Tag Archives: cultivate

Fungal Monitoring: An Upstream Approach to Testing Requirements

By Bernie Lorenz, PhD
No Comments

Mold is ubiquitous in nature and can be found everywhere.1 Cannabis growers know this all too well – the cannabis plant, by nature, is an extremely mold-susceptible crop, and growers battle it constantly.

Of course, managing mold doesn’t mean eradicating mold entirely – that’s impossible. Instead, cultivation professionals must work to minimize the amount of mold to the point where plants can thrive, and finished products are safe for consumption.

Let’s begin with that end in mind – a healthy plant, grown, cured and packaged for sale. In a growing number of states, there’s a hurdle to clear before the product can be sold to consumers – state-mandated testing.

So how do you ensure that the product clears the testing process within guidelines for mold? And what tools can be employed in biological warfare?

Mold: At Home in Cannabis Plants

It helps to first understand how the cannabis plant becomes an optimal environment.

The cannabis flower was designed to capture pollen floating in the air or brought by a pollinating insect.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

Once a mold spore has landed in a flower, the spore will begin to grow. The flower will continue to grow as well, and eventually, encapsulate the mold. Once the mold is growing in the middle of the flower, there is no way to get rid of it without damaging the flower.

A Name with Many Varieties

The types of spores found in or around a plant can make or break whether mold will end with bad product.

Aspergillus for example, is a mold that can produce mycotoxins, which are toxic to humans2. For this reason, California has mandatory testing3for certain aspergillus molds.

Another example, Basidiospores, are found outside, in the air. These are spores released from mushrooms and have no adverse effects on cannabis or a cannabis cultivation facility.

Fungi like powdery mildew and botrytis (PM and Bud Rot) typically release spores in the air before they are physically noticed on plants. Mold spores like these can survive from one harvest to the next – they can be suspended in the air for hours and be viable for years.

How Mold Travels

Different types of spores – the reproductive parts of mold – get released from different types of mold. Similar to plants and animals, mold reproduces when resources are deemed sufficient.

The opposite is also true that if the mold is under enough stress, such as a depleting nutrient source, it can be forced into reproduction to save itself.4

In the end, mold spores are released naturally into the air for many reasons, including physical manipulation of a plant, which, of course, is an unavoidable task in a cultivation facility.5

Trimming Areas: A Grow’s Highest Risk for Mold

Because of the almost-constant physical manipulation of plants that happen inside its walls, a grow’s trimming areas typically have the highest spore counts. Even the cleanest of plants will release spores during trimming.

Best practices include quality control protocols while trimming

These rooms also have the highest risk for cross contamination, since frequently, growers dry flower in the same room as they trim. Plus, because trimming can be labor intensive, with a large number of people entering and leaving the space regularly, spores are brought in and pushed out and into another space.

The Battle Against Mold

The prevalence and ubiquitous nature of mold in a cannabis facility means that the fight against it must be smart, and it must be thorough.

By incorporating an upstream approach to facility biosecurity, cultivators can protect themselves against testing failures and profit losses.

Biosecurity must be all encompassing, including everything from standard operating procedures and proper environmental controls, to fresh air exchange and surface sanitation/disinfection.

One of the most effective tactics in an upstream biosecurity effort is fungal monitoring.

Ways to Monitor Mold

Determining the load or amount of mold that is in a facility is and always will be common practice. This occurs in a few ways.

Post-harvest testing is in place to ensure the safety of consumers, but during the growing process, is typically done using “scouting reports.” A scouting report is a human report: when personnel physically inspect all or a portion of the crop. A human report, unfortunately, can lead to human error, and this often doesn’t give a robust view of the facility mold picture.

Another tool is agar plates. These petri dishes can be opened and set in areas suspected to have mold. Air moves past the plate and the mold spores that are viable land on the dishes. However, this process is time intensive, and still doesn’t give a complete picture.

Alternatively, growers can use spore traps to monitor for mold.

Spore traps draw a known volume of air through a cassette.The inside of the cassette is designed to force the air toward a sticky surface, which is capable of capturing spores and other materials. The cassette is sent to a laboratory for analysis, where they will physically count and identify what was captured using a microscope.

Spore trap results can show the entire picture of a facility’s mold concerns. This tool is also fast, able to be read on your own or sent to a third party for quick and unbiased review. The information yielded is a useful indicator for mold load and which types are prevalent in the facility.

Spore Trap Results: A Story Told

What’s going on inside of a facility has a direct correlation to what’s happening outside, since facility air comes infromthe outside. Thus, spore traps are most effective when you compare a trap inside with one set outside.

When comparing the two, you can see what the plants are doing, view propagating mold, and understand which of the spore types are only found inside.

Similar to its use in homes and businesses for human health purposes, monitoring can indicate the location of mold growth in a particular area within a facility.

These counts can be used to determine the efficacy of cleaning and disinfecting a space, or to find water leaks or areas that are consistently wet (mold will grow quickly and produce spores in these areas).

Using Spore Traps to See Seasonality Changes, Learn CCPs

Utilizing spore traps for regular, facility-wide mold monitoring is advantageous for many reasons.

One example: Traps can help determine critical control points (CCP) for mold.

What does this look like? If the spore count is two times higher than usual, mitigating action needs to take place. Integrated Pest Management (IPM) strategies like cleaning and disinfecting the space, or spraying a fungicide, are needed to bring the spore count down to its baseline.

For example, most facilities will see a spike in spore counts during the times of initial flower production/formation (weeks two to three of the flower cycle).

Seasonal trends can be determined, as well, since summer heat and rain will increase the mold load while winter cold may minimize it.

Using Fungal Monitoring in an IPM Strategy

Fungal monitoring – especially using a spore trap – is a critical upstream step in a successful IPM strategy. But it’s not the only step. In fact, there are five:

  • Identify/Monitor… Using a spore trap.
  • Evaluate…Spore trap results will indicate if an action is needed. Elevated spore counts will be the action threshold, but it can also depend on the type of spores found.
  • Prevention…Avoiding mold on plants using quality disinfection protocols as often as possible.
  • Action…What will be done to remedy the presence of mold? Examples include adding disinfection protocols, applying a fungicide, increasing air exchanges, and adding a HEPA filter.
  • Monitor…Constant monitoring is key. More eyes monitoring is better, and will help find Critical Control Points.

Each step must be followed to succeed in the battle against mold.

Of course, in the battle, there may be losses. If you experience a failed mandatory product testing result, use the data from the failure to fix your facility and improve for the future.

The data can be used to determine efficacy of standard operating procedures, action thresholds, and other appropriate actions. Plus, you can add a spore trap analysis for pre- and post- disinfection protocols, showing whether the space was really cleaned and disinfected after application. This will also tell you whether your products are working.

Leveraging all of the tools available will ensure a safe, clean cannabis product for consumers.


References

  1. ASTM D8219-2019: Standard Guide for Cleaning and Disinfection at a Cannabis Cultivation Center (B. Lorenz): http://www.astm.org/cgi-bin/resolver.cgi?D8219-19
  2. Mycotoxin, Aspergillus: https://www.who.int/news-room/fact-sheets/detail/mycotoxins
  3. State of California Cannabis Regulations: https://cannabis.ca.gov/cannabis-regulations/
  4. Asexual Sporulation in Aspergillus nidulans (Thomas H. Adams,* Jenny K. Wieser, and Jae-Hyuk Yu):  https://pdfs.semanticscholar.org/7eb1/05e73d77ef251f44a2ae91d0595e85c3445e.pdf?_ga=2.38699363.1960083875.1568395121-721294556.1562683339
  5. ASTM standard “Assessment of fungal growth in buildings” Miller, J. D., et al., “Air Sampling Results in Relation to Extent of Fungal Colonization of Building Materials in Some Water Damaged Buildings,” Indoor Air, Vol 10, 2000, pp. 146–151.
  6. Zefon Air O Cell Cassettes: https://www.zefon.com/iaq-sampling-cassettes
Soapbox

Tips to Shrink your Shrinkage

By Carl Silverberg
No Comments

I had dinner last night with a friend who is a senior executive at one of the largest automobile companies in the world. When I explained the industry-accepted rate of 25-30% shrinkage in horticulture he said, “Are you kidding me? Can you imagine the story in the Wall Street Journal if I gave a press conference and said that we were quite content to throw away three out of every ten cars we manufactured?”

Yet, for all growers, operators and investors who complain about shrinkage, it’s an accepted part of the business. What if it wasn’t; what if you could shrink your shrinkage by 60% and get it down to 10% or less? How much more profitable would your business be and how much easier would your life be?

Let’s take the floriculture industry as our first example. You propagate chrysanthemums in February, they get repotted at the end of April and by the end of June, you might start to see some buds. In a very short time span your job changes from being a grower who manages 10,000 square feet of chrysanthemums to being an order taker. Over a period of eight weeks, you have to unload as many of those mums as possible. The sales team at Macy’s has more time to move their holiday merchandise than you do.

If you’re like most operations, your inventory tracking system consists of Excel spreadsheets and notebooks that tell you what happened in previous years so you can accurately predict what will happen this year. The notebooks give you a pretty accurate idea of where in the greenhouses your six cultivars are, how many you planted and which of the five stages they are in. You already have 30 different sets of data to manage before you add on how many you sell of each cultivar and what stage they were in.

The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.Then your first order comes in and out the window goes any firm control of where the mums are, what stage they’re in and how many of each cultivar you have left. A couple of hours after your first order, a second comes in and by the time you get back in touch, check your inventory, call back the buyer and she’s able to connect with you, those 2837 stage 3 orange mums are moving into stage 4. Only she doesn’t want stage 4 mums she only wants stage 3 so now you frantically call around to see who wants stage 4 orange mums very soon to be stage 5 mums.

And, the answer is often no one. What if you didn’t have your inventory count exact and now you have 242 yellow mums that you just found in a different location in your greenhouse and had you known they were there, you could have sold them along with 2463 other mums that you just located in various parts of your greenhouse.

It doesn’t have to be like that. We had a client in a similar situation, and they are on track to reduce their shrinkage to just a shade over 10%. The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.

And don’t think that shrinkage is an issue only in the purview of floriculture. It’s an even bigger problem for cannabis because of the high value of each crop. The numbers don’t sound as bad because unlike floriculture, you don’t have to throw out cannabis that’s not Grade A. You can always sell it for extract. But extract prices are significantly less per pound than flower in the bag.

Here’s how one grower explained it. “Because of the high value of the crop, and the only other crop I’ve worked with that high is truffles, you’re playing a much higher stakes game with shrinkage. Even if you try and salvage a bad crop by using all of the parts of the cannabis plant. Listen, the difference between Grade A and Grade C could be $1,000 for A while a pound of B/C is less than $400. If you produce a standard 180 to 200 pounds in your grow rooms, you’ve really screwed up. No operator is going to keep you if you just cost them $120,000.”

german flag

Does Germany Have a Gray Market Problem?

By Marguerite Arnold
No Comments
german flag

Tilray just did something very interesting. In addition to announcing that it was shipping product to German distributor Cannamedical via its Portuguese facility, it also announced that it had begun outdoor cultivation.

Groovy.tilray-logo

Even more intriguing: the company is claiming that somehow, via its proprietary technology (apparently), this kind of crop will be legit for distribution within the EU medical system.

There is only one problem with this. Outdoor growing does not sound remotely GMP-certified.

Here is the next bit of exciting news. Tilray, apparently, is not the only large Canadian cannabis company now operating in Europe that appears to be trying to get around GMP certifications for medical market penetration. Or appear oblivious to the distinctions in the international (and certainly European market).

german flag
Photo: Ian McWilliams, Flickr

And things are a bit smelly on that front, not only in Denmark post CannTrust, but in truth even in Germany, the supposed “Fort Knox” of regulatory consumer and pharmaceutical standards.

In fact, at least according to insiders, there is apparently quite a bit of gray market product sloshing around in the Teutonic medical market. Even though so far, at least not publicly punished for the same, nobody has been caught. Or at least publically reprimanded.

And who is on the hot seat at least according to most of the licensed if not just pre-licensed indie producers and distributors who were contacted for this story? Sure, there are dark horse “start-up” indie violators, but they are not the only problem. Many who talked to CIJ named big public Canadian companies too. And potentially Bedrocan beyond that.

Who Is Who And What Is What?

Part of the problem, beyond any kind of deliberate flouting of regulations on the part of many companies who are at least trying to understand them, is that global standards are different. “GMP certifications” of every country, even within a region like Europe, are in fact, not uniform. That is why, for example, the new EU-US MRA agreement had to be signed first regionally and then on a state-by-state level across the EU.

Beyond Germany of course, there are other problems that are coming to the fore.In the medical cannabis space, in particular, right now, that is causing problems simply because many with pharma experience are not hip to the many risks in the cannabis industry itself. On the Canadian, Australian and American side, there is also a lot of bad advice, in particular, coming from consultants who should know better.

To be properly EU and German GMP-certified, one of the required steps is to have German inspectors walk your production floor. It is also not good enough to have “pesticide-free” or national organic certification at the crop cultivation site, and add GMP cert at time of “processing.” That piece of misadvise has been showing up not only in Canada, but Australia too. And creates a nasty reality if not expensive retooling upon entering the legitimate market in Europe, for starters.

These Issues Affect Everyone In The Industry

German Parliament Building

In an environment where ex-im is the name of the game, and even the big guys are short of product, compliance is getting granular as smaller players step up to the plate – and many if not most hopeful Canadian producers (in particular) now looking to Europe for sales are not (yet) up to speed.

A big piece of the blame also lies in the lack of proper administration at the federal and state level too – even auf Deutschland. To get a distribution license, a company must actually get three licenses, although there are plenty in the market right now who begin to describe themselves as “distributors” with less than the required certs.

The lack of coordination and communication, including which certs to accept as equivalent and from where is creating a market where those who know how to game the system are.

For example, several people who contacted CIJ, claimed that uncertified product was making its way into Germany via Central and Latin America, through Canada, picking up “GMP cert” along the way. In other words, not actually GMP-certified but labelled fraudulently to make it appear that way.

The same claims were also made by those with on-the-ground industry knowledge in South Africa (Lesotho).

Beyond Germany of course, there are other problems that are coming to the fore. As CIJ recently learned, a firm authorized by the Dutch government to provide cannabis packaging, including for exports, was not GMP certified until July 2019 – meaning that all product they shipped internationally even within Europe before that date potentially has labelling issues. Cue domestic importers. If not regulators.

Grey Market Product Is Making Its Way In Through Official Channels

For those who are taking the time to actually get through the legal registration and licensing process, it is infuriating to see others who are apparently fairly flagrantly buying market position but are in no position to fulfil such obligations. It is even more infuriating for those who intend to meet the requirements of the regulations to realize that the vast amounts spent in consulting fees was actually money paid for inaccurate information.

And the only way ultimately the industry can combat that, is by standing up, as an industry, to face and address the problem.German distributors are so aware of the problem that they are starting to offer gap analysis and specific consulting services to help their import partners actually get compliant.

Government agencies also might be aware of the problems, but they have been reluctant to talk about the same. CIJ contacted both BfArM and the local Länderauthorities to ask about the outdoor grow in Portugal and the lack of GMP cert for a Dutch packager. After multiple run-arounds, including sending this reporter on a wild rabbit chase of federal and state agencies (who all directed us back to BfArm) and an implication by the press officer at BfArM that the foreign press was not used to talking to multiple sources, CIJ was redirected back to state authorities with a few more instructions on which bureau to contact. The state bureau (in Berlin) did not return comments to questions asked by email.

Here is the bottom line that CannTrust has helped expose this summer: the entire global cannabis industry is trying hard to legitimize. Not every company is shady, and there are many who are entering it now who are playing by the rules. But those who are hoping to exploit loopholes (including “name” if not “public” companies) are also clearly in the room.

And the only way ultimately the industry can combat that, is by standing up, as an industry, to face and address the problem.

Keeping Your Environment Clean: Preventative Measures Against Contamination

By Jeff Scheir
2 Comments

For years we have heard about and sometimes experienced, white powdery mildew when growing cannabis. It is a problem we can see, and we have numerous ways to combat it. But now more and more states are introducing regulatory testing on our harvests and they are looking for harmful substances like Escherichia coli., Aspergillis Fumigatus, Aspergillis terreus, …  just to name a few. Mycotoxins, mold and bacteria can render a harvest unusable and even unsellable- and you can’t see these problems with the naked eye. How much would it cost you to have to throw away an entire crop?

You bring in equipment to control the humidity. You treat the soil and create just the right amount of light to grow a superior product. You secure and protect the growing, harvesting, drying and production areas of your facility. You do everything you can to secure a superior yield… but do you?

Many of the organisms that can hurt our harvest are being multiplied, concentrated and introduced to the plants by the very equipment we use to control the growing environment. This happens inherently in HVAC equipment.

Your air conditioning equipment cools the air circulating around your harvest in a process that pulls moisture from the air and creates a perfect breeding ground in the wet cooling coil for growth of many of the organisms that can destroy your yield. As these organisms multiply and concentrate in the HVAC system, they then spew out into the very environment you are trying to protect at concentrated levels far greater than outside air. In effect, you are inoculating the very plants you need to keep safe from these toxins if you want to sell your product.

The cannabis industry is starting to take a page from the healthcare and food safety industries who have discovered the best way to mitigate these dangers is the installation of a proper UVC solution inside their air conditioning equipment.

Why? How does UVC help? What is UVC?

What is Ultraviolet?

Ultraviolet (UV) light is one form of electromagnetic energy produced naturally by the sun. UV is a spectrum of light just below the visible light and it is split into four distinct spectral areas – Vacuum UV or UVV (100 to 200 nm), UVC (200 to 280 nm), UVB (280 to 315 nm) and UVA (315 to 400 nm). UVA & UVB have been used in the industry to help promote growth of cannabis.

What is UVC (Ultraviolet C)?

The entire UV spectrum can kill or inactivate many microorganism species, preventing them from replicating. UVC energy at 253.7 nanometers provides the most germicidal effect. The application of UVC energy to inactivate microorganisms is also known as Germicidal Irradiation or UVGI.

UVC exposure inactivates microbial organisms such as mold, bacteria and viruses by altering the structure and the molecular bonds of their DNA (deoxyribonucleic acid). DNA is a “blue print” these organisms use to develop, function and reproduce. By destroying the organism’s ability to reproduce, it becomes harmless since it cannot colonize. After UVC exposure, the organism dies off leaving no offspring, and the population of the microorganism diminishes rapidly.

Ultraviolet germicidal lamps provide a much more powerful and concentrated effect of ultraviolet energy than can be found naturally. Germicidal UV provides a highly effective method of destroying microorganisms.

To better understand how Steril-Aire UVC works, it is important to understand the recommended design. Directed at a cooling coil and drain pan, UVC energy destroys surface biofilm, a gluey matrix of microorganisms that grows in the presence of moisture. Biofilm is prevalent in HVAC systems and leads to a host of indoor air quality (IAQ) and HVAC operational problems. UVC also destroys airborne viruses and bacteria that circulate through an HVAC system and feed out onto the crop. HVAC cooling coils are the largest reservoir and amplification device for microorganisms in any facility.

For the most effective microbial control, UV germicidal Emitters are installed on the supply side of the system, downstream from the cooling coil and above the drain pan. This location provides more effective biofilm and microbial control than in-duct UVC installations. By irradiating the contaminants at the source – the cooling coils and drain pans – UVC delivers simultaneous cleaning of surface microorganisms as well as destruction of airborne microorganisms and mycotoxins. Steril-Aire patented this installation configuration in 1998.

The recirculating air in HVAC systems create redundancy in exposing microorganisms and mycotoxins to UVC, ensuring multiple passes so the light energy is effective against large quantities of airborne mycotoxins and cleaning the air your plants live by.

Where are these mycotoxins coming from?

Aspergillus favors environments with ample oxygen and moisture. Most pre-harvest strategies to prevent these mycotoxins involve chemical treatment and are therefore not ideal for the cannabis industry.

Despite the lack of cannabis protocols and guidelines for reducing mycotoxin contamination, there are some basic practices that can be utilized from other agricultural groups that will help avoid the production of aflatoxins and ochratoxins.

When guidelines are applied correctly to the cannabis industry, the threat of aflatoxin and ochratoxin contamination can be significantly reduced. The place to start is a clean air environment.

Design to win

The design of indoor grow rooms for cannabis is critical to the control of airborne fungal spores and although most existing greenhouses allow for the ingress of fungal spores, experience has shown that they can be retrofitted with air filters, fans, and UVC systems to make them relatively free of these spores. Proper designs have shown clearly that:

  1. Prevention via air and surface disinfection using germicidal UVC is much better than chemical spot treatment on the surface of plants
  2. High levels of air changes per hour enhance UVC system performance in reducing airborne spores
  3. Cooling coil inner surfaces are a hidden reservoir of spores, a fertile breeding ground and constitute an ecosystem for a wide variety of molds. Continuous UVC surface decontamination of all coils should be the first system to be installed in greenhouses to reduce mildew outbreaks.

UVC can virtually eliminate airborne contaminants

Steril-Aire graphic 4

Steril-Aire was the first and is the market leader in using UVC light to eliminate mold and spores to ensure your product will not be ruined or test positive.

  1. Mold and spores grow in your air handler and are present in air entering your HVAC system.
  2. Steril-Aire UVC system installs quickly and easily in your existing system.
  3. The Steril-Aire UVC system destroys up to 99.999% of mold/spores.
  4. Plants are less likely to be affected by mold…with a low cost and no down time solution.

It’s time to protect your harvest before it gets sick. It’s time to be confident your yield will not test positive for the contaminants that will render it unusable. It’s time to win the testing battle. It’s time for a proper UVC solution to be incorporated throughout your facilities.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 3

By Carl Silverberg
No Comments

Part 1 in this series went into a discussion of resource management for cannabis growers. Part 2 presented the idea of land use and conservation. In Part 3 below, we dive into pesticide use and integrated pest management for growers, through an environmental lens.

Rachel Carson’s book Silent Spring in 1962, is often credited with helping launch the environmental movement. Ten years later, VP Edmund Muskie elevated the environment to a major issue in his 1972 Presidential campaign against Richard Nixon. 57 years after Ms. Carson’s book, we’re still having the same problems. Over 13,000 lawsuits have been filed against Monsanto and last month a jury in Alameda County ruled that a couple came down with non-Hodgkin’s lymphoma because of their use of Roundup. The jury awarded them one billion dollars each in punitive damages. Is there a safer alternative?

“Effectively replacing the need for pesticides, we use Integrated Pest Management (IPM) which is a proactive program designed to control the population of undesirable pests with the use of natural predators, a system commonly known as “good bugs (such as ladybugs) fighting bad bugs”, states the website of Mucci Farms, a greenhouse grower. While this applies to cannabis as well, there is one major problem with the crop that isn’t faced by other crops.

Rachel Carson’s Silent Spring- often credited with starting the environmental movement of the 20th century.

While states are moving rapidly to legalize it, the EPA is currently not regulating cannabis. That is in the hands of each state. According to a story in the Denver Post in 2016, “Although pesticides are widely used on crops, their use on cannabis remains problematic and controversial as no safety standards exist.” Keep in mind that it takes a lot more pesticides to keep unwarranted guests off your cannabis plant when it’s outdoors than when it’s in a controlled environment.

We’re accustomed to using endless products under the assumption that a range of governmental acronyms such as NIH, FDA, OSHA, EPA, USDA are protecting us. We don’t even think about looking for their labels because we naturally assume that a product we’re about to ingest has been thoroughly tested, approved and vetted by one of those agencies. But what if it’s not?

Again, cannabis regulation is at the state level and here’s why that’s critical. The budget of the EPA is $6.14 billion while Colorado’s EPA-equivalent agency has a budget of $616 million. According to the federal budget summary, “A major component of our FY 2019 budget request is funding for drinking water and clean water infrastructure as well as for Brownfields and Superfund projects.” In short, federal dollars aren’t going towards pesticide testing and they’re certainly got going towards a product that’s illegal at the federal level. That should make you wonder how effective oversight is at the state level.

What impact does this have on our health and what impact do pesticides have on the environment? A former Dean of Science and Medical School at a major university told me, “Many pesticides are neurotoxins that affect your nervous system and liver. These are drugs. The good news is that they kill insects faster than they kill people.” Quite a sobering thought.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”Assuming that he’d be totally supportive of greenhouses, I pushed to see if he agreed. “There’s always a downside with nature. An enclosure helps you monitor access. If you’re growing only one variety, your greenhouse is actually more susceptible to pests because it’s only one variety.” The problem for most growers is that absent some kind of a computer vision system in your greenhouse, usually by the time you realize that you have a problem it’s already taken a toll on your crop.

Following up on the concept of monitoring, I reached out to Dr. Jacques White, the executive director of Long Live the Kings, an organization dedicated to restoring wild salmon in the Pacific Northwest. Obviously, you can’t monitor access to a river, but you certainly can see the effects of fertilizer runoff, chemicals and pesticides into the areas where fish live and eventually, return to spawn.

“Because salmon travel such extraordinary long distances through rivers, streams, estuaries and into oceans they are one of the best health indicators for people. If salmon aren’t doing well, then we should think about whether people should be drinking or using that same water. The salmon population in the area around Puget Sound is not doing well.”

We talked a bit more about pesticides in general and Dr. White summed up the essence of the entire indoor-outdoor farming and pesticides debate succinctly.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”

If you extrapolate that thought, the same applies to agriculture. Greenhouse farming, while subject to some problems not endemic to outdoor farming, quite simply puts a lot fewer chemicals in the air we breathe, the water we drink and the food we eat.

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
1 Comment

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 2

By Carl Silverberg
1 Comment

The first article of this series discussed resource management for cannabis growers. In this second piece of the series on how indoor farming has a reduced impact on the environment, we’re going to look at land use & conservation. There are really two aspects and we have to be up front and acknowledge that while our focus is on legal cannabis farming, there’s a significant illegal industry which exists and is not subject to any environmental regulation.

“Streams in Mendocino run dry during the marijuana growing season impacting Coho salmon and steelhead trout who lay their eggs in the region’s waterways.” One biologist reported seeing “dead steelhead and Coho on a regular basis in late August and September, usually due to water reduction or elimination from extensive marijuana farming.” The quotes are from an extensive article on cannabis land use by Jessica Owley in the U.C. Davis Law Review.The concept that land will stay in its natural state is a mixture of idealism and reality.

This is going to continue until it’s more profitable to go legit. For this article, we’re going to focus on the legitimate cannabis grower. On the land use side, we usually hear four main reasons for indoor growing: remaining land can stay in its natural state, fewer space usually translates to fewer waste, you conserve land and natural resources when you don’t use fossil fuels, greenhouses can be placed anywhere.

The concept that land will stay in its natural state is a mixture of idealism and reality. Just because someone only has to farm five acres of land instead of one hundred acres doesn’t necessarily mean they’re going to leave the rest in its pristine natural state. Granted the footprint for automated greenhouses is significantly less but the key is what happens to that extra space. Assuming that it will all be preserved in its natural state isn’t realistic. What is realistic is the fact that a developer may not want to build tract houses abutting a commercial greenhouse operation. If they do, likely there’s going to be more land set aside for green space than if a farm was sold outright and a series of new homes were plunked down as if it were a Monopoly board.

Combined with workforce development program funding, urban indoor farming is getting more attractive every day.That’s not the same kind of issue in urban areas where the situation is different. Despite the economic boom of the past ten years, not every neighborhood benefitted. The smart ones took creative approaches. Gotham Greens started in Greenpoint, Brooklyn and has expanded to Chicago as well. “In early 2014, Gotham Greens opened its second greenhouse, located on the rooftop of Whole Foods Market’s flagship Brooklyn store, which was the first ever commercial scale greenhouse integrated into a supermarket.”

Green City Growers in Cleveland’s Central neighborhood is another example. “Situated on a 10-acre inner-city site that was once urban blight, the greenhouse—with 3.25 acres under glass–now serves as a vibrant anchor for the surrounding neighborhood.”

The beauty of greenhouse systems even those without greenhouse software, is they can be built anywhere because the environmental concerns of potentially contaminated soil don’t exist. The federal government as well as state and local governments offer a myriad of financial assistance programs to encourage growers to develop operations in their areas. Combined with workforce development program funding, urban indoor farming is getting more attractive every day.

As for the argument that greenhouses save energy and fossil fuels, I think we can agree that it’s pretty difficult to operate a thousand-acre farm using solar power. To their credit, last year John Deere unveiled a tractor that will allow farmers to run it as a fully autonomous vehicle to groom their fields while laying out and retracting the 1 kilometer long onboard extension cord along the way. It’s a start although I’ll admit to my own problems operating an electric mower without cutting the power cord.

In a 2017 article, Kurt Benke and Bruce Tomkins stated, “Transportation costs can be eliminated due to proximity to the consumer, all-year-round production can be programmed on a demand basis, and plant-growing conditions can be optimized to maximize yield by fine-tuning temperature, humidity, and lighting conditions. Indoor farming in a controlled environment also requires much less water than outdoor farming because there is recycling of gray water and less evaporation.”

The overall trend on fossil fuel reduction was verified this week when the Department of Energy announced that renewables passed coal for the first time in U.S. history.  And on the water issue, Ms. Owley had a salient point for cannabis growers. “The federal government will not allow federal irrigation water to be used to grow marijuana anywhere, even in states where cultivation is legal.” That’s not a minor detail and it’s why outdoor farming of cannabis is going to be limited in areas where water resources and water rights are hotly debated.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 1

By Carl Silverberg
4 Comments

Core values often get wrapped into buzzwords such as sustainability, locally sourced and organic. In the first part of a series of four articles exploring greenhouses and the environment, we’re going to take a look at indoor vs. outdoor farming in terms of resource management.

Full disclosure; I love the fact that I can eat fresh blueberries in February when my bushes outside are just sticks. Is there a better way to do it than trucking the berries from the farm to a distribution plant to the airport, where they’re flown from the airport to a distribution center, to the grocery store and finally to my kitchen table? That’s a lot of trucking and a lot of energy being wasted for my $3.99 pint of blueberries.The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. 

If those same blueberries were grown at a local greenhouse then trucked from the greenhouse directly to the grocery store, that would save diesel fuel and a lot of carbon emissions. People who can only afford to live near a highway, a port or an airport don’t need to ask a pulmonary specialist why their family has a higher rate of COPD than a family who lives on a cul-de-sac in the suburbs.

Fact: 55% of vegetables in the U.S. are grown under cover. The same energy saving principles apply to indoor cannabis and the reasons are consumer driven and producer driven. The largest generation in the history of the country is demanding more locally grown, sustainable and organic food. They want it for themselves and they want it for their kids.

The rapid proliferation of greenhouses over the past ten years is no coincidence. Millennials are forcing changes: organic fruit and vegetables now account for almost 15% of the produce market. A CNN poll last month revealed that 8 of 10 of registered Democrats listed climate change as a “very important” priority for presidential candidates. The issue is not party I.D.; the issue is that a large chunk of Americans are saying they’re worried about the direct and indirect impacts of climate change, such as increased flooding and wildfires.

So how does the consumer side tie into the cannabis industry? Consumers like doing business with companies who share their values. The hard part is balancing consumer values with investor values, which is why many indoor growers are turning to cultivation management platforms to help them satisfy both constituencies. They get the efficiency and they get to show their customers that they are good stewards of their environment. The goal is to catch things before it’s too late to save the plants. If you do that, you save the labor it costs to fix the problem, the labor and the expense of throwing away plants and you reduce pesticide and chemical usage. When that happens, your greenhouse makes more money and shows your customers you care about their values.

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers.Let’s add some more facts to the indoor-outdoor argument. According to an NCBI study of lettuce growing, “hydroponic lettuce production had an estimated water demand of 20 liters/kg, while conventional lettuce production had an estimated water demand of 250 liters/kg.”  Even if the ratio is only 10:1, that’s a huge impact on a precious resource.

Looking at the pesticide issue, people often forget about the direct impact on people who farm. “Rates in the agricultural industry are the highest of any industrial sector and pesticide-related skin conditions represent between 15 and 25% of pesticide illness reports,” a 2016 article in The Journal of Cogent Medicine states. Given the recent reports about the chemicals in Roundup, do we even need to continue the conversation and talk about the effects of fertilizer?

I’ll finish up with a quote from a former grower. “The estimates I saw were in the range of between 25%-40% of produce being lost with outdoor farming while most greenhouse growers operate with a 10% loss ratio.”

The indoor change is happening rapidly because people realize that technology is driving increased revenue while core consumer values are demanding less water waste, fewer pesticides, herbicides and fertilizers. Lastly, most Americans simply have a moral aversion to seeing farms throw away food when so many other people are lined up at food banks.

A Case for Digital Cultivation Management in the Cannabis Industry

By Allison Kopf
No Comments

The steady destigmatization and legalization of medical and recreational cannabis at the state level continues to propel a large and fast-growing industry forward. In 2018, the legal cannabis industry grew to $10.4 billion in the U.S., employing more than 250,000 people according to New Frontier Data. 

The mass production of anything that humans consume is invariably accompanied by an increased concern for safety and accountability—especially in the case of cannabis, which the federal government still deems a Schedule I substance. Each U.S. state has its own mix of laws based on the will of its voters, spanning the spectrum from fully legal to fully illegal.  

While the mix of legality in states can be hard to keep up with, all states with any form of cannabis legalization have one thing in common: the need to regulate this new industry. Last year, the federal government issued a Marijuana Enforcement Memorandum that allows federal prosecutors to decide how to prioritize enforcement of federal marijuana laws, so states are at risk.

If you are a public official involved in state cannabis regulation, or anyone involved in the supply chain from cultivator to dispensary, chances are you are using some kind of seed-to-sale tracking technology to monitor things like plant inventory, sales volume, chain of custody—and to hedge against federal encroachment by having a legitimate form of accountability.

Mandatory Request For Proposals (RFPs) issued by states for compliance solutions have spawned an entire sub-industry of seed-to-sale tracking, and point-of-sale hardware and software vendors, with large multi-million dollar contracts being awarded. Metrc’s RFID (Radio Frequency Identification) plant and packaging tags are gaining wide usage, and 11 states plus DC have adopted the technology.

While states are taking the right steps to keep their legal cannabis industry legitimate and accountable, there is actually a major gap that existing systems don’t cover: cultivation management. Most of the existing RFPs and platforms focus on the post-harvest side of the business (processing, packaging, distribution) and may have some cultivation management capability, but are not geared for the cultivation operation, which is where a lot of the risk actually lies for both growers and state regulators. 

As a state official or a cultivator, what could be more damaging to business than a massive product recall—especially after the product has been distributed and consumed? This is the fastest way to get shut down or audited by the state as a grower or invite federal investigation if you’re a state. And these recalls cost growers millions of dollars and possibly their license. There is massive risk involved by not addressing the cultivation side.

PlantTag
A plant tagged with a barcode and date for tracking

With current tracking systems, it’s possible to see where the product came from in the event of such a recall, but nearly impossible to pinpoint and see what actually happened and when the recall happened. This makes it almost impossible to stop the same problem in the future and puts consumers at unnecessary risk.

The reason most seed-to-sale systems are difficult for growers to use is because they were designed for regulators to address the most obvious regulatory questions (are growers abiding by the law? Who is selling and buying what and how much? Is the correct tax amount being levied?). They were not designed for growers and in many cases, cultivation teams are using two systems—their own ERP and/or spreadsheets and seed-to-sale tracking mandated by regulators.

This means there is a huge missing link in data that should be captured during the cultivation process. In many cases, growers are tracking crop inventory during the growth stage with pen and paper, or at best, in Excel. Cultivators need a tool designed for them that helps both run better operations and identify hazards to their crop health before it’s too late, and regulators need complete traceability along the supply chain to reduce risk to consumers.

To fill this critical data gap, there is a strong case for states in their RFPs and ongoing regulatory capacity, to adopt and encourage cultivators to use Cultivation Management Platforms (CMPs) alongside any existing seed-to-sale and ERP solutions for complete traceability.

As more states move to legalize medical and recreational cannabis, mitigating risk as part of a larger regulatory framework will only become more important. Adopting and using a CMP empowers growers to focus on not just tracking data, but making that data accessible and functional for growers to drive efficiency and profits all while ensuring security and regulatory compliance in this rapidly evolving industry.

Cannabusiness Sustainability

Climate Change Drives Cannabis Indoors

By Carl Silverberg
1 Comment

This is not a discussion of climate change, it’s a discussion of the impact of weather on the agriculture industry. The question for the cannabis & hemp industry, and basically the entire specialty crop industry, is what will be the impact? According to the U.S. National Climate Assessment, “Climate disruptions to agriculture have been increasing and are projected to become more severe over this century.” I’m sure that’s not much of a shock to anyone who owns a farm, orchard or greenhouse.

Every national newspaper for the past two weeks has published at least one article a day about the flooding in the Midwest, while industry newsletters and blogs have contained more in-depth stories. The question is, what can agriculture professionals do to mitigate these problems?

Relying on state and national legislators, especially heading into a presidential election year is likely to be frustrating and unrewarding. Governments are excellent at reacting to disasters and not so good at preventing them. In short, if we depend on government to take the lead it’s going to be a long wait.Instead, many farmers are looking at the future costs of outdoor farming and concluding that it’s simply cheaper, more efficient and manageable to farm indoors.

Instead, many farmers are looking at the future costs of outdoor farming and concluding that it’s simply cheaper, more efficient and manageable to farm indoors. Gone are the days when people grew hemp and cannabis indoors in an effort to hide from the police. Pineapple Express was a funny movie but not realistic in today’s environment.

Today’s hemp and cannabis growers are every bit as tech savvy as any other consumer-oriented business and one could argue that given the age of their customers (Statista puts usage by 18-49-year-olds at 40%), distributors must be even more tech savvy to compete effectively. Some estimates put the current split of cultivation at about one-third indoors/two-thirds outdoors. To date, the indoor focus has been on efficiency, quality and basically waiting for regulators to allow shipping across state lines.

A major driver in the indoors/outdoors equation is that as the weather becomes more unfriendly and unpredictable, VC’s are factoring climate disruption into their financial projections. When corn prices drop because of export tariffs, politicians lift the ban on using Ethanol during the summer months. It’s going to be a while before we see vehicles running on a combination of gasoline and CBD.

Leaving aside the case that can be made for efficiency, quality control and tracking of crops, climate change alone is going to force many growers to reassess whether they want to move indoors. And, it’s certainly going to weigh heavily in the plans of growers who are about to launch a cannabis or hemp business. Recently, one investment banker put it to me this way: greenhouses are the ultimate hedge against the weather.