Tag Archives: waste

From Factory to Flower – 4 GMP Insights for the Grow House

By Tom Blaine
No Comments

At first glance, the layout of a grow room and a factory production line might seem to have little in common. But whether a facility is producing plants or parts, adopting good manufacturing practices (GMP) can benefit plant quality, harvest consistency and production economics.

What is GMP?

Simply defined, GMP refers to a production system made up of processes, standards and safeguards designed to consistently meet a defined quality standard. In the grow house, establishing, documenting and implementing GMPs can help guard against problems ranging from plant contamination to inconsistent harvests. GMPs can be organized into five key categories, each which contribute to cultivation:

  • People: The people working in the grow house understand their responsibilities
  • Processes: Production processes are clearly documented and consistent across harvests
  • Procedures: Guidelines are documented and communicated to all employees
  • Premises: Grow rooms and equipment are clean and maintained
  • Products: Materials used in cultivation (fertilizers, lighting, growing media, etc.) are assessed

Optimizing each of these five P’s in production can help cultivators protect their business and their margins even as flower prices in both legacy and emerging states continue to trend downward. Below, we look at four GMP insights that can help cultivators coordinate the five Ps to achieve quality, consistency and economic objectives harvest after harvest, without massive investments in capital, even during turbulent market conditions.

#1 Know your numbers and their value

Avoid the temptation to lump production costs into very broad categories, i.e., “cost of goods.” Understanding the exact cost of all inputs that go into a grow is a precedent to cost-effective production. The price of the plant material, energy consumed, labor, nutrients, fertigation and other inputs involved in the grow should be calculated to determine the actual cost of a grow room. If rooms are set up consistently, you can multiply to get an aggregate production cost across the facility.

Growing media

Look beyond the price tag when calculating costs and consider the value each input brings to the grow. Nutrition is a good example. Understanding the concentration of specific nutrients in a product can be a better way of evaluating its value than simply looking at the cost of the goods. And consider whether added nutrients are actually adding value to the product produced. More isn’t always more. In most cases, simple salts will supply the plant with what it needs to grow.

Growing media is another opportunity to evaluate the cost/benefit of cultivation inputs. How much yield can be achieved with a particular medium compared to a different choice? For example, a bag of coco may initially appear to be the low-cost choice for cultivation. Upon a deeper evaluation, though, the cost per plant of coco is generally higher when you factor in the amount of media used for each plant (and that doesn’t even factor in the labor to fill the pots).

# 2 Reduce time waste

Among the various inputs in each growing cycle, labor represents a significant cost.  Are labor hours being put to the best use and not wasted? American industrialist and innovator in mass production Henry Ford stated, “Time waste differs from material waste in that there can be no salvage. The easiest of all wastes and the hardest to correct is the waste of time, because wasted time does not litter the floor like wasted material.”

One way to see the cost of wasted labor dollars is to set up a camera and record a day of activity in the grow room during each step of a grow cycle. Or simply observe the responsibilities that are requiring workers’ time on a typical day. Watching employees’ work in the grow room may reveal how a room’s set-up is contributing to or hindering production. Are employees spending their time on tactics that add value or are they being slowed down by manual processes, such as filling containers, watering and relocating plants in the facility? Are there steps and process that could be automated, such as fertigation? Seeing how employees’ time is being used can identify opportunities to direct efforts toward functions that add value or cut costs. What would be the economic benefit of reducing a half-day of set-up time in the grow house or automating some processes?

GMPBeyond better allocation of human capital, understanding how time is used in the growing operation can suggest changes to materials used in the grow. For example, selecting a growing media that comes in plugs and blocks with pre-drilled holes for efficiently dropping in new plants can reduce time spent filling pots or configuring containers. Automating functions like fertigation and watering can not only reduce labor time but increase the precision of delivery when it comes to water and nutrients.

#3 Introduce incremental improvements

Many manufacturers rely on pilot plants to mitigate risk before process scale-up takes place across an enterprise. The same approach can benefit the grow house. Resist the temptation to overhaul the system and instead focus on introducing one change at a time. This disciplined approach will allow you to evaluate if a change is actually delivering value and should be applied more broadly. The wisdom of a cautious approach to improvements is reflected in a quote by innovation magnate Steve Jobs, co-founder of Apple. Observing that not every innovation will be a win, Jobs stated, “Sometimes when you innovate you make mistakes. It is best to admit them quickly and get on with improving your other innovations.”

When introducing a new element into the grow, pilot it in one “sample” area before adding it to the entire operation. Then give the innovation time to be evaluated before deploying it more widely. This measured approach can help reduce the risk that accompanies making a change to processes and will allow you to evaluate the relative benefit of any change or innovation. And as changes are introduced one at a time, it is easier to determine which changes are contributing value.

#4 Satisfy the market, not just the spec

Regulatory bodies set the compliance criteria for purity or quality standards in manufacturing, but the ultimate mark of approval is awarded by customers in the marketplace. A harvest may meet all of the quality specs, but if customers don’t want to buy it, achieving GMP metrics is a moot effort. The marketplace will always have the final say on a product’s commercial viability.

Understand what the market wants and be able to replicate it consistently harvest after harvest. Manufacturing a product that meets the market’s desired performance attributes is essential to sustaining and growing operations. Production quality is only as good as the last harvest and any degradation in product quality will diminish buyers’ trust. History shows that the challenge of achieving consistent production quality and reliability isn’t just a problem for cultivators. Among several factors that doomed the short-lived Edsel sedan introduced in 1957 were problems arising from assembly workers having to use different tools and techniques. A lack of consistency in producing cars or cultivars can turn off customers and profitability.

A tension exists between achieving production consistency and the opportunity to introduce changes that improve the grow. By integrating improvements into the production system one measured change at a time, cultivators can assess which improvements to continue and what needs to be tweaked. But as manufacturing has long demonstrated, continuous improvement is an ongoing journey.

As cultivators consider the 5 Ps of people, processes, procedures, premises and products, applying these four GMP insights can help growers in emerging and legacy markets navigate changing market conditions and drive continuous improvement.

At Delic Labs, We Have a Dream: A Cannabis Better Future

By Dr. Markus Roggen, Amanda Assen, Dr. Eric Janusson
No Comments

Many people associate cannabis with eco-friendly, counter-cultural movements, but we know the environmental impacts of the cannabis industry are significant. Given the climate crisis, cannabis production companies have a responsibility to ensure future demands of the industry are met in an environmentally sustainable way. We also know that as the world is seeing the impacts of climate change, consumers are changing their spending habits 1. As a result, companies also have the financial incentive to seriously consider implementing more environmental policies, to align their interests with the interests of consumers. Unfortunately, restrictions on cannabis research and the legal industry create barriers to implementing many environmentally friendly alternatives in production. However, this does not give us an excuse to do nothing while we wait – there are many steps that can be taken while we work to overcome these barriers. Our team at Delic Labs aims to help companies ensure the environmental and economic sustainability of the cannabis industry. So, we did some research and developed the Cannabis Better Future (CBF) concept, a guide that considers the impacts of cannabis cultivation and processing on the environment. The pillars of CBF are:

  1. Use of renewable/recyclable materials in production

The packaging used for legal cannabis products is infamously excessive. A standard 3.5-grams of dried cannabis is estimated to come packaged in more than 70 grams of plastic. This seemingly redundant packaging is done to meet regulations surrounding cannabis packaging that often require single-use plastic with labels and warnings at specific sizes 2. Despite this, there is work being done to get biodegradable packaging approved in the industry.

More companies, such as Knot Plastic, are using plant-based materials to provide medical-grade biodegradable alternatives to single-use plastic 3. As members of the industry, we should support these companies and call for regulations to approve biodegradable packaging. As for immediate actions that can be taken, we can turn to companies that reduce the amount of plastic from the industry that ends up in landfills. The Tweed x TerraCycle Cannabis Packaging Recycling Program accepts all cannabis containers from licensed producers in Canada – free of charge – and melts down the plastic to create new products 4. This includes tins, plastic bags, tubes and bottles with child-proof caps. The program has saved more than 165,000 containers from ending up in landfills.

  1. Upcycle biomass waste

It is estimated that for every pound of cannabis harvested, up to 4.5 pounds of plant waste is generated 5. Cannabis biomass waste can be discarded in four different ways: via landfill, composting, in-vessel digestion or incineration 6. Cannabis bio-waste usually ends up in landfills because this is the cheapest method. However, landfill disposal represents a missed opportunity for companies to use biomass waste for economic and environmentally-friendly uses.

Converting biomass for other uses will drastically limit waste

To reduce landfill waste, some companies are looking at sustainable bio-circular solutions, where cannabis biomass is converted into something of industrial use such as compost, bio-plastics and paper packaging for cannabis products 7.  The easiest way to reuse cannabis biomass with current regulations in place is to upcycle it to produce compost and greywater that can be used for industrial cultivation 8. Currently, bleach is commonly used to remove THC from biomass, making it unfit to be used for these purposes 6. However, Micron Waste Technologies Inc. have shown enzymatic denaturation can be adopted on the industrial scale to remove THC from the biomass, resulting in reusable water and compostable matter 8. Turning to this alternative method would also reduce the amount of required fertilizer and replace bleach with a more environmentally-friendly solution.

  1. Recycle production side streams

Terpenes are the compounds in cannabis that give it distinctive aromas and flavors sought after by consumers.During the cannabis drying stage, over 30% of terpenes can be lost along with the water phase from the product 9. This terpene-containing water phase gets trapped in drying rooms and decarboxylation ovens and is usually thrown out. To reintroduce the terpenes in their products, companies usually purchase them 10.However, they instead could be recapturing terpenes that are otherwise going to waste, and re-introducing them into their products. Recapturing terpenes would not only reduce the production and shipment energy that goes along with purchased terpenes, but also the costs of buying them.

There are many other wasted by-products that can be recycled. Ethanol that has been used as extraction solvent can be reused as cleaning solvent, reducing the need to purchase ethanol separately for cleaning purposes. Further, the condensation caught in HVACs can be recycled to water plants.

  1. Optimize production energy efficiency
LED lights use less energy and omit less heat than other more traditional options

A study by Summers et al. 11 found that from producing one kilogram of dried cannabis flower, the emitted greenhouse gasses emissions range from 2,283 to 5,184 kg of CO2. Electricity used for indoor cultivation is the major culprit in producing these emissions. In fact, over $6 billion is spent annually to power industrial cannabis growth facilities in the U.S. alone12. Growing outdoors is significantly more energy efficient; however, non-auto flowering, high-THC cannabis plants depend on the specific timing of daylight (and darkness) to grow properly 13. Optimal conditions for these plants are not always achievable in outdoor setting. Meanwhile, auto-flowering plants that are hearty outdoors are generally lower in THC content 14. Promoting research into generating more stabilized cannabis cultivars may help outdoor growing be a more feasible solution. Given the recent work being done with genetically modified and transgenic plants, upregulating THC production in cannabis and increasing the heartiness in different climates is well within the realm of possibility 15–17.

In the meantime, cultivation facilities can do their part to maintain a controlled growth environment with reduced energy waste. Companies that are still using high-intensity sodium lights should consider switching to high-efficiency LED bulbs 12. These are a good alternative option as they produce less heat, and as a result, require less mechanical cooling. It has been shown that many plants, including cannabis, might even do better under blue-red LED lights 18,19. Growth under these conditions correlated with an increase in THC and CBD levels, and overall larger plants 18. In addition to low energy consumption, LED lamps have flexible mobility and a tunable spectrum range. This makes it possible to mediate the spectrum specifically for cannabis crops by controlling each spectral range and manipulating spectral quality and light intensity precisely. Finally, lights can also be brought closer to plants, to further reduce the amount of mechanical cooling needed.

  1. Utilize high-precision processes

Reducing energy use while maintaining production rates can only be done if the process is optimized. Our own research improves process optimization in the cannabis industry. A key component of industrial optimization is reducing wasted time on various machines. For cannabis producers, this machine “junk time” can accumulate when the instrumentation is not progressing the reaction.

Reducing energy use in this case means ensuring machines are not in operation if they are not progressing the reaction. For example, many companies spend approximately two hours on the decarboxylation step because decarboxylation is always complete after two hours 20; however, decarboxylations are often complete in as little as thirty minutes 21. Companies can save energy by installing a monitor on decarboxylation systems to stop reactions once they are complete.

Reducing the environmental impacts of the cannabis industry is crucial to combat the developing climate crisis. While lifting restrictions on cannabis research and mitigating stigmas surrounding the legal industry will be what ultimately paves the way for meaningful changes toward a sustainable industry, cannabis companies cannot wait for regulatory changes to occur before considering eco-friendly practices. As outlined by CBF, there are existing actions which all companies can take to reduce their carbon footprint immediately. Delic Labs, and many other companies we have noted, aim to support companies in making these decisions for a better future for cannabis.


References:

  1. Statista Research Department. Share of consumers worldwide who have changed the products and services they use due to concern about climate change in 2019. https://www.statista.com/statistics/1106653/change-made-consumer-bevaviour-concern-climate-change-worldwide/ (2021).
  2. Akeileh, O., Moyer, E., Sim, P. & Vissandjee Amarsy, L. Chronic Waste: Strategies to Reduce Waste and Encourage Environmentally-Friendly Packaging in Canada’s Legal Cannabis. https://www.mcgill.ca/maxbellschool/files/maxbellschool/policy_lab_2020_-_strategies_to_reduce_waste_and_encourage_environmentally-friendly_packaging_in_canadas_legal_cannabis_industry.pdf (2020).
  3. Bauder, P. Ry Russell of Knot Plastic️: 5 Things We Must Do to Inspire the Next Generation about Sustainability and the Environment. (2020).
  4. Waste360 Staff. Tweed, TerraCycle Take Cannabis Packaging Recycling Across Canada. (2019).
  5. Peterson, E. Industry Report: The State of Hemp and Cannabis Waste. CompanyWeek (2019).
  6. Commendatore, C. The Complicated World of Cannabis Waste Generation (Part One). Waste 360 (2019).
  7. Drotleff, L. Cannabis-based packaging and paper could reduce waste, promote sustainability. MJBiz Daily(2020).
  8. Waste 360 staff. Micron Secures U.S. Design Patent for Waste Treatment Tech. Waste 360 (2019).
  9. Challa, S. R. DRYING KINETICS AND THE EFFECTS OF DRYING METHODS ON QUALITY (CBD, TERPENES AND COLOR) OF HEMP (Cannabis sativa L.) BUDS. (2020).
  10. Erickson, B. Cannabis industry gets crafty with terpenes. chemical and engineering news (2019).
  11. Summers, H. M., Sproul, E. & Quinn, J. C. The greenhouse gas emissions of indoor cannabis production in the United States. Nature Sustainability 4, (2021).
  12. Reott, J. How Does Legalized Cannabis Affect Energy Use? Alliance to Save Energy (2020).
  13. When To Plant Cannabis Outside: A State By State Guide. aPotforPot.comhttps://apotforpot.com/blogs/apotforpot/when-to-plant-cannabis-outside-a-state-by-state-guide/ (2020).
  14. 15 Pros And Cons of Autoflowering Cannabis. aPotforPot.com https://apotforpot.com/blogs/apotforpot/15-pros-and-cons-of-autoflowering-seeds/ (2019).
  15. Ye, X. et al. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287, 303–305 (2000).
  16. Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18, 1151–1155 (2000).
  17. Hu, H. & Xiong, L. Genetic Engineering and Breeding of Drought-Resistant Crops. Annual Review of Plant Biology 65, 715–741 (2014).
  18. Wei, X. et al. Wavelengths of LED light affect the growth and cannabidiol content in Cannabis sativa L. Industrial Crops and Products 165, (2021).
  19. Sabzalian, M. R. et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for Sustainable Development 34, (2014).
  20. LunaTechnologies. Decarboxylation: What Is It and Why Is It Important? LunaTechnologies.
  21. Shah, S. et al. Fast, Easy, and Reliable Monitoring of THCA and CBDA Decarboxylation in Cannabis Flower and Oil Samples Using Infrared Spectroscopy. (2021).
Anthony Franciosi, Honest Marijuana

Essential Elements to Set Up a Green, Zero-Waste Grow Facility

By Anthony Franciosi
1 Comment
Anthony Franciosi, Honest Marijuana

Clean, ecologically sound production methods are the ideal for any cultivation or farming activity. Taking from the earth only what is needed to grow the crop and leaving behind little in the way of chemicals and land/water loss is the goal; with cannabis grow facilities, it can also be a reality.

This type of production does require some capital investment into state-of-the-art equipment and facilities, with standards that are equal to or even surpass current EPA and USDA regulations. While cannabis growing does not yet have access to the organic certification, that doesn’t mean growers can’t abide by and even go beyond the rules, to grow clean, healthy and environmentally sound cannabis.

There are a few essential elements required to make this kind of operation a reality.

Ecologically advanced use of power

  • For any indoor facility, one of the key elements is lighting. Using as energy efficient a system as possible is key. The best option at the moment is LEC lighting, which provides a spectrum of light that is very close to natural. This makes checking on plant progress more realistic and, with the inclusion of UV-B in the spectrum, can improve yields as well. In addition, the LEC bulbs have a long life—up to 2 years—which means lower maintenance costs as well.
  • The demand for high-quality, organically grown cannabis continues to increase

    Another aspect of growing that tends to use a lot of power is the cooling system. A standard HVAC system will be power intensive, so alternative ones like water chilled climate control systems are just as effective and 30% more power efficient. These systems are also able to reuse wasted power by feeding it back into the system, creating an additional 10% energy reduction. In addition, when the outdoor air temperature dips below 45 degrees, a water chilled system can switch to using the outside air, creating 60—70% in energy savings.

Efficient management of water resources

  • Cultivators depend heavily on water to ensure that the plants are hydrated and able to absorb the nutrients they need to grow and thrive. The result for many however is an excessive waste of water. This is a problem when a grow facility is leveraging municipal water resources. A water meter helps to manage and track usage but to ensure that it is used as efficiently as possible, a “top feeding” method of usage ensures minimal water waste (5% or less).

Effective waste management

  • Wastewater is a byproduct of any water intensive cultivation method but there again, managing the systems to ensure that what water isn’t reused and becomes “gray water” is still as clean as possible is the ideal. A high-quality filtration system keeps sediment, chlorine and other harmful elements out of the water supply — and out of the municipal sewage system. Further, by using organic matter throughout the growing process, the wastewater that is produced will meet every federal standard for organic food production.
  • All plant waste in a grow facility—for example: stems and fan leaves—is disposed of according to state and local laws. With cannabis plants, that requires a certain level of security, including locked dumpsters that are only unlocked and placed outside when the removal trucks arrive on site.

Organic farming practices

  • Using OMRI (Organic Materials Review Institute) listed soil is an essential part of clean, environmentally friendly growing. To ensure the proper nutrients are available for each harvest, once a crop is gathered, the soil is transferred to a local landscape company to compost and reuse.
  • Pesticides need to obviously be avoided and all fertilizers need to be USDA approved as organic and all nutrients need to be certified by OMRI to ensure they don’t contain any synthetic materials.

Considering all of these aspects is essential to creating an ecologically friendly grow facility with tremendous yields that are clean and safe for the end consumer, as well as minimizing the impact to the earth.

New Guidance on Waste Disposal for Hemp Producers

By Stephanie McGraw, Emily Sellers
No Comments

On January 15, 2021, the USDA published its final rule on US hemp production. The rule, which becomes effective on March 22, 2021, expands and formalizes previous guidance related to waste disposal of noncompliant or “hot” crops (crops with a THC concentration above .3 percent). Importantly for the industry, the new disposal rules remove unduly burdensome DEA oversight and provides for remediation options.

Producers will not be required to use a DEA reverse distributor or law enforcement to dispose of noncompliant plants. Instead, producers will be able to use common on-farm practices for disposal. Some of these disposal options include, but are not limited to, plowing under non-compliant plants, composting into “green manure” for use on the same land, tilling, disking, burial or burning. By eliminating DEA involvement from this process, the USDA rules serve to streamline disposal options for producers of this agricultural commodity.

Alternatively, the final rule permits “remediation” of noncompliant plants. Allowing producers to remove and destroy noncompliant flower material – while retaining stalk, stems, leaf material and seeds – is an important crop and cost-saving measure for producers, especially smaller producers. Remediation can also occur by shredding the entire plant to create “biomass” and then re-testing the biomass for compliance. Biomass that fails the retesting is noncompliant hemp and must be destroyed. The USDA has issued an additional guidance document on remediation. Importantly, this guidance advises that lots should be kept separate during the biomass creation process, remediated biomass must be stored and labeled apart from each other and from other compliant hemp lots and seeds removed from non-compliant hemp should not be used for propagative purposes.

The final rules have strict record keeping requirements, such rules ultimately protect producers and should be embraced. For example, producers must document the disposal of all noncompliant plants by completing the “USDA Hemp Plan Producer Disposal Form.” Producers must also maintain records on all remediated plants, including an original copy of the resample test results. Records must be kept for a minimum of three years. While USDA has not yet conducted any random audits, the department may conduct random audits of licensees.

Although this federal guidance brings some clarity to hemp producers, there still remains litigation risks associated with waste disposal. There are unknown environmental impacts from the industry and there is potential tort liability or compliance issues with federal and state regulations. For example, as mentioned above, although burning and composting disposal options for noncompliant plants, the final rule does not address the potential risk for nuisance complaints from smoke or odor associated with these methods.

At the federal level, there could be compliance issues with the Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and ancillary regulations like Occupation Safety and Health Administration (OSHA). In addition to government enforcement under RCRA and CERCLA, these hazardous waste laws also permit private party suits. Although plant material from cultivation is not considered hazardous, process liquids from extraction or distillation (ethanol, acetone, etc.) are hazardous. Under RCRA, an individual can bring an “imminent and substantial endangerment” citizen suit against anyone generating or storing hazardous waste in a way the presents imminent and substantial endangerment to health or the environment. Under CERCLA, private parties who incur costs for removal or remediation may sue to recover costs from other responsible parties.

At the state level, there could be issues with state agency guidance and state laws. For example, California has multiple state agencies that oversee cannabis and hemp production and disposal. CA Prop 65 mandates warnings for products with certain chemicals, including pesticides, heavy metals and THC. The California Environmental Quality Act (CEQA) requires the evaluation of the environmental impact of runoff or pesticides prior to issuing a cultivation permit. Both environmental impact laws permit a form of private action.

Given the varied and evolving rules and regulation on hemp cultivation, it remains essential for hemp producers to seek guidance and the help of professionals when entering this highly regulated industry.

NCIA Publishes Environmental Sustainability Recommendations

By Cannabis Industry Journal Staff
No Comments

Earlier this week, the National Cannabis Industry Association (NCIA) published its recommendations for improving environmental sustainability in the cannabis industry. The report, titled Environmental Sustainability in the Cannabis Industry: Impacts, Best Management Practices, and Policy Considerations, was developed by their Policy Council along with experts in the field of environmental sustainability.

The 58-page report is quite comprehensive and covers things like land use, soil health, water, energy, air quality, waste and the negative effects of an unregulated market. While the report goes into great detail on specific environmental policy considerations, like recycling, water usage, energy efficiency and more, it makes a handful of overarching policy recommendations that impact environmental sustainability on a much more macro level.

The report mentions developing a platform for sharing information in the national cannabis industry. The idea here is that information sharing on a national scale for things like energy use can be used as a communication tool for regulators as well as a tool for companies to collaborate and share ideas.

The second more overarching policy recommendation the NCIA makes in this report is “to incorporate environmental best practices and regulatory requirements into existing marijuana licensing and testing processes.” This would help streamline and unify regulations already in place and keeps sustainability in the discussion from the very start.

The last major policy recommendation they make is for incentive programs. They say that governments should incentivize cannabis businesses to operate more sustainably and “prioritize funds provided to businesses where barriers exist to entering the market, such as small- or minority-owned businesses.” The report adds that this could essentially kill two birds with one stone by promoting environmental sustainability and diversity at the same time.

Kaitlin Urso is the lead author of the report and executive project and engagement manager for the Colorado Department of Public Health and Environment. She says that these policy recommendations were designed to benefit everyone. “A successful, socially responsible cannabis industry will require best practices for environmental sustainability. This paper is a vital first step in that effort,” says Urso. “This is important, ongoing work that will benefit everyone. The NCIA’s paper on environmental sustainability is going to inform how we approach important questions related to the future of the cannabis industry.”

To read the report in its entirety, click here.

Sustainable Hemp Packaging is the Future of Industrial Packaging

By Vishal Vivek
10 Comments

The future of packaging is ripe for capitalization by the drivers of sustainability culture. With the battle lines drawn and forces at play in motion, change is now inevitable. The question arises: how quickly can the industry grow in the space of the next decade?

With an increasing number of nations banning non-biodegradable and petroleum-based plastics in certain uses, the choices at hand have naturally led to bioplastics. Bioplastics are a major ingredient of the renewable packaging industry. We derive them from various renewable agricultural crops, of which hemp is among the chief examples.

The Change for Hemp

The legal ramifications of the European Green Deal and the American Farm Bill of 2018 have created a microcosm where the sustainability discussion has turned into corporate initiatives for crops like industrial hemp, which are a source for bioplastics and numerous other products. The smaller carbon footprint of industrial hemp plays its role in shaping consumer demands towards a greener future.

Farmers are now able to cultivate the plant in the U.S., due to its removal from the list of controlled substances. Agribusinesses and manufacturers are aware of the plant’s versatility, with uses in packaging, building construction, clothing, medicinal oils, edibles like protein powder and hemp hearts, hemp paper and rope. What was once George Washington’s strong consideration as a cash crop for his estate, may gradually become the world’s cash crop of choice.

Hemp’s Sustainability Beckons 

Why is the crop unanimously superior in the aspect of eco-friendliness? Its growing requirements are frugal: water, soil nutrients and pesticides are not needed in large quantities. It absorbs great quantities of carbon dioxide from the atmosphere, and uses it to create 65-75% cellulose content within its biomass. Cellulose is vital in the manufacture of bioplastics. Hemp is also flexible within crop cycles, due to its small harvesting period of only 4 months.

Thus, farmers use it as a rotational crop, allowing them to also cultivate other crops after its harvest. High-quality crops like cotton, though superior in cellulose content and fibrous softness, require far more water quantities, soil nutrients and pesticides. Farmers face greater difficulties in cultivating cotton as a rotational crop, because it requires far more space and time.

Hemp Bioplastics For Packaging                                

We manufacture bioplastics from the hurd and cellulose of the hemp plant. Hemp bioplastics are biodegradable, and take up to a maximum of 6 months to completely decompose; by contrast, normal fossil-fuel-based plastic takes up to 1000 years to decompose.

Manufacturers incorporate these ingredients into existing manufacturing processes for regular plastics, such as injection molding. Thus, we can apply bioplastic ingredients to similar plastics applications, such as packaging, paneling, medical equipment and more. New technologies aren’t necessarily needed, so companies and manufacturers do not have any reservations about its viability as an industry.

Here are a few types of bioplastics derived from hemp:

  1. Hemp Cellulose-based Bioplastics

This is a substance found in plant cell walls. We use cellulose to manufacture a broad range of unique plastics, including celluloid, rayon and cellophane. These plastics are usually entirely organic. We mix cellulose and its variations (such as nanocellulose, made from cellulose nanocrystals) with other ingredients, such as camphor, to produce thermoplastics and the like. Using natural polymer, we process a broad range of bioplastics and corresponding polymers. The difference in their chemical properties is down to the nature of the polymer chains and the extent of crystallization.

  1. Composite Hemp-based Bioplastics

Composite plastics comprise organic polymers like hemp cellulose, as well as an addition of synthetic polymers. They also have reinforcement fibers to improve the strength of the bioplastic, which are also either organic or synthetic. Sometimes, we blend hemp cellulose with other organic polymers like shellac and tree resins. Inorganic fillers include fiberglass, talc and mica.

We call any natural polymer, when blended with synthetic polymers, a “bio composite” plastic. We measure and calibrate these ingredients according to the desired stiffness, strength and density of the eventual plastic product. Apart from packaging, manufacturers use these bioplastics for furniture, car panels, building materials and biodegradable bags.

A composite of polypropylene (PP), reinforced with natural hemp fibers, showed that hemp has a tensile strength akin to that of conventional fiberglass composites. Furthermore, malleated polypropylene (MAPP) composites, fortified with hemp fibers, significantly improved stress-enduring properties compared to conventional fiberglass composites.

  1. Pure Organic Bioplastics With Hemp

We have already generated several bioplastics entirely from natural plant substances like hemp. Hemp fibers, when made alkaline with diluted sodium hydroxide in low concentrations, exhibit superior tensile strength. We have produced materials from polylactic acid (PLA) fortified with hemp fibers. These plastic materials showed superior strength than ones containing only PLA. For heavy-duty packaging, manufacturers use hemp fibers reinforced with biopolyhydroxybutyrate (BHP), which are sturdy enough.

With the world in a state of major change due to the coronavirus outbreak of 2020, the focus is back on packaging and delivery. In this volatile area, perhaps the industry can learn a few new tricks, instead of suffocating itself in old traditions and superficial opportunism. The permutations and combinations of bioplastic technology can serve a swath of packaging applications. We must thoroughly explore this technology.

Hemp’s Future in Packaging

Fossil fuel-based plastic polymers are non-renewable, highly pollutive and dangerous to ecosystems, due to their lifespans. They are some of the most destructive inventions of man, but thankfully could be held back by this crop. Industrial hemp upheld countless industries through human history and now is making a comeback. After existing in relative obscurity in the U.S. due to false connotations with the psychoactive properties of its cousin, it is now back in business.

With the American hemp industry on the verge of a revolution, hemp packaging is primed to take over a significant part of the global packaging sector. The political, economic and environmental incentives for companies to adopt bioplastics are legion. Its lower cost lends to its allure as well. Consumers and agribusinesses are following suit, making the choice to be environmentally-conscious. By 2030, it is estimated that 40% of the plastics industry will be bioplastics.

We can only mitigate the plastic pollution in oceans, landfills and elsewhere, with the use of biodegradable bioplastics; otherwise, animals, humans and plants are getting adversely affected by imperceptible microplastics that pervade vast regions of the Earth. With hemp bioplastics, we use the cleaner, renewable matter of plants to conserve the planet’s sanctity. We can expect this new technology to continue to light the way for other nations, societies and companies to build upon this sustainable plan.

Comparable to Organic: How This California Company Aims to Certify Cannabis

By Aaron G. Biros
No Comments

Cannabis that contains more than 0.3% THC is not eligible for USDA organic certification, due to the crop’s Schedule I status. While some hemp farmers are currently on the path to obtain a USDA organic certification, the rest of the cannabis industry is left without that ability.

Growers, producers, manufacturers and dispensaries that utilize the same practices as the national organic program should be able to use that to their advantage in their marketing. Ian Rice, CEO of Envirocann, wants to help cannabis companies tap into that potential with what he likes to call, “comparable to organic.”

Ian Rice, CEO of Envirocann & co-founder of SC Labs

Rice co-founded SC Laboratories in 2010, one of the first cannabis testing labs in the world, and helped develop the cannabis industry’s first testing standards. In 2016, Rice and his partners at SC Labs launched Envirocann, a third-party certification organization, focused on the quality assurance and quality control of cannabis products. Through on-site inspections and lab testing, Envirocann verifies and subsequently certifies that best practices are used to grow and process cannabis, while confirming environmental sustainability and regulatory compliance.

“Our backyard in Santa Cruz and the central coast is the birthplace of the organic movement,” says Rice. California Certified Organic Farms (CCOF), founded in Santa Cruz more than 40 years ago, was one of the first organizations in the early 1990s that helped write the national organic program.

“What we came to realize in the lab testing space and as the cannabis market grew, was that a lot of cannabis companies were making the organic claims on their products,” says Rice. “At the time, only one or two organizations in the cannabis space were making an attempt to qualify best practices or create an organic-type feel of confidence among consumers.” What Rice saw in their lab was not cannabis that could be considered organic: “We saw products being labeled as organic, or with certain claims of best practices, that were regularly failing tests and testing positive for banned chemicals. That really didn’t sit well with us.”

Coastal Sun Farms, Enviroganic-certified

At the time, there was no real pathway to certify cannabis products and qualify best practices. “We met with a few people at the CCOF that were very encouraging for us to adopt the national organic program’s standards for cannabis. We followed their lead in how to adopt the standards and apply a certification, building a vehicle intended to certify cannabis producers.”

Because of their background in lab testing they added the requirement for every crop that gets certified to undergo a site inspection, sampling, as well as a pesticide residue test to confirm no pesticides were used at all during the production cycle. One of their clients is Coastal Sun Farms, a greenhouse and outdoor cannabis producer. “They grow incredible products at a high-level, commercial scale at the Enviroganic standard,” says Rice. “They have been able to prove that organic cannabis is economically viable.”

The Envirocann certification goes a bit beyond the USDA’s organic program in helping their clients with downstream supply chain risk management tools (SCRM). “Because of the rigorous testing of products to get certified and go to market, we are getting way ahead of supply chain or production issues,” says Rice. “That includes greater oversight and transparency, not just for marketing the final product.”

A good example of using SCRM to a client’s advantage is in the extraction business. A common scenario recently in the cannabis market involves flower or trim passing the pesticide tests at the lab. But when that flower makes it down the supply chain to a manufacturer, the extraction process concentrates chemical levels along with cannabinoid levels that might have previously been acceptable for flower. “I’ve witnessed millions and millions of dollars evaporate because flower passed, but the concentrated final product did not,” says Rice. “We’ve introduced a tool to get ahead of that decision-making process, looking beyond just a pass/fail. With our partner labs, we look at the chromatograms in greater detail beyond regulatory requirements, which gives us information on trace levels of chemicals we may be looking for. It’s a really rigorous audit on these sites and it’s all for the benefit of our clients.”

Envirocann has also recently added a processing certification for the manufacturing sector and a retail certification for dispensaries. That retail certification is intended to provide consumers with transparency, truth in labeling and legitimate education. The retail certification includes an assessment and audit of their management plan, which goes into details like procurement and budtender education, as well as basic considerations like energy usage and waste management.

Fog City Farms, Envirocann-certified

While Envirocann has essentially adopted the USDA’s organic program’s set of standards for what qualifies organic producers, which they call “Enviroganic,” they also certify more conventional producers with their “Envirocann” certification. “While these producers might not be considered organic farmers, they use conventional methods of production that are responsible and deserve recognition,” says Rice. “A great example for that tier would be Fog City Farms: They are growing indoor with LED lighting and have multiple levels in their indoor environment to optimize efficiency and minimize their impact with waste and energy usage, including overall considerations for sustainability in their business.”

Looking to the future, Ian Rice is using the term “comparable to organic” very intentionally, preparing for California’s roll out of their own organic cannabis program. The California Department of Food and Agriculture (CDFA) is launching the “OCal Comparable-to-Organic Cannabis Program.” Envirocann is obviously using the same language as the CDFA. That’s because Envirocann aims to be one of the verifying agents under the CDFA’s new program. That program will begin on January 1, 2021.

Managing Cannabis Waste and Protecting Your Business from Risk

By David Laks
2 Comments

Cannabis producers know that they cannot treat plant waste like common yard waste. They need to develop a detailed waste disposal plan in order get a license to operate.

Failing to follow the approved plan and improperly disposing of dry waste materials and waste products from oil extraction leads to fines, liabilities or even having your license rescinded.

Learning to deal with cannabis waste appropriately is crucial to the success of an operation. There are a number of strict controls in place for dealing with any kind of hazardous waste, which can’t just be sent to a landfill or composting facility.

In the US, the EPA and state governments provide guidelines for disposing of hazardous waste properly, and other countries have federal and local requirements as well. The EPA, like other environmental bodies, differentiates between two types of waste: solid and liquid.

Solid waste disposal: The guideline for identifying solid waste is that it’s “unrecognizable and unusable.” This means no one should be able to look at a bag of waste and know immediately that it is cannabis. Many cannabis operations have a facility on site for grinding down the waste into smaller bits. If the waste is non-hazardous, it is mixed with other non-cannabis organics such as garden trimmings and then composted or sent to the appropriate landfill. If it’s hazardous, it’s mixed with cat litter, sand, plastic or sawdust and sent to the appropriate landfill.

Liquid waste disposal: Liquid waste is a bit more complicated. It must be disposed of properly or sent to a hazardous waste treatment facility. Cannabis operations must partner with a shipping company to dispose of the hazardous waste appropriately, unless they transport it themselves.

It can be confusing to manage the risks of proper disposal of cannabis waste. Keep it simple by following these three tips:

  1. Become an expert in all the legal restrictions – and follow them. Federal restrictions will guide you overall, but local (i.e., state and municipal) restrictions are equally important and may vary.
  2. Seek out experienced, reputable disposal companies – and hire the best one.Look for one that is familiar with handling hazardous waste in general and cannabis waste in particular.
  3. Familiarize yourself with the guidelines for proper tracking, transportation and sign-offs – and follow them.Completing all appropriate documentation ensures you have a paper trail to protect you in the event of an audit. Much of the documentation creates a written record so inspectors can confirm appropriate handling.

Waste disposal policies should be reviewed regularly as state and municipal regulations can change. At the same time, it would be wise to review your environmental insurance policy to ensure your business is covered for any accidental releases.

It can be tempting to take shortcuts – saving both money and time – when it comes to hazardous waste disposal. But properly disposing of hazardous materials can demonstrate your organization’s credibility and financial wellbeing, and it can also save you from unnecessary risk.

Integrated Labeling Helps This Ohio Cannabis Company Grow

By Mike Barker
No Comments

Since medical cannabis was legalized in Ohio in 2016, companies that cultivate and process medical cannabis, as well as the plants themselves, have been popping up around the state.

Grow Ohio, a dual-licensed Level 1 cultivator and processor, was the first licensed processor in Ohio and the first to successfully bring product to market. From plant material to edibles, tinctures, oils, lotions and capsules, the company seeks to ensure that medical cannabis is cultivated and processed under the same strict standards as any pharmaceutical medication. As first to market, Grow Ohio found themselves navigating a complicated process by themselves.

As their first product was ready to be packaged, Executive Vice President (EVP) Justin Hunt and the team at Grow Ohio were focused on marketing, packaging and distributing their product. With the sheer number of items that required attention, it is easy to see how something like labelling can slip under the radar. With a variety of products and dosages, and the first delivery of the product slated for late April of 2019, Grow Ohio needed a consistent way to ensure their product complied with state law, and also satisfied their own brand standards.

As their April product launch date grew closer, Grow Ohio realized they needed help with executing on Ohio’s labeling requirements for medical cannabis products.

They turned to Adaptive Data Inc., a barcode and labeling systems supplier to provide labels, printers, and software. ADI’s task was to specify the right label materials for their branding and compliance needs and provide software and equipment to print compliance labels on demand. ADI’s proposed solution would slash the waste associated with printing and applying labels and create a lean process.

Compliance

Compliance labels must contain specific information and must be prominently visible and clearly legible. Containers have to be labeled with details including the specific quantity of product, dosage, THC levels, license #, testing lab name and ID #, and other details. Different sizes and shapes are required for the various packaging form factors.

Due to the large amount of content and a relatively small label area, ADI specified 300 dpi printer resolution so that 4 or 5 point fonts would be legible.

Hunt had all the information needed to comply with state regulations, but didn’t have a way to get that information, properly formatted, onto a finished label at the point of packaging. “It’s all about how you get the data from one source to the other in a way that is easily repeatable,” says Hunt. The solution provides the capability to handle all compliance requirements, for all types of product and all sizes/shapes of labels. The system is designed to minimize key entry of data, a typical source of content errors. All of Grow Ohio’s products contain THC and require the red THC compliance logo. Early on this requirement was met using a separate, hand-applied THC logo label, which was very costly. The labels now include the THC logo, all required compliance data, and the capability to include a 2d barcode.

At the time the products are packaged all compliance information is printed on demand with label printers. As retail expansion continues, the barcode on the plant material compliance label can be used with the POS systems of the dispensaries, to keep their systems fast and accurate.

Until the system is ready to receive data automatically from METRC, the State approved inventory system which tracks all medical cannabis plants and products grown or produced in Ohio, they used user interfaces that reduce the amount of data that is key entered to an absolute minimum. Using drop down lists, date pickers and calculated results, means that Grow Ohio only enters data in 5-10 fields, depending on product line. As the system evolves the next step will be to take data for compliance details automatically from METRC.

Branding

As the first to enter the medical marijuana market, Grow Ohio leadership knew that their brand image is as important to their success as the quality of their products. Their logo, color choice, and inclusion of the THC logo had to be consistent in appearance across all products, regardless of production method.  They used full color branded product labels and blank labels that have the Grow Ohio and THC logo pre-printed. (Compliance data is added to the blank labels on demand.)

Label Application – Automatic, Semi-automatic and Manual

Grow Ohio packages in metal cans, glass bottles and in boxes. Each packaging type has specific requirements.

Metal Cans: Grow Ohio uses an automated packaging line for plant material in cans. That line includes two automatic apply-only machines (for brand labels). The compliance label is printed and dispensed and placed on the can as it is boxed.

Bottles: Cylindrical containers can be difficult to label. Grow Ohio originally packaged tinctures and oils in glass bottles which were pre-printed with their logo. The printed logo looked nice, but printing on the glass was expensive. This made placing the compliance label on the bottle more difficult, since the logo could not be covered. Positioning and straightness was critical for readability as well as aesthetics. Manual placement was time consuming (15 – 30 seconds per bottle).

Now, bottles are being processed with the help of a semi-automatic print-apply machine. The print-apply machine can label 18-20 bottles per minute.

By using plain bottles and pre-printing the blue Grow Ohio logo and red THC logo on the label, they were able to streamline the process. The semi-automatic print-apply machine adds the compliance data to the label and applies the label to the bottle.

The result is a lower total cost of the product. Plain bottles cost less without the logo and the labor to manually apply the labels has been greatly reduced. In addition, with the logos on the label instead of the bottle, orientation and spacing are no longer an issue. The label maintains the natural brand feel, which was important to Hunt.

Boxes: Only compliance labels are required for boxes as the branding information is pre-printed on the box. Compliance labels for boxes include a pre-printed, red THC logo. The printer prints the compliance data and presents the label with the liner removed, ready to be manually applied to the box.

Summary

With a broad product line, Grow Ohio’s label requirements are quite diverse. By specifying and sourcing the right hardware, software and label materials,

Adaptative Data provided an efficient, repeatable, cost-effective way to do brand and compliance labeling for Grow Ohio’s diverse product offering.  

Hunt now understands the magnitude of work that goes into coming up with a compliant, cost-friendly compliance labeling approach – an appreciation he did not have at the outset. He is not alone in this regard as many companies come to this understanding late in the start-up process.

Hunt isn’t sure how fast the market will grow, but he is not worried. As the market expands and demand grows, he knows his systems can handle it.

Sustainable Plastic Packaging Options for Your Cannabis Products

By Danielle Antos
6 Comments

A large part of your company’s brand image depends on the packaging that you use for your cannabis product. The product packaging creates a critical first impression in a potential customer’s mind because it is the first thing they see. While the primary function of any cannabis packaging is to contain, protect and identify your products, it is a reflection of your company in the eyes of the consumer.

For all types of businesses across the US, sustainability has become an important component for success. It is increasingly common for companies to include sustainability efforts in their strategic plan. Are you including a sustainability component in your cannabis business’ growth plan? Are your packaging suppliers also taking sustainability seriously? More and more, consumers are eager to purchase cannabis products that are packaged thoughtfully, with the environment in mind. If you are using or thinking about using plastic bottles and closures for your cannabis products, you now have options that are produced from sustainable and/or renewable resources. Incorporating sustainable elements into your cannabis packaging may not only be good for the environment, but it may also be good for your brand.

Consider Alternative Resins

Traditionally, polyethylene produced from fossil fuels (such as oil or natural gas), has been used to manufacture HDPE (high density polyethylene) bottles and closures. However, polyethylene produced from ethanol made from sustainable sources like sugarcane (commonly known as Bioresin) are becoming more common.

HDPE bottles produced with Bioresin.

Unlike fossil fuel resources which are finite, sustainable resources like sugarcane are renewable – plants can be grown every year. For instance, a benefit of sugarcane is that it captures and fixes carbon dioxide from the atmosphere every growth cycle. As a result, production of ethanol-based polyethylene contributes to the reduction of greenhouse gas emissions when compared to conventional polyethylene made from fossil fuels, while still exhibiting the same chemical and physical properties as conventional polyethylene. Although polyethylene made from sugarcane is not biodegradable, it can be recycled.

Switching to a plastic bottle that is made from ethanol derived from renewable resources is a great way for cannabis companies to take positive climate change action and help reduce their carbon footprint.

For instance, for every one ton of Bioresin used, approximately 3.1 tons of carbon dioxide is captured from the atmosphere on a cradle-to-gate basis. Changing from a petrochemical-derived polyethylene bottle to a bottle using resins made from renewable resources can be as seamless as approving an alternate material – the bottles look the same. Ensure that your plastic bottle manufacturer is using raw materials that pass FDA and ASTM tests. This is one way to help reverse the trend of global warming due to increasing levels of carbon dioxide (CO2) in our atmosphere.

PET bottles derived from 100% recycled post-consumer material.

Another option is to use bottles manufactured with recycled PET (polyethylene terephthalate). Consisting of resin derived from 100% recycled post-consumer material, it can be used over and over. This is an excellent choice because it helps keep plastic waste to a minimum. Regardless of the resin you select, look for one that is FDA approved for food contact.

Consider Alternative Manufacturing Processes

Flame Treatment Elimination

When talking about plastic bottle manufacturing, an easy solution to saving fossil fuels is eliminating the flame treatment in the manufacturing process. Historically, this process was required to allow some water-based adhesives, inks, and other coatings to bond with HDPE (high density polyethylene) and PP (polypropylene) bottles. Today, pressure-sensitive and shrink labels make this process unnecessary. Opt out and conserve natural gas. For instance, for every 5 million bottles not flamed approximately 3 metric tons of CO2is eliminated. This is an easy way to reduce the carbon footprint. Ask your cannabis packaging manufacturer if eliminating this process is an option.

Source Reduction (Right-Weighting)

When considering what type and style of bottle you want to use for your cannabis product, keep in mind that the same bottle may be able to be manufactured with less plastic. A bottle with excess plastic may be unnecessary and can result in wasted plastic or added costs. On the other hand, a bottle with too little plastic may be too thin to hold up to filling lines or may deform after product is filled. Why use a bottle that has more plastic than you actually need for your product when a lesser option may be available? This could save you money, avoid problems on your filling lines, and help you save on your bottom line. In addition, this will also help limit the amount of natural resources being used in production.

Convert to Plastic Pallets

If you are purchasing bottles in large quantities and your supplier ships on pallets, consider asking about plastic pallets. Reusable plastic pallets last longer than wood pallets, eliminate pallet moisture and improve safety in handling. They also reduce the use of raw materials in the pallet manufacturing process (natural gas, metal, forests, etc.) aiding in efforts towards Zero Net Deforestation. And, returnable plastic pallets provide savings over the long term.

If You Don’t Know, Ask Your Cannabis Packaging Partner

It is important to find out if your plastic packaging partner offers alternative resins that are produced from renewable sources or recycled plastics. It is also prudent to partner with a company that is concerned about the impact their business has on the planet. Are they committed to sustainability? And, are they eliminating processes that negatively affect their carbon footprint? What services can they provide that help you do your part?

When you opt to use sustainably produced plastic bottles and closures for your cannabis products, you take an important step to help ensure a viable future for the planet. In a competitive market, this can improve the customer’s impression of your brand, increase consumer confidence and help grow your bottom line. Not only will you appeal to the ever-growing number of consumers who are environmentally-conscience, you will rest easy knowing that your company is taking action to ensure a sustainable future.