Tag Archives: accredit

Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary, Part 3

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


In the last two articles, I discussed the laboratory’s first line of defense (e.g. certification or accreditation) paperwork wall used if a grower, processor or dispensary (user/client) questioned a laboratory result and the conflicts of interest that exist in laboratory culture. Now I will discuss the second line of defense that a laboratory will present to the user in the paperwork wall: Quality Control (QC) results.

Do not be discouraged by the analytical jargon of the next few articles. I suggest that you go immediately to the conclusions to get the meat of this article and then read the rest of it to set you on the path to see the forest for the trees.

QC in a laboratory consists of a series of samples run by the laboratory to determine the accuracy and precision of a specific batch of samples. So, to start off, let’s look at the definitions of accuracy and precision.QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

According to the Standard Methods for the Examination of Water and Wastewater:

Accuracy: estimate of how close a measured value is to the true value; includes expressions for bias and precision.

Precision: a measure of the degree of agreement among replicate analyses of a sample.

A reputable laboratory will measure the Accuracy and Precision of QC samples in a batch of user samples and record these values in both the analytical test report issued to the user and in control charts kept by the laboratory. These control charts can be reviewed by the user if they are requested by the user. These control charts record:

Accuracy (means) chart: The accuracy chart for QC samples (e.g., LRB, CCV, LFBs, LFMs, and surrogates) is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

Precision (range) chart: The precision chart also is constructed from the average and standard deviation of a specified number of measurements (e.g., %RSD or RPD) for replicate of duplicate analyses of the analyte of interest.

Now, let’s look at what should be run in a sample batch for cannabis analyses. The typical cannabis sample would have analyses for cannabinoids, terpenes, microbiological, organic compounds, pesticides and heavy metals.

Each compound listed above would require a specific validated analytical method for the type of matrix being analyzed. Examples of specific matrixes are:

  • Cannabis buds, leaves, oil
  • Edibles, such as Chocolates, Baked Goods, Gummies, Candies and Lozenges, etc.
  • Vaping liquids
  • Tinctures
  • Topicals, such as lotions, creams, etc.

Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.

Also, both ISO 17025-2005 and ISO 17025-2017 require the use of a validated method.

ISO 17025-2005: When it is necessary to use methods not covered by standard methods, these shall be subject to agreement with the customer and shall include a clear specification of the customer’s requirements and the purpose of the test and/or calibration. The method developed shall have been validated appropriately before use.

ISO 17025-2017: The laboratory shall validate non-standard methods, laboratory-developed methods and standard methods used outside their intended scope or otherwise modified. The validation shall be as extensive as is necessary to meet the needs of the given application or field of application.

Validation procedures can be found in a diverse number of analytical chemistry associations (such as AOACand ASTM) but the State of California has directed users and laboratories to the FDA manual “Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2nd Edition, 2015

The laboratory must have on file for user review the following minimum results in an analytical statistical report validating their method:

  • accuracy,
  • limit of quantitation,
  • ruggedness,
  • precision,The user must look beyond the QC data provided in their analytical report or laboratory control charts.
  • linearity (or other calibration model),
  • confirmation of identity
  • selectivity,
  • range,
  • spike recovery.
  • limit of detection,
  • measurement uncertainty,

The interpretation of an analytical statistical report will be discussed in detail in the next article. Once the validated method has been selected for the specific matrix, then a sample batch is prepared for analysis.

Sample Batch: A sample batch is defined as a minimum of one (1) to a maximum of twenty (20) analytical samples run during a normal analyst’s daily shift. A LRB, LFB, LFM, LFMD, and CCV will be run with each sample batch. Failure of any QC sample in sample batch will require a corrective action and may require the sample batch to be reanalyzed. The definitions of the specific QC samples are described later.

The typical sample batch would be set as:

  • Instrument Start Up
  • Calibration zero
  • Calibration Standards, Quadratic
  • LRB
  • LFB
  • Sample used for LFM/LFMD
  • LFM
  • LFMD
  • Samples (First half of batch)
  • CCV
  • Samples (Second half of batch)
  • CCV

The QC samples are defined as:

Calibration Blank: A volume of reagent water acidified with the same acid matrix as in the calibration standards. The calibration blank is a zero standard and is used to calibrate the ammonia analyzer

Continuing Calibration Verification (CCV): A calibration standard, which is analyzed periodically to verify the accuracy of the existing calibration for those analytes.

Calibration Standard: A solution prepared from the dilution of stock standard solutions. These solutions are used to calibrate the instrument response with respect to analyte concentration

Laboratory Fortified Blank (LFB): An aliquot of reagent water or other blank matrix to which known quantities of the method analytes and all the preservation compounds are added. The LFB is processed and analyzed exactly like a sample, and its purpose is to determine whether the methodology is in control, and whether the laboratory is capable of making accurate and precise measurements.

Laboratory Fortified Sample Matrix/Duplicate (LFM/LFMD) also called Matrix Spike/Matrix Spike Duplicate (MS/MSD): An aliquot of an environmental sample to which known quantities of ammonia is added in the laboratory. The LFM is analyzed exactly like a sample, and its purpose is to determine whether the sample matrix contributes bias to the analytical results. The background concentrations of the analytes in the sample matrix must be determined in a separate aliquot and the measured values in the LFM corrected for background concentrations (Section 9.1.3).Laboratories must validate their methods.

Laboratory Reagent Blank (LRB): A volume of reagent water or other blank matrix that is processed exactly as a sample including exposure to all glassware, equipment, solvents and reagents, sample preservatives, surrogates and internal standards that are used in the extraction and analysis batches. The LRB is used to determine if the method analytes or other interferences are present in the laboratory environment, the reagents, or the apparatus.

Once a sample batch is completed, then some of the QC results are provided in the user’s analytical report and all of the QC results should be recorded in the control charts identified in the accuracy and precision section above.

But having created a batch and performing QC sample analyses, the validity of the user’s analytical results is still not guaranteed. Key conclusion points to consider are:

  1. Laboratories must validate their methods.
  2. Running QC analyses does not guarantee that the user’s specific sample in the batch was analyzed correctly.
  3. QC Charts can provide a detailed overview of laboratory performance in a well-run laboratory.

The user must look beyond the QC data provided in their analytical report or laboratory control charts. Areas to look at will be covered in the next few articles in this series.

EVIO Logo

EVIO Labs Berkeley Accredited To ISO 17025

By Aaron G. Biros
No Comments
EVIO Logo

According to a press release, EVIO Inc. announced recently that their Berkeley, California testing lab, C3 Labs, LLC doing business as EVIO Labs, received their ISO 17025 accreditation from Perry Johnson Laboratory Accreditation, Inc. (PJLA). EVIO Inc. acquired C3 Labs in January of this year, but C3 Labs is a well-established cannabis-testing lab that has been serving the Northern California industry since 2015.

The new and improved EVIO Berkeley laboratory
The new and improved EVIO Berkeley laboratory

The accreditation and announcement were well-timed given the California regulatory changes that came on July 1, essentially requiring all cannabis products be tested for a range of contaminants before sold in a retail setting. The press release states EVIO Labs Berkeley should be well equipped to handle the surge in demand for testing services and is prepared for the new regulations.

Ron Russak, vice president of operations at EVIO Labs
Ron Russak, vice president of operations at EVIO Labs

According to Ron Russak, vice president of operations at EVIO Labs, they hope these regulations can give producers, retailers and consumers assurance that their products are safe. “EVIO is committed to upholding the highest standards throughout each step of the testing process and we are extremely pleased with the team’s hard work to reach this great achievement,” says Russak. “As the California cannabis industry evolves and state-mandated laboratory standards of operation prove vital, both clients and consumers will now have assurance that the results will be accurate and reliable.”

In June, we spoke with the EVIO team as they were gearing up for the July 1 phase-in of the new rules. They said they were expanding their capacity in anticipation of a higher demand for lab testing services, including adding more resources, equipment and personnel.

Top 10 Common Findings Detected During Cannabis Laboratory Assessments: A Guide to Assist with Accreditation

By Tracy Szerszen
No Comments

With the cannabis industry growing rapidly, laboratories are adapting to the new market demand for medical cannabis testing in accordance to ISO/IEC 17025. Third-party accreditation bodies, such as Perry Johnson Laboratory Accreditation, Inc. (PJLA), conduct these assessments to determine that laboratories are following relevant medical cannabis testing standard protocols in order to detect potency and contaminant levels in cannabis. Additionally, laboratories are required to implement and maintain a quality management system throughout their facility. Obtaining accreditation is a challenge for laboratories initially going through the process. There are many requirements outlined in the standard that laboratories must adhere to in order to obtain a final certificate of accreditation. Laboratories should evaluate the ISO 17025 standard thoroughly, receive adequate training, implement the standard within their facility and conduct an internal audit in order to prepare for a third-party assessment. Being prepared will ultimately reduce the number of findings detected during the on-site assessment. Listed below is research and evidence gathered by PJLA to determine the top ten findings by clause specifically in relation to cannabis testing laboratories.

PJLA chart
The top 10 findings by clause

4.2: Management System

  • Defined roles and responsibilities of management system and its quality policies, including a structured outline of supporting procedures, requirements of the policy statement and establishment of objectives.
  • Providing evidence of establishing the development, implementation and maintenance of the management system appropriate to the scope of activities and the continuous improvement of its effectiveness.
  • Ensuring the integrity of the management system during planned and implemented changes.
  • Communication from management of the importance of meeting customer, statutory and regulatory requirements

4.3: Document Control

  • Establishing and maintaining procedures to control all documents that form the management system.
  • The review of document approvals, issuance and changes.

4.6: Purchasing Services and Supplies

  • Policies and procedures for the selection and purchasing of services and supplies, inspection and verification of services and supplies
  • Review and approval of purchasing documents containing data describing the services and supplies ordered
  • Maintaining records for the evaluation of suppliers of critical consumables, supplies and services, which affect the quality of laboratory outputs.

4.13: Control of Records

  • Establishing and maintaining procedures for identification, collection, indexing, access, filing, storage and disposal of quality and technical records.
  • Providing procedures to protect and back-up records stored electronically and to prevent unauthorized access.

4.14: Internal Audits

  • Having a predetermined schedule and procedure for conducting internal audits of its activities and that addresses all elements that verify its compliance of its established management system and ISO/IEC 17025
  • Completing and recording corrective actions arising from internal audits in a timely manner, follow-up activities of implementation and verification of effectiveness of corrective actions taken.

5.2: Personnel

  • Laboratory management not ensuring the competence and qualifications of all personnel who operate specific equipment, perform tests, evaluate test results and sign test reports. Lack of personnel undergoing training and providing appropriate supervision
  • Providing a training program policies and procedures for an effective training program that is appropriate; identification and review of training needs and the program’s effectiveness to demonstrate competence.
  • Lack of maintaining records of training actions taken, current job descriptions for managerial, technical and key support personnel involved in testing

5.4: Test and Calibration Methods and Method Validation

  • Utilization of appropriate laboratory methods and procedures for all testing within the labs scope; including sampling, handling, transport, storage and preparation of items being tested, and where appropriate, a procedure for an estimation of the measurement of uncertainty and statistical techniques for analysis
  • Up-to-date instructions on the use and operation of all relevant equipment, and on the handling and preparation of items for testing
  • Introduction laboratory-developed and non-standard methods and developing procedures prior to implementation.
  • Validating non-standard methods in accordance with the standard
  • Not completing appropriate checks in a systematic manner for calculations and data transfers

5.6: Measurement Traceability

  • Ensuring that equipment used has the associated measurement uncertainty needed for traceability of measurements to SI units or certified reference materials and completing intermediate checks needed according to a defined procedure and schedules.
  • Not having procedures for safe handling, transport, storage and use of reference standards and materials that prevent contamination or deterioration of its integrity.

5.10: Reporting the Results

  • Test reports not meeting the standard requirements, statements of compliance with accounting for uncertainty, not providing evidence for measurement traceability, inaccurately amending reports.

SOP-3: Use of the Logo

  • Inappropriate use of PJLA’s logo on the laboratories test reports and/or website.
  • Using the incorrect logo for the testing laboratory or using the logo without prior approval from PJLA.
Dr. Ed Askew
From The Lab

Quality Plans for Lab Services: Managing Risks as a Grower, Processor or Dispensary

By Dr. Edward F. Askew
No Comments
Dr. Ed Askew

Editor’s Note: The views expressed in this article are the author’s opinions based on his experience working in the laboratory industry. This is an opinion piece in a series of articles designed to highlight the potential problems that clients may run into with labs. 


This article is the first in a series that will look into the risks any user of laboratory services (growers, processors or dispensary owners) will face from the quality systems in place in the laboratory. I will discuss specific risk areas in clear and understandable language so as to not obscure the substance of the article series with abbreviations and nomenclature that is not familiar with the reader. Subjects of the articles that follow will focus on the specific laboratory certification or accreditation requirements and how the user may find out if their risks are addressed. As these articles are meant to be interactive with the reader, users are encouraged to send questions or suggested topics to the author.

This article will be an introduction to the typical laboratory process that generates the “paperwork wall” and how it might impact the user.My experience with laboratory certification or accreditation (difference between the two discussed later in this article) comes from over 30+ years in the environmental chemistry field. My experiences include working under the Clean Water Act, Safe Drinking Water Act, FIFRA (pesticides) and ISO 17025 laboratory analyses and laboratory management. I have also received training to perform ISO 17025 and EPA Drinking Water audits. During this time I have been audited as a laboratory analyst/laboratory manager and have performed audits.

As such, I can open up the laboratory structure beyond the sterile “paperwork wall” that has been constructed to allow the user to see the quality of data that is used in final reports that can wreak havoc. This article will be an introduction to the typical laboratory process that generates the “paperwork wall” and how it might impact the user.

One of the common misconceptions that a user has with a “certified or accredited” laboratory is that procession of a certificate indicates that ALL laboratory analyses produced are accurate and precise. I liken this to the “paperwork wall” that laboratories produce when the user questions any results reported to them. The laboratory management assumes that they have answered the user complaint (i.e. a certified/accredited laboratory cannot make a mistake) and the user will not pursue further questions once the certificate is produced.Accreditation does not guarantee that the laboratory personnel can perform the analyses the user is paying for; just that the laboratory’s paperwork has been audited.

First off, let’s look at what the difference between the terms certified laboratory vs. accredited laboratory. These simple words mean specifically different types of laboratories. According to the NIST National Voluntary Laboratory Accreditation Program (NVLAP):

  • Certification is used for verifying that personnel have adequate credentials to practice certain disciplines, as well as for verifying that products meet certain requirements.
  • Accreditation is used to verify that laboratories have an appropriate quality management system and can properly perform certain test methods (e.g., ANSI, ASTM, and ISO test methods) and calibration parameters according to their scopes of accreditation.

So, how does that impact the user?

  • If your state or 3rd party certificate only accredits a laboratory, then the accreditation agency only inspects the laboratory’s quality program as it applies to written documents and static equipment. (e.g. The quality manual is written and the standard operating procedures (SOPs) are in place).
  • Accreditation does not guarantee that the laboratory personnel can perform the analyses the user is paying for; just that the laboratory’s paperwork has been audited.
  • Certification on the other hand says that the laboratory personnel are qualified to perform the laboratory analyses and that the final laboratory results meet specific (certain) requirements. In other words, the laboratory’s quality plan and SOPs are met.

There are three different paths that are utilized by state cannabis control agencies to accredit or certify a cannabis laboratory.

  • ISO 17025: The ISO laboratory quality standard for laboratory accreditation is the most broadly used. ISO 17025 is an international standard and its implementation in the United States is regulated by ILAC. There are three 3rd party companies that audit for and award ISO 17025 accreditation certificates. They are Perry Johnson Laboratory Accreditation Inc., ANAB and A2LA.
  • TNI: The NELAC Institute standards are utilized by one state to handle their cannabis laboratory accreditation.
  • States: Some states have tried to blend an ISO 17025 requirement with their own state’s certification requirements to produce a mixed accreditation-certification program. But, this type of program may rely on two or more agencies (e.g. ISO 17025 3rd party auditors communicating with state auditors) to cover all specific laboratory areas.

PJLAIn two of the paths above, the final result is that the laboratory receives accreditation. That means that only the quality management system and the scope (e.g. SOPS, laboratory instruments, etc.) have been audited, not the laboratory personnel or their capabilities. The third pathway may produce a certified laboratory or may not.

To provide an example of where an accredited laboratory followed their paperwork but produced inadequate results:

  • I received a laboratory report for organic chemical analyses of a client’s process.
    • The laboratory results placed the user in noncompliance with the state and federal regulatory limits.
    • But, the laboratory result contained data flags (e.g. additional information that explains why the laboratory result failed the laboratory’s quality requirements).
    • The laboratory still received payment from the user as the laboratory performed the analyses.
  • I had to explain to the regulatory agency that some of the data flags when investigated showed:
    • The laboratory failed to use the approved analytical method.
    • The detection level for the regulatory chemical was so low that the laboratory had no instrument capable to see those chemicals at the concentrations reported by the laboratory.
  • The state regulators accepted the explanation I provided and the user was no longer under a regulatory administrative order.
  • But, when I presented this information to the accreditation agency that accredited this laboratory I was informed:
    • The laboratory flagged the data so it can be reported to the user.
    • If the user wanted more from the laboratory, then the user will have to outline their specific requirement in a quality contract with the laboratory. (i.e. If the laboratory identifies the problems then they can report the data no matter what happens to the user).

So now, what is being done behind the “paperwork wall”? Areas such as those listed below can impact the results received by the user.

  • Laboratory quality culture: What does the laboratory staff think about quality in their normal daily work?
  • Laboratory staff competence: What is the level of training and real world competence of the staff that actually works on the analyses?
  • Laboratory capabilities: Does the laboratory actually have the laboratory instruments and equipment that can perform the analyses the user needs?
  • Laboratory quality control parameters: What is in the quality manual and does it make sense?
  • Laboratory analytical method validation: Are the analytical methods used by the laboratory validated by approved statistical procedures?

What should the user have in place to limit their risks from laboratory analyses?

  • Failsafe sampling preparation plans: Make sure the user samples for the laboratory are collected correctly.
  • Failsafe’s on laboratory sample reports: Protect the user from bad laboratory reports.
  • User auditing of the laboratory: Go to the laboratory and see if the laboratory can pass muster.

What’s Next: The next article will go behind the laboratory “paperwork wall” to detail the culture that impacts the user results negatively and how that can be recognized. Follow-up articles will help users developing quality plans that identify risks and how to limit them.

A2LA Accredits First Cannabis Lab in PA

By Aaron G. Biros
No Comments

According to a press release sent out this morning, the American Association for Laboratory Accreditation (A2LA) accredited their first Pennsylvania cannabis-testing laboratory. Located in Harrisburg, PA, Keystone State Testing finalized their accreditation for ISO/IEC 17025 on February 21, 2018.

KeystoneStateTestinglogoA2LA also accredited the laboratory to two cannabis-testing-specific programs, ISO/IEC 17025 – General Requirements for the Competence of Testing and Calibration Laboratories and A2LA R243 – Specific Requirements – Cannabis Testing Laboratory Accreditation Program. The R243 program is a collaboration with Americans for Safe Access (ASA) that takes some recommendation for regulators from the American Herbal Products Association (AHPA).

KellyGreenland
Dr. Kelly Greenland, owner and operator of Keystone State Testing

Keystone State Testing is now able to perform all of the tests for cannabis products under the state of Pennsylvania’s regulations. According to Dr. Kelly Greenland, owner and operator of Keystone State Testing, getting accredited is about safeguarding patient safety. “Keystone State Testing is proud to be the first Pennsylvania laboratory to earn A2LA ISO/IEC 17025 accreditation as well as ASA’s Patient Focused Certification,” says Dr. Greenland. “We regard these accreditations and certifications as the first steps in ensuring patient safety and will continue to do everything within our power to ensure medical marijuana patient safety.”

A2LA General Manager Adam Gouker says he wants to see more accreditations include the ASA requirements in R243. “A2LA is pleased to see the growing adoption of the combined assessment to include the ASA requirements,” says Gouker. “Our staff has worked tirelessly in conjunction with ASA staff to create this combined program and offer something that no other accreditation body in the world offers. We congratulate Keystone State Testing Labs on leading the charge in the state of Pennsylvania and laying the groundwork for future laboratories to follow.”

EVIO Logo

EVIO Labs: The First Accredited Cannabis Lab in Florida

By Lauren Masko
No Comments
EVIO Logo

EVIO Labs recently became the first cannabis laboratory in Florida to obtain ISO 17025 accreditation. Perry Johnson Laboratory Accreditation, Inc. (PJLA), an organization that provides third-party assessments to ISO/IEC 17025, accredited EVIO Labs. The assessment process that lead to ISO 17025 accreditation for EVIO Labs included a thorough review of their quality management system, their capability to perform potency and contaminant testing for cannabis products.

Tracy Szerszen, president and operations manager at PJLA, encourages this international standard for laboratories to provide confidence to end-users that the test results they receive are reliable. She says laboratories that achieve this accreditation are showing they have the proper tools, equipment and staff to provide accurate testing. “It is a very critical component of the industry, and becoming accredited provides the assurance that laboratories are performing to the highest standard,” says Szerszen. “EVIO Labs has taken the right step in their commitment towards meeting this standard and providing clean and safe cannabis for the patients of Florida.”

PJLAEVIO Labs provides cannabis testing for cannabinoid and terpene profiles, microbiological and pesticides contamination, residual solvent, heavy metals, mycotoxins, water activity and moisture content. Chris Martinez, co-founder and president of EVIO Labs Florida explains that the Florida Department of Health mandates that an independent third-party laboratory tests medical cannabis to ensure that these products are safe for human consumption. Martinez says their first priority is the safety of their patients, and ensuring that EVIO Labs provides clean and safe cannabis for Florida.

Chris Martinez
Chris Martinez, co-founder and president of EVIO Labs Florida

Martinez launched their laboratory with some help from Shimadzu last year. “Our Broward lab is powered by Shimadzu with over $1.2M in the latest testing equipment utilizing LCMS technology with the world’s fastest polarity switching time of 5 m/sec and scan speeds of 30,000 u/sec with UF Qarray sensitivity 90 times that of previously available technologies,” says Martinez. According to Martinez, their licensing agreement with EVIO Labs (OTC:SGBYD) marked a first for the publicly traded company with exclusivity in the Florida market. The agreement includes proprietary testing methodologies, operating procedures, training and support.

Every certificate of analysis is reviewed by a lab director with over 20 years of experience operating in FDA regulated labs. Martinez says that EVIO has some of the most advanced technology in the industry, which provides them the opportunity to quickly provide results, frequently as fast as a 24-hour period. Martinez and his team are currently building a 3,300 square-foot laboratory in Gainesville, which is expected to be running by March of this year.

Ask The Expert: Exploring Cannabis Laboratory Accreditation Part 4

By Aaron G. Biros
No Comments

In the first part of this series, we spoke with Michelle Bradac, senior accreditation officer at A2LA, to learn the basics of cannabis laboratory accreditation. In the second part, we sat down with Roger Brauninger, A2LA Biosafety Program manager, to learn why states are looking to lab accreditation in their regulations for the cannabis industry. In the third part, we heard from Michael DeGregorio, chief executive officer of Konocti Analytics, Inc., discussing method development in the cannabis testing industry and his experience with getting accredited.

In the fourth and final part of this series, we sit down with Susan Audino, Ph.D., an A2LA lead assessor and instructor, laboratory consultant and board member for the Center for Research on Environmental Medicine in Maryland. Dr. Audino will share some insights into method validation and the most technical aspects of laboratory accreditation.

Susan Audino, Ph.D.

Susan Audino obtained her Ph.D. in Chemistry with an analytical chemistry major, physical and biochemistry minor areas. She currently owns and operates a consulting firm to service chemical and biological laboratories. Susan has been studying the chemistry and applications of cannabinoids and provides scientific and technical guidance to cannabis dispensaries, testing laboratories and medical personnel. Dr. Audino’s interest most directly involves cannabis consumer safety and protection, and promotes active research towards the development of official test methods specifically for the cannabis industry, and to advocate appropriate clinical research. In addition to serving on Expert Review Panels, she is also chairing the first Cannabis Advisory Panel and working group with AOAC International, is a member of the Executive Committee of the ASTM Cannabis Section and has consulted to numerous cannabis laboratories and state regulatory bodies.

CannabisIndustryJournal: What are the some of the most significant technical issues facing an accreditation body when assessing a cannabis-testing laboratory?

Susan: From the AB perspective, there needs to be a high level of expertise to evaluate the merits and scientific soundness of laboratory-developed analytical test methods. Because there are presently no standard or consensus test methods available, laboratories are required to develop their own methods, which need to be valid. Validating methods require a rigorous series of tests and statistical analyses to ensure the correctness and reliability of the laboratory’s product, which is– the test report.

CIJ: When is method validation required and how does this differ from system suitability?

Susan: Method validation is required whenever the laboratory modifies a currently accepted consensus or standard test method, or when the laboratory develops its own method. Method validation is characterized by a series of analytical performance criteria including determinations of accuracy, precision, linearity, specification, limit of detection, and limit of quantitation. The determination of system suitability requires a series of deliberate variations of parameters to ensure the complete system, that is all instrument(s) as well as the analytical method, is maintained throughout the entire analytical process. Traditionally, method validation has been referred to as “ruggedness” and system suitability as “robustness.”

CIJ: What are the most important aspects of method validation that must be taken into account? 

Susan: In keeping with the FDA guidelines and other accepted criteria, I tend to recommend the International Conference on Harmonization (ICH), particularly Q 2A, which is a widely recognized program that discusses the pertinent characteristics of method validation. This include: method specification, linearity, range, accuracy, and precision (e.g., repeatability, intermediate precision, reproducibility). As mentioned earlier, system suitability is also a critical element and although related to method validation, does require its own protocol.

CIJ: What three areas do you see the laboratory having the hardest time with in preparing for accreditation? 

Susan: My responses to this question assume the laboratory employs appropriate instruments to perform the necessary analyses, and that the laboratory employs personnel with experience and knowledge appropriate to develop test methods and interpret test results.

  • By and large, method validation that is not appropriate to the scope of their intended work. Driving this is an overall lack of information about method validation. Oftentimes there is an assumption that multiple recoveries of CRMs constitute “validation”. While it may be one element, this only demonstrates the instrument’s suitability. My recommendation is to utilize any one of a number of good single laboratory validation protocols. Options include, but are not limited to AOAC International, American Chemical Society, ASTM, and ICH protocols.
  • Second is the lack of statistically sound sampling protocols for those laboratories that are mandated by their governing states to go to the field to sample the product from required batches. Sampling protocols needs to address the heterogeneity of the plant, defining the batch, and determining/collecting a sample of sufficient quantity that will be both large enough and representative of the population, and to provide the laboratory an adequate amount from which to sub-sample.
  • Third, sample preparation. This is somewhat intertwined with my previous point. Once an appropriate sample has been collected, preparation must be relevant to the appropriate technology and assay. It is unlikely that a laboratory can perform a single preparation that is amenable to comprehensive testing.

Ask The Expert: Exploring Cannabis Laboratory Accreditation Part 3

By Aaron G. Biros
No Comments

In the first part of this series, we spoke with Michelle Bradac, senior accreditation officer at A2LA, to learn the basics of cannabis laboratory accreditation. In the second part, we sat down with Roger Brauninger, A2LA Biosafety Program manager, to learn why states are looking to lab accreditation in their regulations for the cannabis industry.

In the third part of this series, we sit down with Michael DeGregorio, chief executive officer of Konocti Analytics, Inc., to talk method development in the cannabis testing industry and his experience with getting accredited. In the final part of this series, we are going to sit down with Susan Audino, an instructor at A2LA to learn more about the requirements where she’ll offer some advice for labs seeking accreditation.

Michael DeGregorio, chief executive officer of Konocti Analytics, Inc.

Michael DeGregorio is a doctor of pharmacy with an extensive career in medicine and scientific research. He’s worked in cancer research and medicine, teaching at the University of California, San Francisco, Yale University School of Medicine, University of Texas, Health Science Center at San Antonio and University of California, Davis. Before becoming the CEO of Konocti Analytics, a laboratory based in California, DeGregorio was also a published author in a large number of peer-reviewed medical journals.

In this piece, we sit down with DeGregorio to find out what challenges labs face when getting accredited, why they sought accreditation and their experience with getting off the ground. Stay tuned for the final part of this series!

CannabisIndustryJournal: How does a laboratory go about choosing an appropriate method in an industry where, generally, there are no validated methods available?

Michael DeGregorio: Our approach to developing analytical methods for testing cannabis began with a review of the existing laboratories and their methods, where we found no standardization and inconsistent results. Since cannabis is being used by the public and as a medicine, our goal is to help make it as contaminant-free as possible for the well-being of the consumer, and this begins by developing a state-of-the-art analytical facility.

When developing new methods, we review the published literature to see what has already been done and try to arrive at a scientifically sound consensus. We then perform experiments to determine which set of conditions works best for us. Once we have developed an appropriate method, we validate it pursuant to ISO/IEC 17025 requirements.

CIJ: How do you go about choosing what type of equipment to use for testing (e.g. by limit of detection, acceptable method use of equipment for other industries, etc.)?

Michael: After reviewing the operations of other testing laboratories, we concluded that, in general, they were not taking advantage of the most advanced technologies and had limited personnel qualified to operate it. Because public safety is our main concern, we chose state-of-the-art equipment, including GC/LC-MS with Orbitrap and ICP-MS, for testing medicinal cannabis. In addition to identifying unknown pesticides, we needed the capability of performing full chemical screening of all samples for potentially harmful compounds, e.g. steroids, present in cannabis, as well as the ability to detect trace levels of metals.

Our greatest concern is the fact that pesticides in cannabis have not been adequately studied. Current pesticide regulations suggest that government authorities believe that there are a finite number of pesticides available. Smart farmers could easily avoid the pesticides on current lists. Because of this, we chose to validate our pesticide methods with a focus on chemical classes, as opposed to specific pesticides, to give us the broadest possible coverage of potential compounds. The Orbitrap mass spectrometers also allow us to detect and identify unknown pesticides. This is something not currently being done by other laboratories. The latest microbiology methods for cannabis testing include DNA analysis, and for this we use qRT-PCR technology. Finally, the high sensitivity of ICP-MS allows for the detection of metals concentrations that may be harmful, yet undetectable by other means.

CIJ: What do you feel are the benefits of being accredited?

Michael: Being accredited shows the public that we have made a commitment to quality analytics. We feel this gives our clients peace of mind when marketing their products, knowing that they have been tested by a laboratory meeting the highest international standards of operation available using the latest technology. Furthermore, being accredited requires participation in ongoing proficiency testing programs, which helps maintain analytical competency. It should be pointed out that any prospective client of an analytical facility should take into account the laboratory’s full accredited scope of testing to ensure its competency.

CIJ: What challenges did you face during the process of getting your laboratory started and/or during the accreditation process?

Michael: Developing the quality management system and getting our equipment and processes to a state where they met accreditation requirements took several months of hard work, and turned out to be a bit more daunting than we anticipated. Our pre-accreditation assessment revealed that much work remained to be done, and it gave us a real appreciation for the level of detail and documentation required. We remained determined and eventually achieved our accreditation.

CIJ: What are the benefits to the grower and dispensaries to choosing an accredited laboratory for the testing of their product?

Michael: By choosing an accredited laboratory with a full scope of testing (potency, pesticides, mycotoxins, metals, microbiology, residual solvents and terpenes), growers and dispensaries can rest assured that their products have been tested using validated methods with appropriate quality control by trained, competent personnel. For growers, this makes their products more attractive to potential buyers. For dispensaries, this means they can confidently market their products with the knowledge that the information shown on the label is accurate, which in turn gives their customers peace of mind that the product they are consuming does not contain unacceptable levels of contaminants. 

CIJ: Why did you choose A2LA?

Michael: Once we decided to pursue accreditation, we researched the various accrediting bodies available as well as their reputations. We discovered that while all accrediting bodies are themselves accredited to the same standard, accreditation by the various bodies was not considered equal in practice. In our opinion, A2LA was considered the most prestigious, highly regarded accrediting body. Furthermore, some of the most prestigious laboratories in the country are accredited by A2LA, including Los Alamos National Laboratory, the Food and Drug Administration’s Center for Biologics Evaluation and Research, Lawrence Livermore National Laboratory, Centers for Disease Control, Federal Bureau of Investigation and the United States Department of Agriculture. Many of our preferred sources of scientific supplies and services are accredited by A2LA as well. As our goal was to be accredited by the best available accrediting body, we chose A2LA.

roger_headshot

Ask The Expert: Exploring Cannabis Laboratory Accreditation Part 2

By Aaron G. Biros
1 Comment
roger_headshot

In the first part of this series, Michelle Bradac, senior accreditation officer at the American Association for Laboratory Accreditation (A2LA), told us about the basics of laboratory accreditation, what it means and why it is such a cornerstone of product safety. In this next piece, we sit down with Roger Brauninger, A2LA Biosafety Program manager, to learn why states are looking to lab accreditation in their regulations for the cannabis industry.

Brauninger has worked at A2LA since 1999. As the manager of their biosafety program, his focus is on developing and maintaining accreditation programs in the life sciences. Brauninger has conducted a number of management system assessments to ISO/IEC 17025 and 17020 and also evaluates other assessors in this role.

roger_headshot
Roger Brauninger, A2LA biosafety program manager

He is A2LA’s point person for interacting with organizations working with food and drug safety, human and animal anti-doping, biological and chemical threat agents and since 2014 for issues related to cannabis testing. He is a member of the ASTM D37 Cannabis committee, a group focused on creating standards for cannabis products. He was also a member of the stakeholder panel on strategic food analytical methods (SPSFAM) cannabis potency working group when they were awarded the Official Methods Board (OMB) award for achievement in technical and scientific excellence at the AOAC’s Annual Meeting and Exposition in Atlanta, GA. Brauninger holds an M.S. degree in Cellular, Microbial and Molecular Biology from George Mason University and is a member of the Society for Toxicology, AOAC International and the International Association for Food Protection (IAFP).

In this part of the series, we sit down with Brauninger to learn specific requirements in states, some of the benefits of using ISO/IEC 17025 and the influx of start-up or novice testing laboratories. Stay tuned for part three.

CannabisIndustryJournal: Do all states with legalized medical cannabis require the testing to be performed by an ISO/IEC 17025 accredited laboratory?

Roger Brauninger: No not at present, while most of the states where cannabis is legal do require accreditation; there are some states that have no requirements dealing with ensuring the competence of the testing laboratories, some that require the labs to be accredited to state environmental and drinking water standards, some that require laboratories adhere to Good Laboratory Practices (GLP) requirements and some have no requirements in place currently. Now, there are roughly 13 states that require or recommend accreditation of the testing laboratory to ISO/IEC 17025.

CIJ: If and when cannabis use is accepted federally, how is ISO/IEC 17025 accreditation of testing laboratories beneficial?

Roger: The accreditation process provides a uniform platform to allow for comparability of test results between states. This would also allow for these laboratories to benefit by being able to expand their customer base, if state borders were not an artificially imposed barrier to trade. This could also help to raise the quality of the testing services by allowing for greater participation in realistic accredited proficiency testing programs, which can create greater comparability of methods and results.

CIJ: What are the benefits to the states by choosing to require ISO/IEC 17025 accreditation as a basis for competence of testing laboratories?

Roger: States face the unique challenge, due to the federal illegality of cannabis, that they must craft their own regulatory cannabis program requirements. The ISO/IEC 17025 requirements provides a means upon which to recognize laboratory competence. This saves the states from having to come up with their own laboratory quality management requirements detailing the necessary activities a laboratory must address with respect to documentation, chain of custody, method validation, etc. Because these items are already considered in the standard. ISO/IEC 17025 helps to creates a baseline consistency amongst laboratories between states. And It also helps to   provides for the legal defensibility of the test results. If and when cannabis is legalized on a federal level, a uniform 50 state recognition is possible using ISO/IEC 17025 as the basis of recognition. In short accreditation can help to ensure that test results have greater comparability and reliability; It also provides greater trust and confidence in the labels and the stated ingredients.

CIJ: Many of the laboratories are “starting up”, how is A2LA equipped to deal with the influx of novice laboratories in this field of testing?

Roger: A2LA offers many different relevant training classes, including those on the ISO/IEC 17025 standard itself, (as well as ones that also contain cannabis-specific content), internal auditing, documenting your quality system, etc. for the laboratories. A2LA also is knowledgeable regarding various states’ cannabis regulatory requirements and can help guide the labs through some of the many obstacles they face in order to perform testing in their state.

CIJ: Does A2LA provide any technical assistance to laboratories that are starting up in this industry?

Roger: A2LA has numerous technical assessors who are experts in the analytical technology associated with cannabis testing. Assessors can be hired in a consulting role and act independently of the assessment process (and independent of A2LA). As a consultant, they can also assist in setting up a quality management system in compliance with ISO/IEC 17025.

CIJ: What benefits can be gained from a laboratory seeking accreditation or from a state that requires cannabis testing laboratories to be accredited?

Roger: Accreditation can provide legal defensibility and increased confidence in the test results being able to stand up in court.   It also may help to lower the cost of doing business because it helps to ensure that the test methods are in control by the laboratory and has been shown to be able to reduce the need for repeat testing. Laboratory accreditation has also led to reduced insurance rates in some cases.

SC Labs Santa Cruz Gets ISO 17025 Accreditation

By Aaron G. Biros
No Comments

Earlier this week, SC Labs issued a press release announcing they achieved ISO/IEC 17025:2005 accreditation for the cannabinoids panel at their Santa Cruz location.

“We are thrilled to announce our ISO accreditation as this is one of our most important achievements over the past seven years of serving the cannabis industry and demonstrates our commitment to serving our clients with integrity,” says Jeff Gray, co-founder and chief executive officer of SC Labs. ISO 17025 accreditation represents an international standard for a laboratory’s technical competence in producing accurate test results.

“Being accredited to this International Standard demonstrates our robust quality system, technical competence, the calibration and suitability of our instrumentation and our ability to produce precise and accurate test data,” says Gray. “For clients, it enhances their confidence in our services and their choice in a business partner, provides them with additional legal defensibility in complying with upcoming regulations, and enhances the integrity of their products based on SC Labs results.”

SC Labs is currently expanding in California, growing their Southern California and Santa Cruz locations, and adding field offices throughout the state, according to the press release.