized as a regulated pharmaceutical drug, it would be rigorously tested to comply with stringent rules and regulations regarding quality and safety of the product, as are all other drugs. However, as there is currently no centralized regulatory body that oversees this, the responsibility of quality assurance falls to the grower, manufacturer and sometimes the consumer.

The Need for Cannabis Analysis

The most common requirement when testing cannabis is positive identification and quantification of the total THC:CBD ratio. In a highly competitive marketplace, this information is important, as cannabis consumers tend to equate THC levels with price. In many instances, lower THC products are cheaper and higher THC concentrations make products more expensive. Without robust systems in place for sufficient testing, this information cannot be accurately determined, meaning the customer often cannot make an informed decision.

Pesticide use is surprisingly common in the cannabis cultivation industry

In addition to potency testing, one of the core issues facing the industry and by extension, the end consumer, is the prevalence of pesticides in cannabis products. In the Netherlands, the Ministry of Environment and Health reported that over 90% of cannabis plants tested had pesticides on them. While steps have been taken to tackle this, the lack of cohesion in testing standards combined with the onus on individual labs to carry out testing, has led to some issues within the industry.

Many individual retailers in the U.S. and internationally are self-testing for impurities such as pesticides, heavy metals and microbials. While there is a clear need for standard testing across all locations, the need for self-regulation at present has led to the growth of portable gas chromatography (GC) being used in the field of cannabis testing.

Using GC as an analytical tool 

With the increased need for quality control and quality assurance in the largely unregulated cannabis industry, technology is now more accessible to smaller companies and to people with minimal laboratory experience. There are a range of cannabis testing packages available for smaller individual labs which offer more mobile testing with affordable packages. The lower entry price makes GC analysis affordable for more laboratories while still delivering reliable, high quality results.

Portable GC instruments can offer high quality potency testing, pesticide screening, terpene and flavor profiling, and residual solvents analysis. These instruments can give growers and processors an accurate result of cannabinoid percentages, a fundamental piece of information for growers and dispensaries. Systems can be configured for manual injection or a range of autosampler options can be added.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

GC enables the rapid and accurate identification and quantification of the THC:CBD ratio. This is important for companies which are carrying out self-testing as it allows their customers to have assurances in the short term over the quality of their product, as well as reducing any potential risks to public health.

An example of this in practice is the use of GC by Dutch company Shamanics which carries out testing service for coffee shops in the Netherlands. The company conducts terpene analysis and potency testing to assure the quality of the products it supplies, with a portable GC, which offers the flexibility required without any established guidelines on testing in place.

When testing for potency using the GC, they look for total THC and CBD by converting the acidified versions of the cannabinoids into neutral forms within the heat of the GC injector. The process has flexibility which means that if they need to see both the acidified and neutral versions, they can do this by derivatizing the sample. The accuracy of this process is crucial to Shamanics and similar companies within the industry so that they can accurately judge the quality of a product, and relay this information to retailers and consumers.

The future of GC in standardized testing

While the growing availability of portable GC instruments and the increasing sophistication of individual labs means more companies are able to self-test products, there is still a significant hurdle to overcome in terms of standardising and regulating both the medical and recreational cannabis markets. Where regulation is brought in it should be consistent across states and countries and most importantly, it should be monitored and enforced. In the meantime, responsible producers are using the technology available to them to provide consumers with guarantees that their cannabis products are safe and of a high quality.

emerald test retail

The Emerald Test Gets Record Lab Participation

By Aaron G. Biros
No Comments
emerald test retail

According to a press release released by Emerald Scientific, their spring Emerald Test had a 25% increase in participation over the fall 2017 test.

77 laboratories from 18 states and two foreign countries participated in the bi-annual Emerald Test, an inter-laboratory comparison and proficiency testing (PT) program. The program is a tool for labs to demonstrate their competence to existing clients, potential customers, regulatory agencies and accreditation bodies.

Overall, the company shipped 314 PT samples, with the majority in a hemp or hemp oil matrix. According to the press release, the new PTs including potency in hemp oil, STEC, Aspergillus Mold and Mycotoxins attracted a good deal of labs. “Many laboratories have been regular participants which speaks volumes about their commitment to quality assurance, regulatory compliance, and consumer safety,” says Ken Groggel, director of Emerald Scientific’s proficiency testing program. “The collegial attitude of open communication and shared experience increases our knowledge and ensures continued success for all involved. Our goal is to establish an industry benchmark for cannabis testing while providing valuable feedback to each laboratory’s quality assurance system.”

This marks the first time the Emerald Test used two potency PTs- the original in solution and a new hemp oil matrix. “Of the 62 labs that participated in the Potency PT, 48 took the PT in solution with 47 receiving an Emerald Badge,” reads the press release. “Another 23 labs took the PT in hemp oil, with 22 awarded an Emerald Badge. Nine labs took both PTs.”

39 labs took PTs in APC, Total Coliform, E. coli, Enterobacteriaceae and Yeast/Mold and 38 of those received the badge. 45 reported results for Salmonella and 42 of them were able to correctly identify the contaminated sample. 12 labs took the Aspergillus Mold PT and 11 of them were awarded the badge. 24 participated in the pesticides PT and 19 of them met criteria for the badge, while four of them did not report results.

The press release noted that the pesticides and residual solvents in hemp oil PTs were some of the more challenging tests in the spring program. 43 labs reported results for the residual solvents in hemp oil PT and only 31 received badges. The terpenes in hemp oil PT was also a challenging test where 21 labs participated and only 11 received the badge, marking the lowest passing rate of all the PTs.

The advisory panel for The Emerald Test consists of chemists, accreditation providers, laboratory owners, and other industry experts to keep it representative of industry needs. “The Emerald Test is the most comprehensive testing program in the world for the cannabis industry, but as the market grows more testing will be needed,” says Groggel. “We intend to continue introducing new proficiency tests while expanding the menu of matrix choices in response to laboratory requests and regulatory requirements.”

According to the press release, their fall program is open for enrollment until today. Testing begins in mid-October.

Orange Photonics Introduces Terpenes+ Module in Portable Analyzer

By Aaron G. Biros
No Comments

Last week at the National Cannabis Industry Association’s (NCIA) Cannabis Business Summit, Orange Photonics unveiled their newest product added to their suite of testing instruments for quality assurance in the field. The Terpenes+ Module for the LightLab Cannabis Analyzer, which semi-quantitatively measures terpenes, Cannabichromene (CBC) and degraded THC, adds three new chemical analyses to the six cannabinoids it already reports.

CBC, a cannabinoid typically seen in hemp and CBD-rich plants, has been linked to some potentially impactful medical applications, much like the findings regarding the benefits of CBD. The module that tests for it, along with terpenes and degraded THC, can be added to the LightLab without any changes to hardware or sample preparation.

Dylan Wilks, chief technology officer of Orange Photonics
Dylan Wilks, chief technology officer of Orange Photonics

According to Dylan Wilks, chief technology officer of Orange Photonics, this could be a particularly useful tool for distillate producers looking for extra quality controls. Cannabis distillates are some of the most prized cannabis products around, but the heat used to create them can also create undesirable compounds,” says Wilks. “Distillate producers can see potency drop more than 25% if their process isn’t optimized”. With this new Terpenes+ Module, a distillate producer could quantify degraded THC content and get an accurate reading for their QC/QA department.

We spoke with Stephanie McArdle, president of Orange Photonics, to learn more about their instruments designed for quality assurance for growers and extractors alike.

Stephanie McArdle, president of Orange Photonics
Stephanie McArdle, president of Orange Photonics

According to McArdle, this could help cultivators and processors understand and value their product when terpene-rich products are the end goal. “Rather than try to duplicate the laboratory analysis, which would require expensive equipment and difficult sample preparation, we took a different approach. We report all terpenes as a single total terpene number,” says McArdle. “The analyzer only looks for monoterpenes (some common monoterpenes are myrcene, limonene and alpha-pinene), and not sesquiterpenes (the other major group of cannabis terpenes, such as Beta- Caryophyllene and Humulene) so the analysis is semi-quantitative. What we do is measure the monoterpenes and make an assumption that the sesquiterpenes are similar to an average cannabis plant to calculate a total terpene content.” She says because roughly 80% of terpenes found in cannabis are monoterpenes, this should produce accurate results, though some exotic strains may not result in accurate terpene content using this method.

The LIghtLab analyzer on the workbench
The LIghtLab analyzer on the workbench

As growers look to make their product unique in a highly competitive market, many are looking at terpenes as a source of differentiation. There are a variety of areas where growers can target higher terpene production, McArdle says. “During production, a grower may want to select plants for growing based on terpene content, or adjust nutrient levels, lighting, etc. to maximize terpenes,” says McArdle. “During the curing process, adjusting the environmental conditions to maximize terpene content is highly desirable.” Terpenes are also beginning to get recognized for their potential medical and therapeutic values as well, notably as an essential piece in the Entourage Effect. “Ultimately, it comes down to economics – terpene rich products have a higher market value,” says McArdle. “If you’re the grower, you want to prove that your product is superior. If you’re the buyer, you want to ensure the product you buy is high quality before processing it into other products. In both cases, knowing the terpene content is critical to ensuring you’re maximizing profits.”

Orange Photonics’ LightLab operates very similarly to instruments you might find in a cannabis laboratory. Many cannabis testing labs use High Performance Liquid Chromatography (HPLC) to analyze hemp or cannabis samples. “The primary difference between LightLab and an HPLC is that we operate at lower pressures and rely on spectroscopy more heavily than a typical HPLC analysis does,” says McArdle. “Like an HPLC, LightLab pushes an extracted cannabis sample through a column. The column separates the cannabinoids in the sample by slowing down cannabinoids by different amounts based on their affinity to the column.” McArdle says this is what allows each cannabinoid to exit the column at a different time. “For example, CBD may exit the column first, then D9THC and so on,” says McArdle. “Once the column separates the cannabinoids, they are quantified using optical spectroscopy- basically we are using light to do the final quantification.”

Cannabis Track Added to 2018 Food Safety Consortium

By Cannabis Industry Journal Staff
No Comments

The 6thAnnual Food Safety Consortium Conference & Expo has announced a series of talks focused on cannabis. In addition to the categories such as Operations, Detection, Compliance and Supply Chain, the Call for Abstracts now includes a fifth category in this year’s program: Cannabis Quality.

The Cannabis Quality series will feature presentations by subject matter experts in the areas of regulations, edibles manufacturing, cannabis safety & quality as well as laboratory testing. The Food Safety Consortium itself is hosted by our sister publication, Food Safety Tech, but the Cannabis Quality series will be co-hosted by Cannabis Industry Journal as well.

Rick Biros, President/Publisher, Innovative Publishing Co. LLC
Rick Biros, conference director of the Food Safety Consortium

Citing the need to address safety in a burgeoning market, Rick Biros, conference director, believes education is key to helping the cannabis industry mature. “As the cannabis industry evolves, so does the need to protect the consumer,” says Biros. “Just as we protect the safety of our food supply chain, it is important to educate the cannabis industry about protecting their supply chain from seed to sale. Through these educational talks, we want to help bridge that gap, hosting a forum for those in the cannabis industry to interact with food safety professionals.”

The 2018 Food Safety Consortium Conference & Expo will be held November 14–16 in Schaumburg, Illinois. The event is a top food safety conference that features Food Safety and Quality Assurance (FSQA) industry experts and government officials.

The conference focuses on food safety education and networking, providing attendees information on best practices and new technology solutions to today’s food safety challenges. Previous keynote speakers have included food safety leaders such as Stephen Ostroff, M.D., deputy commissioner for Foods and Veterinary Medicine, U.S. Food and Drug Administration and Frank Yiannis, vice president of Food Safety at Walmart and author of Food Safety Culture: Creating a Behavior-Based Food Safety Management System.

Before submitting an abstract, following are a few points to keep in mind:

  • The abstract should be about 300 words
  • Presentations will be judged on educational value
  • Don’t submit a sales pitch!
  • Presentation time is about 45 minutes—this includes a 10-15 Q&A session

To see the Call for Abstracts and submit a presentation for consideration, click here. The deadline for submissions is May 31, 2018. The conference will notify everyone who submits an abstract on the status of acceptance by June 15.

Multi-analyte Configuration for Cannabis Testing Services

Managing Cannabis Testing Lab Workflows using LIMS

By Dr. Susan Audino
No Comments
Multi-analyte Configuration for Cannabis Testing Services

With the state led legalization of both adult recreational and medical cannabis, there is a need for comprehensive and reliable analytical testing to ensure consumer safety and drug potency. Cannabis-testing laboratories receive high volumes of test requests from cannabis cultivators for testing quantitative and qualitative aspects of the plant. The testing market is growing as more states bring in stricter enforcement policies on testing. As the number of testing labs grow, it is anticipated that the laboratories that are now servicing other markets, including high throughput contract labs, will cross into cannabis testing as regulations free up. As the volume of tests each lab performs increases, the need for laboratories to make effective use of time and resource management, such as ensuring accurate and quick results, reports, regulatory compliance, quality assurance and many other aspects of data management becomes vital in staying competitive.

Cannabis Testing Workflows

To be commercially competitive, testing labs offer a comprehensive range of testing services. These services are available for both the medical and recreational cannabis markets, including:

  • Detection and quantification of both acid and neutral forms of cannabinoids
  • Screening for pesticide levels
  • Monitoring water activity to indicate the possibility of microbiological contamination
  • Moisture content measurements
  • Terpene profiling
  • Residual solvents and heavy metal testing
  • Fungi, molds, mycotoxin testing and many more

Although the testing workflows differ for each test, here is a basic overview of the operations carried out in a cannabis-testing lab:

  1. Cannabis samples are received.
  2. The samples are processed using techniques such as grinding and homogenization. This may be followed by extraction, filtration and evaporation.
  3. A few samples will be isolated and concentrated by dissolving in solvents, while others may be derivatized using HPLC or GC reagents
  4. The processed samples are then subjected to chromatographic separation using techniques such as HPLC, UHPLC, GC and GC-MS.
  5. The separated components are then analyzed and identified for qualitative and quantitative analysis based on specialized standards and certified reference materials.
  6. The quantified analytical data will be exported from the instruments and compiled with the corresponding sample data.
  7. The test results are organized and reviewed by the lab personnel.
  8. The finalized test results are reported in a compliant format and released to the client.

In order to ensure that cannabis testing laboratories function reliably, they are obliged to follow and execute certain organizational and regulatory protocols throughout the testing process. These involve critical factors that determine the accuracy of testing services of a laboratory.

Factors Critical to a Cannabis Testing Laboratory 

  • Accreditations & Regulatory Compliance: Cannabis testing laboratories are subject to regulatory compliance requirements, accreditation standards, laboratory practices and policies at the state level. A standard that most cannabis testing labs comply to is ISO 17025, which sets the requirements of quality standards in testing laboratories. Accreditation to this standard represents the determination of competence by an independent third party referred to as the “Accreditation Body”. Accreditation ensures that laboratories are adhering to their methods. These testing facilities have mandatory participation in proficiency tests regularly in order to maintain accreditation.
  • Quality Assurance, Standards & Proficiency Testing: Quality assurance is in part achieved by implementing standard test methods that have been thoroughly validated. When standard methods are not available, the laboratory must validate their own methods. In addition to using valid and appropriate methods, accredited laboratories are also required to participate in appropriate and commercially available Proficiency Test Program or Inter-Laboratory Comparison Study. Both PT and ILC Programs provide laboratories with some measure of their analytic performance and compare that performance with other participating laboratories.

    Multi-analyte Configuration for Cannabis Testing Services
    CloudLIMS Cannabis Testing LIMS: Multi-analyte Configuration for Cannabis Testing Services
  • Real-time Collaboration: Testing facilities generate metadata such as data derived from cannabis samples and infused products. The testing status and test results are best served for compliance and accessibility when integrated and stored on a centralized platform. This helps in timely data sharing and facilitates informed decision making, effective cooperation and relationships between cannabis testing facilities and growers. This platform is imperative for laboratories that have grown to high volume throughput where opportunities for errors exist. By matching test results to samples, this platform ensures consistent sample tracking and traceability. Finally, the platform is designed to provide immediate, real-time reporting to individual state or other regulatory bodies.
  • Personnel Management: Skilled scientific staff in cannabis-testing laboratories are required to oversee testing activities. Staff should have experience in analytical chromatography instruments such as HPLC and GC-MS. Since samples are often used for multi-analytes such as terpenes, cannabinoids, pesticides etc., the process often involves transferring samples and tests from one person to another within the testing facility. A chain of custody (CoC) is required to ensure traceability and ‘ownership’ for each person involved in the workflow.

LIMS for Laboratory Automation

Gathering, organizing and controlling laboratory-testing data can be time-consuming, labor-intensive and challenging for cannabis testing laboratories. Using spreadsheets and paper methods for this purpose is error-prone, makes data retrieval difficult and does not allow laboratories to easily adhere to regulatory guidelines. Manual systems are cumbersome, costly and lack efficiency. One way to meet this challenge is to switch to automated solutions that eliminate many of the mundane tasks that utilize valuable human resources.. Laboratory automation transforms the data management processes and as a result, improves the quality of services and provides faster turnaround time with significant cost savings. Automating the data management protocol will improve the quality of accountability, improve technical efficiency, and improve fiscal resources.

cloudlims screenshot
Real Time Test Status in CloudLIMS

A Laboratory Information Management System (LIMS) is a software tool for testing labs that aids efficient data management. A LIMS organizes, manages and communicates all laboratory test data and related information, such as sample and associated metadata, tests, Standard Operating Procedures (SOPs), test reports, and invoices. It also enables fully automated data exchange between instruments such as HPLCs, GC-FIDs, etc. to one consolidated location, thereby reducing transcription errors.

How LIMS Helps Cannabis Testing Labs

LIMS are much more capable than spreadsheets and paper-based tools for streamlining the analytical and operational lab activities and enhances the productivity and quality by eliminating manual data entry. Cloud-enabled LIMS systems such as CloudLIMS are often low in the total cost of acquisition, do not require IT staff and are scalable to help meet the ever changing business and regulatory compliance needs. Some of the key benefits of LIMS for automating a cannabis-testing laboratory are illustrated below [Table 1]:

Key Functionality Benefit
Barcode label designing and printing Enables proper labelling of samples and inventory

Follows GLP guidelines

Instant data capture by scanning barcodes Facilitates quick client registration and sample access
3600 data traceability Saves time and resources for locating samples and other records
Inventory and order management Supports proactive planning/budgeting and real time accuracy
Custodian management Promotes overall laboratory organization by assigning custodians for samples and tests

Maintains the Chain-of-custody (CoC)

Test management Accommodates pre-loaded test protocols to quickly assign tests for incoming samples
Accounting for sample and inventory quantity Automatically deducts sample and inventory quantities when consumed in tests
Package & shipment management Manages incoming samples and samples that have been subcontracted to other laboratories
Electronic data import Electronically imports test results and metadata from integrated instruments

Eliminates manual typographical errors

Report management Generates accurate, customizable, meaningful and test reports for clients

Allows user to include signatures and additional sections for professional use

21 CFR Part 11 compliant Authenticates laboratory activities with electronic signatures
ISO 17025 accreditation Provides traceable documentary evidence required to achieve ISO 17025 accreditation
Audit trail capabilities Adheres to regulatory standards by recording comprehensive audit logs for laboratory activities along with the date and time stamp
Centralized data management Stores all the data in a single, secure database facilitating quick data retrieval
Workflow management Promotes better data management and resource allocation
High-configurability Enables modification of screens using graphical configuration tools to mirror testing workflows
State compliance systems Integrates with state-required compliance reporting systems and communicates using API
Adheres to regulatory compliance Creates Certificates of Analysis (CoA) to prove regulatory compliance for each batch as well as batch-by-batch variance analysis and other reports as needed.
Data security & confidentiality Masks sensitive data from unauthorized user access

 

Cloud-based LIMS encrypts data at rest and in-transit while transmission between the client and the server

Global accessibility Cloud-based LIMS provides real-time access to laboratory data from anytime anywhere
Real-time collaboration Cloud-based LIMS enhances real-time communication within a laboratory, between a laboratory and its clients, and across a global organization with multiple sites

Table 1. Key functionality and benefits of LIMS for cannabis testing laboratories

Upon mapping the present day challenges faced by cannabis testing laboratories, adopting laboratory automation solutions becomes imperative. Cloud-based LIMS becomes a valuable tool for laboratory data management in cannabis testing laboratories. In addition to reducing manual workloads, and efficient resource management, it helps labs focus on productive lab operations while achieving compliance and regulatory goals with ease.

For more information on this, check out a webinar here: Webinar: How to Meet Cannabis Testing Standards and Regulatory Requirements with LIMS by Stephen Goldman, laboratory director at the State of Colorado certified Cannabis testing facility, PhytaTech.

Quality Assurance In The Field: Instruments For Growers & Processors

By Aaron G. Biros
2 Comments

As the cannabis marketplace evolves, so does the technology. Cultivators are scaling up their production and commercial-scale operations are focusing more on quality. That greater attention to detail is leading growers, extractors and infused product manufacturers to use analytical chemistry as a quality control tool.

Previously, using analytical instrumentation, like mass spectrometry (MS) or gas chromatography (GC), required experience in the laboratory or with chromatography, a degree in chemistry or a deep understanding of analytical chemistry. This leaves the testing component to those that are competent enough and scientifically capable to use these complex instruments, like laboratory personnel, and that is still the case. As recent as less than two years ago, we began seeing instrument manufacturers making marketing claims that their instrument requires no experience in chromatography.

Instrument manufacturers are now competing in a new market: the instrument designed for quality assurance in the field. These instruments are more compact, lighter and easier to use than their counterparts in the lab. While they are no replacement for an accredited laboratory, manufacturers promise these instruments can give growers an accurate estimate for cannabinoid percentages. Let’s take a look at a few of these instruments designed and marketed for quality assurance in the field, specifically for cannabis producers.

Ellutia GC 200 Series

Shamanics, a cannabis extractor in Amsterdam, uses Ellutia’s 200 series for QA testing

Ellutia is an instrument manufacturer from the UK. They design and produce a range of gas chromatographs, GC accessories, software and consumables, most of which are designed for use in a laboratory. Andrew James, marketing director at Ellutia, says their instrument targeting this segment was originally designed for educational purposes. “The GC is compact in size and lightweight in stature with a full range of detectors,” says James. “This means not only is it portable and easy to access but also easy to use, which is why it was initially intended for the education market.”

Andrew James, marketing director at Ellutia

That original design for use in teaching, James says, is why cannabis producers might find it so user-friendly. “It offers equivalent performance to other GC’s meaning we can easily replace other GC’s performing the same analysis, but our customers can benefit from the lower space requirement, reduced energy bills, service costs and initial capital outlay,” says James. “This ensures the lowest possible cost of ownership, decreasing the cost per analysis and increasing profits on every sample analyzed.”

Shamanics, a cannabis oil extraction company based in Amsterdam, uses Ellutia’s 200 series for quality assurance in their products. According to Bart Roelfsema, co-founder of Shamanics, they have experienced a range of improvements in monitoring quality since they started using the 200 series. “It is very liberating to actually see what you are doing,” says Roelfsema. “If you are a grower, a manufacturer or a seller, it is always reassuring to see what you have and prove or improve on your quality.” Although testing isn’t commonplace in the Netherlands quite yet, the consumer demand is rising for tested products. “We also conduct terpene analysis and cannabinoid acid analysis,” says Roelfsema. “This is a very important aspect of the GC as now it is possible to methylate the sample and test for acids; and the 200 Series is very accurate, which is a huge benefit.” Roelfsema says being able to judge quality product and then relay that information to retail is helping them grow their business and stay ahead of the curve.

908 Devices G908 GC-HPMS

908 Devices, headquartered in Boston, is making a big splash in this new market with their modular G908 GC-HPMS. The company says they are “democratizing chemical analysis by way of mass spectrometry,” with their G908 device. That is a bold claim, but rather appropriate, given that MS used to be reserved strictly for the lab environment. According to Graham Shelver, Ph.D., commercial leader for Applied Markets at 908 Devices Inc., their company is making GC-HPMS readily available to users wanting to test cannabis products, who do not need to be trained analytical chemists.

The G908 device.

Shelver says they have made the hardware modular, letting the user service the device themselves. This, accompanied by simplified software, means you don’t need a Ph.D. to use it. “The “analyzer in a box” design philosophy behind the G908 GC-HPMS and the accompanying JetStream software has been to make using the entire system as straightforward as possible so that routine tasks such as mass axis calibration are reduced to simple single actions and sample injection to results reporting becomes a single button software operation,” says Shelver.

He also says while it is designed for use in the field, laboratories also use it to meet higher-than-usual demand. Both RM3 Labs in Colorado, and ProVerde in Massachusetts, use G908. “RM3’s main goal with the G908 is increased throughput and ProVerde has found it useful in adding an orthogonal and very rapid technique (GC-HPMS) to their suite of cannabis testing instruments,” says Shelver.

Orange Photonics LightLab Cannabis Analyzer

Orange Photonics’ LightLab Cannabis Analyzer

Dylan Wilks, a third generation spectroscopist, launched Orange Photonics with his team to produce analytical tools that are easy to use and can make data accessible where it has been historically absent, such as onsite testing within the cannabis space. According to Stephanie McArdle, president of Orange Photonics, the LightLab Cannabis Analyzer is based on the same principles as HPLC technology, combining liquid chromatography with spectroscopy. Unlike an HPLC however, LightLab is rugged, portable and they claim you do not need to be a chemist to use it.

“LightLab was developed to deliver accurate repeatable results for six primary cannabinoids, D9THC, THC-A, CBD, CBD-A, CBG-A and CBN,” says McArdle. “The sample prep is straightforward: Prepare a homogenous, representative sample, place a measured portion in the provided vial, introduce extraction solvent, input the sample into LightLab and eight minutes later you will have your potency information.” She says their goal is to ensure producers can get lab-grade results.

The hard plastic case is a unique feature of this instrument

McArdle also says the device is designed to test a wide range of samples, allowing growers, processors and infused product manufacturers to use it for quality assurance. “Extracts manufacturers use LightLab to limit loss- they accurately value trim purchases on the spot, they test throughout their extraction process including tests on spent material (raffinate) and of course the final product,” says McArdle. “Edibles manufacturers test the potency of their raw ingredients and check batch dosing. Cultivators use LightLab for strain selection, maturation monitoring, harvesting at peak and tinkering.”

Orange Photonics’ instrument also connects to devices via Wi-Fi and Bluetooth. McArdle says cannabis companies throughout the supply chain use it. “We aren’t trying to replace lab testing, but anyone making a cannabis product is shooting in the dark if they don’t have access to real time data about potency,” says McArdle.

emerald test retail

Colorado Approves Emerald Scientific Proficiency Tests for Regulatory Compliance in Cannabis Testing

By Aaron G. Biros
No Comments
emerald test retail

Emerald Scientific recently announced their proficiency-testing program, The Emerald Test, has been approved by Colorado as a third party provider for proficiency testing in licensed cannabis laboratories. The Emerald Test, held twice annually, is an inter-laboratory comparison and proficiency test (ILC-PT), allowing data to be collected pertaining to the performance of laboratories on a national scale. Proficiency testing is designed to measure how accurately laboratories perform and is a critical tool for quality assurance.

Colorado requires labs to participate in a proficiency-testing program in order to be certified to conduct required testing on cannabis and cannabis products for safety and quality. According to the press release, Colorado’s Marijuana Enforcement Division, under the Department of Revenue, conducted an evaluation process to determine which applicants could meet the performance standards for regulatory compliance concerning proficiency testing. The contract was awarded to Emerald Scientific following this evaluation process.

emerald test retailAccording to Ken Groggel, director of the Proficiency Testing Program at Emerald Scientific, a number of states have recognized the need for independent proficiency testing as a required piece of regulatory compliance. “The Emerald Test Inter-Laboratory Comparison/PT is state approved in Washington & Colorado for cannabis testing laboratory licensure,” says Groggel. “States with cannabis or hemp production, as well as labs in other countries are now actively participating in the Emerald Test as a tool for quality improvement, efficiency upgrades and product safety.” He says the Colorado Marijuana Enforcement Division has contracted with Emerald Scientific to provide third party PT programs for microbial contaminants, residual solvents and pesticides.

Ken Groggel, director of the Proficiency Testing Program at Emerald Scientific

Beginning in 2014, The Emerald Test has been offered twice a year and, in 2017, over 50 labs participated from 14 states and 2 countries. “Laboratories that have enrolled more than once have seen significant improvement in their results, an indicator of improved performance for industry customers,” says Groggel.

Proficiency testing is important for ensuring quality, safety and product content accuracy. “This should be the priority whether you are a grower, manufacturer, testing laboratory, regulatory entity, medical patient or adult use consumer,” says Groggel. It also helps labs meet regulatory requirements and achieve ISO 17025 accreditation. “Independent proficiency testing helps determine if the lab is able to deliver the services marketed to its customers,” says Groggel. “Regulatory agencies can use this information when licensing, monitoring & enforcing good science for public safety.”

As new states legalize cannabis and develop consumer protection regulations, proficiency testing programs can help labs demonstrate their commitment to responsible and accurate testing. “When PT results show the cannabis testing lab is capable it is up to the government to ensure accountability for performance on behalf of all its citizens,” says Groggel. Labs can enroll starting on September 25th in the Fall 2017 Emerald Test ILC/PT.

emerald test retail

Emerald Scientific Proficiency Test Approved for Lab Accreditation & Regulatory Compliance

By Aaron G. Biros
No Comments
emerald test retail

Emerald Scientific’s Inter-Laboratory Comparison and Proficiency Test (ILC/PT) was recently approved in Washington as an official cannabis lab PT program, according to a press release. The Emerald Test program measures the accuracy of individual labs as well as comparing their results to other labs for indicators of variability and performance improvement.

Washington requires certified cannabis labs to participate in proficiency testing and Emerald Scientific’s tests is the only approved program in 4 out of 5 of the categories: potency, pesticide, heavy metals and residual solvent analysis. The most recent round of The Emerald Test showed broad improvements in many of the testing categories.

Perry Johnson, a third-party lab accreditation service for ISO/IEC 17025 also decided that The Emerald Test “meets the audit criteria for the proficiency test participation requirement for the accreditation,’ according to the press release. The proficiency test is a key component of quality assurance, which is a major requirement for labs seeking ISO 17025 accreditation. “The Emerald Scientific PT ensures that the cannabis testing labs are performing their function to the best of their ability,” says Reggie Gaudino Ph.D., vice president of Science, Genetics and Intellectual Property at Steep Hill Labs. “Any lab that isn’t participating and exceeding the minimal passing requirements should be viewed as suspect. It’s that important.”

According to the press release, Emerald Scientific’s spring 2017 program has expanded from 5 to 6 tests. The residual solvents and pesticide analysis portions offer more comprehensive testing that previously. “The other tests include 2 microbial panels and a Potency Test, which measures 5 cannabinoids including THC, THCA, CBD, CBDA, and CBN,” says the press release. “New this spring is the Heavy Metals Test, which is offered in 2 parts, one solution for cannabis heavy metals and the other in a hemp matrix.”

More than 60 labs are expected to participate. Results will be released at the National Cannabis Industry Association’s Cannabis Business Summit and Expo on June 13, 2017. For more information please visit www.emeraldtest.com or email sales@emeraldscientific.com.

teganheadshot
Quality From Canada

Secure Software Monitoring — Two Keys to Success

By Tegan Adams
No Comments
teganheadshot

We have two key software platforms at our laboratory that help us stay compliant with our standard operating procedures. Saif Al-Dujaili, quality manager at Eurofins-Experchem, oversees quality assurance in our laboratory. As we like to say, you are safe with Saif.

A Customized Sample Tracking System

Sample-tracking software consists of four main modules:

Tracking samples in our facility: When a sample is booked by our tracking system, a unique identification number is generated by the system and printed on a sticker, which is placed on the sample. When a sample is booked, department heads then have the ability to assign work orders to the analysts through the tracking system.

When testing is complete, results are entered by the analyst into the tracking system and reviewed by the quality assurance (QA) department. QA reviewers are responsible for approving results entered in the system before they are sent to the client. A certificate of analysis is then generated and e-mailed to the client for their review.

Controlling stability studies conducted in our facility: Stability studies are scheduled and controlled on different samples pulled for analysis. Within our facility’s sample-tracking system we have different chamber names with different conditions where products can be placed. Which chamber we place samples in depends on protocols and requests from our client. The software used also generates a unique study number for each stability study that occurs. The stability schedule that includes each study is reviewed every week by the stability coordinator to schedule what samples need to be pulled for testing.

Controlling methods used for tests: Methods are entered into the tracking system after department heads have reviewed them and it is approved by QA. The tracking system generates a unique ID number for each method as well as each sample. The method can now be tracked in our laboratory’s system. Within the software you can enter the name of the method, client name and effective date and any revisions applied to the method.

Controlling inventory of columns and electrodes: Sample tracking also helps us with our purchasing patterns to make sure we have supplies for our client’s testing needs. Every time that columns and electrodes are received, they are entered into our tracking system for inventory purposes.

REES Environmental Monitoring Software

REES is used to monitor the environmental conditions of our testing facility. Key inputs measured include temperature, humidity, differential pressure and elimination or intensity of light. REES is linked to the QA department’s computers. An audible alarm is sounded as well as e-mails sent to QA personnel to notify them if anything is out of specification. REES also phones related personnel’s cell phones to notify them of any alarms. No alarms are missed, even if they occur after working hours. Having a 24-hour environmental monitoring system in place helps Eurofins-Experchem ensure integrity in operations of stability, microbiological and other environmental conditions essential for accuracy in testing results.