Tag Archives: cultivate

dry cannabis plants

Moisture Matters: Why Humidity Can Make or Break a Cannabis Cultivator’s Bottom Line

By Sean Knutsen
1 Comment
dry cannabis plants

Vintners have known for centuries that every step in the winemaking process—from cultivation and harvest techniques to fermentation, aging and bottling—has immense impact on the quality and value of the final product.

And that same level of scrutiny is now being applied to cannabis production.

As someone who has worked in the consumer-packaged goods (CPG) space for decades, I’ve been interested in finding out how post-harvest storage and packaging affect the quality and value of cannabis flower. After digging into the issue some more, storage conditions and humidity levels have indeed come into focus as major factors, beyond just the challenges of preventing mold.

Weighty Matters

I enlisted my research team at Boveda, which has studied moisture control in all manner of manufactured and natural CPG products, to look closer at what’s happening with cannabis once it leaves the cultivation room. There’s not a lot of research on cannabis storage—we checked—and so we explored this aspect further. We were frankly surprised by what a big effect evaporation has on quality and how this is playing out on the retail level.

We suspected moisture loss could affect the bottom line too, and so we did some number-crunching.

It’s well understood that the weight of cannabis flower directly correlates with its profitability—the heavier the yield, the higher the market value. Here’s what our analysis found: A mere 5% dip below the optimal relative humidity (RH) storage environment eliminates six pounds per every 1,000 pounds of cannabis flower. At $5 per gram wholesale, that works out to upwards of $13,500 in lost revenue—and that’s with just a 5% drop in RH below the target range of 55-65% established by ASTM International, an independent industry standards organization.

We also purchased flower at retailers in multiple state markets and commissioned a lab to test the samples, which revealed that most strains sold today are well below the optimal RH range (55-65%). Regardless of fluctuating wholesale prices, when you do the math it’s clear that tens of thousands of dollars in revenue are simply evaporating into thin air.

Why So Dry?

Historically, cultivators, processors and packagers have emphasized keeping flower below a particular humidity “ceiling” for a reason: Flower that’s too moist is prone to hazardous mold and microbial growth, so it’s understandable that many operators err on the side of being overly dry.

The misconception that cannabis flower can be “rehydrated” is another cause of dryness damage. But this method irrevocably damages the quality of the flower through trichome damage.

trichome close up
The fine outgrowths, referred to as trichomes, house the majority of the plant’s resin

Those delicate plant structures that house the all-important cannabinoids and terpenes become brittle and fragile when stored in an overly dry environment, and are prone to breaking off from the flower; they cannot not be recovered even if the flower is later rehydrated.

When trichomes are compromised, terpenes responsible for the aroma, taste and scent of cannabis also can evaporate. Overly dried-out cannabis doesn’t just lose weight and efficacy—it loses shelf appeal, which is particularly risky in today’s market.

Today’s consumers have an appreciation for how premium flower should look, smell and taste. Rehydration cannot put terpenes back in the flower, nor can it re-attach trichomes to the flower, which is why preservation of these elements is so key.

Cannabis Humidity Control

Cured cannabis flower can remain in storage potentially for months prior to sale or consumption. By the time it reaches the end consumer, much of the cannabis sold in regulated environments in the U.S. and Canada has suffered from dry damage.

dry cannabis plants
Rows of cannabis plants drying and curing following harvest

There are various humidity controls available for cannabis cultivators: desiccants that absorb water vapor; mechanical equipment that alters RH on a larger scale; or two-way humidity-control packets designed for storage containers.

In the CPG sector, with other moisture-sensitive products such as foods and electronics, we’ve seen that employing humidity controls will preserve quality, and cannabis flower is no different.

Saltwater-based humidity control solutions with two-way vapor-phase osmosis technology automatically add or remove water vapor as needed to maintain a constant, predetermined RH level and ensures a consistent level of moisture weight inside the cannabis flower.

Here’s one more notable finding we discovered in our storage research: Third-party lab tests commissioned by Boveda showed cannabis stored with humidity control had terpene and cannabinoid levels that were 15% higher than cannabis stored without.

Cannabis stored within the optimal humidity range maximizes all the qualities that attract and retain customers. Similar to wine-making, when cannabis cultivators focus on quality control they need to look beyond the harvest.

The Best Way to Remediate Moldy Cannabis is No Remediation at All

By Ingo Mueller
No Comments

Consumers are largely unaware that most commercial cannabis grown today undergoes some form of decontamination to treat the industry’s growing problem of mold, yeast and other microbial pathogens. As more cannabis brands fail regulatory testing for contaminants, businesses are increasingly turning to radiation, ozone gas, hydrogen peroxide or other damaging remediation methods to ensure compliance and avoid product recalls. It has made cannabis cultivation and extraction more challenging and more expensive than ever, not to mention inflaming the industry’s ongoing supply problem.

The problem is only going to get worse as states like Nevada and California are beginning to implement more regulations including even tougher microbial contamination limits. The technological and economic burdens are becoming too much for some cultivators, driving some of them out of business. It’s also putting an even greater strain on them to meet product demand.

It’s critical that the industry establishes new product standards to reassure consumers that the cannabis products they buy are safe. But it is even more critical that the industry look beyond traditional agricultural remediation methods to solve the microbial problems.

Compounding Risks

Mold and other microbial pathogens are found everywhere in the environment, including the air, food and water that people consume. While there is no consensus yet on the health consequences of consuming these contaminants through cannabis, risks are certainly emerging. According to a 2015 study by the Cannabis Safety Institutei, molds are generally harmless in the environment, but some may present a health threat when inhaled, particularly to immunocompromised individuals. Mycotoxins resulting from molds such as Aspergillus can cause illnesses such as allergic bronchopulmonary aspergillosis. Even when killed with treatment, the dead pathogens could trigger allergies or asthma.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

There is an abundance of pathogens that can affect cannabis cultivation, but the most common types are Botrytis (bud rot, sometimes called gray mold) and Powdery Mildew. They are also among the most devastating blights to cannabis crops. Numerous chemical controls are available to help prevent or stem an outbreak, ranging from fungicides and horticultural oils to bicarbonates and biological controls. While these controls may save an otherwise doomed crop, they introduce their own potential health risks through the overexposure and consumption of chemical residues.

The issue is further compounded by the fact that the states in which cannabis is legal can’t agree on which microbial pathogens to test for, nor how to test. Colorado, for instance, requires only three pathogen tests (for salmonella, E. coli, and mycotoxins from mold), while Massachusetts has exceedingly strict testing regulations for clean products. Massachusetts-based testing lab, ProVerde Laboratories, reports that approximately 30% of the cannabis flowers it tests have some kind of mold or yeast contamination.

If a cannabis product fails required microbial testing and can’t be remedied in a compliant way, the grower will inevitably experience a severe – and potentially crippling – financial hit to a lost crop. Willow Industries, a microbial remediation company, says that cannabis microbial contamination is projected to be a $3 billion problem by 2020ii.

Remediation Falls Short
With the financial stakes so high, the cannabis industry has taken cues from the food industry and adopted a variety of ways to remediate cannabis harvests contaminated with pathogens. Ketch DeGabrielle of Qloris Consulting spent two years studying cannabis microbial remediation methods and summarized their pros and consiii.

He found that some common sterilization approaches like autoclaves, steam and dry heat are impractical for cannabis due the decarboxylation and harsh damage they inflict on the product. Some growers spray or immerse cannabis flowers in hydrogen peroxide, but the resulting moisture can actually cause more spores to germinate, while the chemical reduces the terpene content in the flowers.

Powdery mildew starts with white/grey spots seen on the upper leaves surface

The more favored, technologically advanced remediation approaches include ozone or similar gas treatment, which is relatively inexpensive and treats the entire plant. However, it’s difficult to gas products on a large scale, and gas results in terpene loss. Microwaves can kill pathogens effectively through cellular rupture, but can burn the product. Ionizing radiation kills microbial life by destroying their DNA, but the process can create carcinogenic chemical compounds and harmful free radicals. Radio frequency (which DeGabrielle considers the best method) effectively kills yeast and mold by oscillating the water in them, but it can result in moisture and terpene loss.

The bottom line: no remediation method is perfect. Prevention of microbial contamination is a better approach. But all three conventional approaches to cannabis cultivation – outdoors, greenhouses and indoor grow operations – make it extremely difficult to control contamination. Mold spores can easily gain a foothold both indoors and out through air, water, food and human contact, quickly spreading into an epidemic.

The industry needs to establish new quality standards for product purity and employ new growing practices to meet them. Advanced technologies can help create near perfect growing ecosystems and microclimates for growing cannabis free of mold contamination. Internet of Things sensors combined with AI-driven robotics and automation can dramatically reduce human intervention in the growing process, along with human-induced contamination. Natural sunlight supplemented with new lighting technologies that provide near full-light and UV spectrum can stimulate robust growth more resistant to disease. Computational fluid dynamic models can help growers achieve optimal temperature, humidity, velocity, filtration and sanitation of air flow. And tissue culture micropropagation of plant stock can eliminate virus and pathogen threats, to name just a few of the latest innovations.

Growing legal cannabis today is a risky business that can cost growers millions of dollars if pathogens contaminate a crop. Remediation methods to remove microbial contamination may work to varying degrees, but they introduce another set of problems that can impact consumer health and comprise product quality.


References

i. Holmes M, Vyas JM, Steinbach W, McPartland J. 2015. Microbiological Safety Testing of Cannabis. Cannabis Safety Institute. http://cannabissafetyinstitute.org/wp-content/uploads/2015/06/Microbiological-Safety-Testing-of-Cannabis.pdf

ii. Jill Ellsworth, June 2019, Eliminating Microbials in Marijuana, Willow Industries, https://willowindustries.com/eliminating-microbials-in-marijuana/#

iii. Ketch DeGabrielle, April 2018, Largest U.S. Cannabis Farm Shares Two Years of Mold Remediation Research, Analytical Cannabis, https://www.analyticalcannabis.com/articles/largest-us-cannabis-farm-shares-two-years-of-mold-remediation-research-299842

 

Alcaliber Spinoff Linneo Health Gets Greenhouse GMP Certification In Spain

By Marguerite Arnold
No Comments

As the industry faces what is undoubtedly a watershed moment for the international cannabis vertical, a new Spanish firm steps into the market with its own EU GMP certification license. Linneo Health is also helmed by the ever eloquent and highly experienced Jose Antonio de la Puente – a tall drink of water with a conscience, a brain and an admirable mission statement.

As Cannabis Industry Journal broke in our last story, a lack of international standards in Europe have been on trial of late. The same day that the CannTrust scandal began to blow in Canada and as Danish authorities rang global alerts, the only qualified packager in Holland was issued a new EU GMP cert. That is a government decision, not a commercial one.

This also implies, at minimum, government lack of coordination and agreement on EU GMP cert even between European nations, for a nascent industry while also trying to avoid the thorny issue of patient home grow. See also the trials and travails of the erstwhile German cultivation bid and its reconstituted Frankenstein-esque bigger if younger sister. In fact, this contretemps is almost certainly involved if not indirectly to blame.

Not All Is Entirely Rosy On Cannabis Europe’s Eastern Front

Almost simultaneously to Linneo Health’s announcement, however, the news came that in Poland, authorities had suspended the pending product registration process. Will this be on hold until after the October election?

In this environment it is almost impossible to know.

Here is one thing to consider. These almost simultaneous developments in Spain and Poland and the newest announcement about further certification of the Dutch recreational system under a new pending “recreational trial” are almost directly related.

That said, even such political maneuverings are not new – and far from limited to any single company. Both Germany and Poland have been wracked by reform stuttered by short term gain and market entry strategies executed by most of the biggest players in the room. Aurora, for example, announced their first import into Poland the same day the Polish government changed the law last fall. Aurora uses Germany as its breakpoint distribution center for Europe.

A Stamp of Authenticity That Is Sorely Needed

Beyond the pharma and market entry politics, however, this Alcaliber-helmed project creates a ring of authority to the same that creates at least one cannabis brand the European medical community can see the certification for.

For now at least, certainly among the ranks of the upper echelons of the international cannabis industry, there must surely be a sigh of relief.

EU GMP certifications (in other words, the authorization to produce product bound for a medical, pharma market) do not happen overnight. On the European front, this is surely at least a step in the right direction for an industry embattled by scandals, particularly of the securities, production, certification and accounting kind right now.

In this case, however, it is also clear that no matter the egregious oversteps and potentially illegal and certainly dubious behaviour of some members of the industry, there are also clearly those within it, and at high levels, who have tried to do the right thing. And further, from the beginning of the nascent industry here as of 2015.

Who Is Alcaliber?

Alcaliber is one of the world’s largest opioid manufacturers. Unlike American counterparts, the company decided several years ago to invest in and back ideas of the opioid-to-cannabinoid therapy model. Linneo Health is a 60% subsidiary of Alcaliber and 40% owned by a Spanish family office called Torreal, S.A.

This is, as a result, one of the most important GMP licenses in Europe at the moment if not the world. It means that within a pharmaceutical environment, the first widespread research and production of plants and therapies for those suffering from both chronic pain, plus neurological and oncological conditions that cause or are related to the same, will be put on a fast track long in the offing. Certainly in Europe.

And that for one, is a positive development that will have widespread implications elsewhere. Particularly given the news that the opioid epidemic in the United States finally has a name, and culpable parties.

What Else Is Unusual About This Project?

GMP certification is a vastly misunderstood concept at the moment. It is also a highly thorny one because of a still standardizing set of agreements. The regulatory environment is in place, in other words, but there are many, many gaps, as well as shifting rules and underlying treaties.

GMPHowever, on top of this, there is also an amazing lack of innovation in interpretation, in part because of many misadvised consultants who are actually seeking to “save” production costs for their clients, or because they do not know any better. Or because producers are scared of doing the wrong thing.

The new project in Spain is unusual because it is a greenhouse grow that got EU GMP cert – although look for more of this in the future. It means that with careful, standardized, pharma production, not all regulated cannabis grows, even for the medical market, have to use huge amounts of energy in repurposed post-industrial developments. It is also certainly cleaner than growing outside. And, when done right, saves huge amounts of water.

Cleantech, in other words, has finally hit the cannabis industry in Europe. As well as a pharmaceutical company invested in the cannabinoid treatment of (at least) chronic pain.

That is an overdue and hugely positive development. No matter what else can be said for shenanigans engulfing the rest of the industry at the moment.

Soapbox

The Stress of a Grower

By Carl Silverberg
2 Comments

Tell me that you can’t relate to this story.

You’re sitting down to dinner at a restaurant about ten minutes from where you work, finally relaxing after a tough day. You’ve set your environmental alerts on your plants; you have that peace of mind that the technology promised and you know that if anything goes wrong you’ll get notified immediately. As you’re looking at the menu, you receive an alert telling you that the temperature in one of your 2,000 square foot grow rooms has gone out of the safe range. Your mind starts to race, “It’s week seven, I’ve got 500 plants one week away from harvest, that’s 200 pounds of cannabis worth about $150,000-$200,000. Oh my God, what am I going to do?”

You’re doing all this at the dinner table and even though you’re not in a state of panic, you are extremely concerned. You need to figure out what’s going on. You check the graphing and see that over the past hour your humidity dropped and your temperature is gradually going up. Within the past ten minutes, the temperature has gone to 90 degrees. Your numbers tell you that the temperature in the room with $200,000 of cannabis is going up about five degrees every three minutes.

adamJgrow
Monitoring a large grow room can be a stressful task.

“I see this trend and can’t figure it out,” the grower relates. “Normally, the HVAC kicks on and I’d begin to see a downward trend on the graphs. I pre-set my trigger for 90 degrees. But, I’m not seeing that. What I AM seeing is the temperature gradually and consistently getting warmer without the bounce-back that I would expect once the HVAC trigger was hit. All I know is I better find out what’s causing all this and I better find out fast or my entire crop is gone.”

You go through the rest of the checklist from LUNA and you see that the lights are still on. Now, you’re starting to sweat because if the temperature in that room hits 130 and stays there for more than twenty minutes, you’re losing your entire crop. You have to walk in your boss’s office the next day and explain why, after all the time and money you put in over the past seven weeks, not only is all that money gone but so is the $200,000 he is counting on to pay salaries, expenses, and bank loans.

This is something you’ve been working on for seven straight weeks and if you don’t make the right decision, really quickly, when that room hits 130 degrees here’s what happens.

“My equipment starts to fail,” our grower continues. “The crop literally burns as the oils dry up and the crop is worthless. At 130 degrees, my grow lights essentially start to melt. All you can think of is that temperature going up five degrees every three minutes and you’re ten minutes from your facility. I need to leave that restaurant right now, immediately, because even if I get there in ten minutes the temperature is going to be almost 120 degrees while I’ve been sitting here trying to figure out what’s wrong.”

You run out to your car and you speed back to the facility. The grow room is now 125 degrees, you have maybe three or four minutes left to figure things out before you flush $200,000 down the drain. The first thing you do is turn off the grow lights because that’s your primary source of heat. Then, you check your HVAC panel and you realize it malfunctioned and shorted out. There’s the problem.

The real toll is the human cost. Once this happens, no grower ever wants to leave and go home or even go to dinner. It’s a horrible toll. It’s the hidden cost we don’t talk about. The grower opens up with his own personal experience.“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” 

“You think about the burden on the person that you bring in to replace you while you’re out of town and then you think about the burden on you if something goes wrong again. And you decide, it’s not worth it. The anxiety, the fear that it will happen again, it’s not worth it. So, you don’t go. I didn’t even see my sister’s new baby for eight months.”

Your desire to see your family, your desire to have a normal life; all of that goes out the window because of your desire to be successful in your job. It outweighs everything.

This is every grower. It’s why many farmers never leave their property. It just becomes a normal way of living. You just repeat it so much that you don’t even think about it. Why go on vacation if your stress level is higher than it is if you’re home. You’re constantly worried about your farm or your facility. The only way to escape it is to not go away at all.

“This system allows the grower to step back and still feel confident because you’re not leaving your facility to another person,” he tells us. “You don’t realize how stressful a lifestyle you live is until you step back and look at it. Or, if you have an alert system that allows you to pull back. That’s when you realize how difficult your life is. Otherwise, it just seems normal.”

As AI technology expands its footprint into agriculture, there will be more tools to help mediate situations like this; more tools to give you a more normal life. It’s one of the reasons we got into the business in the first place.

Fungal Monitoring: An Upstream Approach to Testing Requirements

By Bernie Lorenz, PhD
1 Comment

Mold is ubiquitous in nature and can be found everywhere.1 Cannabis growers know this all too well – the cannabis plant, by nature, is an extremely mold-susceptible crop, and growers battle it constantly.

Of course, managing mold doesn’t mean eradicating mold entirely – that’s impossible. Instead, cultivation professionals must work to minimize the amount of mold to the point where plants can thrive, and finished products are safe for consumption.

Let’s begin with that end in mind – a healthy plant, grown, cured and packaged for sale. In a growing number of states, there’s a hurdle to clear before the product can be sold to consumers – state-mandated testing.

So how do you ensure that the product clears the testing process within guidelines for mold? And what tools can be employed in biological warfare?

Mold: At Home in Cannabis Plants

It helps to first understand how the cannabis plant becomes an optimal environment.

The cannabis flower was designed to capture pollen floating in the air or brought by a pollinating insect.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

Once a mold spore has landed in a flower, the spore will begin to grow. The flower will continue to grow as well, and eventually, encapsulate the mold. Once the mold is growing in the middle of the flower, there is no way to get rid of it without damaging the flower.

A Name with Many Varieties

The types of spores found in or around a plant can make or break whether mold will end with bad product.

Aspergillus for example, is a mold that can produce mycotoxins, which are toxic to humans2. For this reason, California has mandatory testing3for certain aspergillus molds.

Another example, Basidiospores, are found outside, in the air. These are spores released from mushrooms and have no adverse effects on cannabis or a cannabis cultivation facility.

Fungi like powdery mildew and botrytis (PM and Bud Rot) typically release spores in the air before they are physically noticed on plants. Mold spores like these can survive from one harvest to the next – they can be suspended in the air for hours and be viable for years.

How Mold Travels

Different types of spores – the reproductive parts of mold – get released from different types of mold. Similar to plants and animals, mold reproduces when resources are deemed sufficient.

The opposite is also true that if the mold is under enough stress, such as a depleting nutrient source, it can be forced into reproduction to save itself.4

In the end, mold spores are released naturally into the air for many reasons, including physical manipulation of a plant, which, of course, is an unavoidable task in a cultivation facility.5

Trimming Areas: A Grow’s Highest Risk for Mold

Because of the almost-constant physical manipulation of plants that happen inside its walls, a grow’s trimming areas typically have the highest spore counts. Even the cleanest of plants will release spores during trimming.

Best practices include quality control protocols while trimming

These rooms also have the highest risk for cross contamination, since frequently, growers dry flower in the same room as they trim. Plus, because trimming can be labor intensive, with a large number of people entering and leaving the space regularly, spores are brought in and pushed out and into another space.

The Battle Against Mold

The prevalence and ubiquitous nature of mold in a cannabis facility means that the fight against it must be smart, and it must be thorough.

By incorporating an upstream approach to facility biosecurity, cultivators can protect themselves against testing failures and profit losses.

Biosecurity must be all encompassing, including everything from standard operating procedures and proper environmental controls, to fresh air exchange and surface sanitation/disinfection.

One of the most effective tactics in an upstream biosecurity effort is fungal monitoring.

Ways to Monitor Mold

Determining the load or amount of mold that is in a facility is and always will be common practice. This occurs in a few ways.

Post-harvest testing is in place to ensure the safety of consumers, but during the growing process, is typically done using “scouting reports.” A scouting report is a human report: when personnel physically inspect all or a portion of the crop. A human report, unfortunately, can lead to human error, and this often doesn’t give a robust view of the facility mold picture.

Another tool is agar plates. These petri dishes can be opened and set in areas suspected to have mold. Air moves past the plate and the mold spores that are viable land on the dishes. However, this process is time intensive, and still doesn’t give a complete picture.

Alternatively, growers can use spore traps to monitor for mold.

Spore traps draw a known volume of air through a cassette.The inside of the cassette is designed to force the air toward a sticky surface, which is capable of capturing spores and other materials. The cassette is sent to a laboratory for analysis, where they will physically count and identify what was captured using a microscope.

Spore trap results can show the entire picture of a facility’s mold concerns. This tool is also fast, able to be read on your own or sent to a third party for quick and unbiased review. The information yielded is a useful indicator for mold load and which types are prevalent in the facility.

Spore Trap Results: A Story Told

What’s going on inside of a facility has a direct correlation to what’s happening outside, since facility air comes infromthe outside. Thus, spore traps are most effective when you compare a trap inside with one set outside.

When comparing the two, you can see what the plants are doing, view propagating mold, and understand which of the spore types are only found inside.

Similar to its use in homes and businesses for human health purposes, monitoring can indicate the location of mold growth in a particular area within a facility.

These counts can be used to determine the efficacy of cleaning and disinfecting a space, or to find water leaks or areas that are consistently wet (mold will grow quickly and produce spores in these areas).

Using Spore Traps to See Seasonality Changes, Learn CCPs

Utilizing spore traps for regular, facility-wide mold monitoring is advantageous for many reasons.

One example: Traps can help determine critical control points (CCP) for mold.

What does this look like? If the spore count is two times higher than usual, mitigating action needs to take place. Integrated Pest Management (IPM) strategies like cleaning and disinfecting the space, or spraying a fungicide, are needed to bring the spore count down to its baseline.

For example, most facilities will see a spike in spore counts during the times of initial flower production/formation (weeks two to three of the flower cycle).

Seasonal trends can be determined, as well, since summer heat and rain will increase the mold load while winter cold may minimize it.

Using Fungal Monitoring in an IPM Strategy

Fungal monitoring – especially using a spore trap – is a critical upstream step in a successful IPM strategy. But it’s not the only step. In fact, there are five:

  • Identify/Monitor… Using a spore trap.
  • Evaluate…Spore trap results will indicate if an action is needed. Elevated spore counts will be the action threshold, but it can also depend on the type of spores found.
  • Prevention…Avoiding mold on plants using quality disinfection protocols as often as possible.
  • Action…What will be done to remedy the presence of mold? Examples include adding disinfection protocols, applying a fungicide, increasing air exchanges, and adding a HEPA filter.
  • Monitor…Constant monitoring is key. More eyes monitoring is better, and will help find Critical Control Points.

Each step must be followed to succeed in the battle against mold.

Of course, in the battle, there may be losses. If you experience a failed mandatory product testing result, use the data from the failure to fix your facility and improve for the future.

The data can be used to determine efficacy of standard operating procedures, action thresholds, and other appropriate actions. Plus, you can add a spore trap analysis for pre- and post- disinfection protocols, showing whether the space was really cleaned and disinfected after application. This will also tell you whether your products are working.

Leveraging all of the tools available will ensure a safe, clean cannabis product for consumers.


References

  1. ASTM D8219-2019: Standard Guide for Cleaning and Disinfection at a Cannabis Cultivation Center (B. Lorenz): http://www.astm.org/cgi-bin/resolver.cgi?D8219-19
  2. Mycotoxin, Aspergillus: https://www.who.int/news-room/fact-sheets/detail/mycotoxins
  3. State of California Cannabis Regulations: https://cannabis.ca.gov/cannabis-regulations/
  4. Asexual Sporulation in Aspergillus nidulans (Thomas H. Adams,* Jenny K. Wieser, and Jae-Hyuk Yu):  https://pdfs.semanticscholar.org/7eb1/05e73d77ef251f44a2ae91d0595e85c3445e.pdf?_ga=2.38699363.1960083875.1568395121-721294556.1562683339
  5. ASTM standard “Assessment of fungal growth in buildings” Miller, J. D., et al., “Air Sampling Results in Relation to Extent of Fungal Colonization of Building Materials in Some Water Damaged Buildings,” Indoor Air, Vol 10, 2000, pp. 146–151.
  6. Zefon Air O Cell Cassettes: https://www.zefon.com/iaq-sampling-cassettes
Soapbox

Tips to Shrink your Shrinkage

By Carl Silverberg
No Comments

I had dinner last night with a friend who is a senior executive at one of the largest automobile companies in the world. When I explained the industry-accepted rate of 25-30% shrinkage in horticulture he said, “Are you kidding me? Can you imagine the story in the Wall Street Journal if I gave a press conference and said that we were quite content to throw away three out of every ten cars we manufactured?”

Yet, for all growers, operators and investors who complain about shrinkage, it’s an accepted part of the business. What if it wasn’t; what if you could shrink your shrinkage by 60% and get it down to 10% or less? How much more profitable would your business be and how much easier would your life be?

Let’s take the floriculture industry as our first example. You propagate chrysanthemums in February, they get repotted at the end of April and by the end of June, you might start to see some buds. In a very short time span your job changes from being a grower who manages 10,000 square feet of chrysanthemums to being an order taker. Over a period of eight weeks, you have to unload as many of those mums as possible. The sales team at Macy’s has more time to move their holiday merchandise than you do.

If you’re like most operations, your inventory tracking system consists of Excel spreadsheets and notebooks that tell you what happened in previous years so you can accurately predict what will happen this year. The notebooks give you a pretty accurate idea of where in the greenhouses your six cultivars are, how many you planted and which of the five stages they are in. You already have 30 different sets of data to manage before you add on how many you sell of each cultivar and what stage they were in.

The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.Then your first order comes in and out the window goes any firm control of where the mums are, what stage they’re in and how many of each cultivar you have left. A couple of hours after your first order, a second comes in and by the time you get back in touch, check your inventory, call back the buyer and she’s able to connect with you, those 2837 stage 3 orange mums are moving into stage 4. Only she doesn’t want stage 4 mums she only wants stage 3 so now you frantically call around to see who wants stage 4 orange mums very soon to be stage 5 mums.

And, the answer is often no one. What if you didn’t have your inventory count exact and now you have 242 yellow mums that you just found in a different location in your greenhouse and had you known they were there, you could have sold them along with 2463 other mums that you just located in various parts of your greenhouse.

It doesn’t have to be like that. We had a client in a similar situation, and they are on track to reduce their shrinkage to just a shade over 10%. The future of the industry is making data-driven decisions that free up a grower to focus on solving problems, not looking for problems.

And don’t think that shrinkage is an issue only in the purview of floriculture. It’s an even bigger problem for cannabis because of the high value of each crop. The numbers don’t sound as bad because unlike floriculture, you don’t have to throw out cannabis that’s not Grade A. You can always sell it for extract. But extract prices are significantly less per pound than flower in the bag.

Here’s how one grower explained it. “Because of the high value of the crop, and the only other crop I’ve worked with that high is truffles, you’re playing a much higher stakes game with shrinkage. Even if you try and salvage a bad crop by using all of the parts of the cannabis plant. Listen, the difference between Grade A and Grade C could be $1,000 for A while a pound of B/C is less than $400. If you produce a standard 180 to 200 pounds in your grow rooms, you’ve really screwed up. No operator is going to keep you if you just cost them $120,000.”

german flag

Does Germany Have a Gray Market Problem?

By Marguerite Arnold
No Comments
german flag

Tilray just did something very interesting. In addition to announcing that it was shipping product to German distributor Cannamedical via its Portuguese facility, it also announced that it had begun outdoor cultivation.

Groovy.tilray-logo

Even more intriguing: the company is claiming that somehow, via its proprietary technology (apparently), this kind of crop will be legit for distribution within the EU medical system.

There is only one problem with this. Outdoor growing does not sound remotely GMP-certified.

Here is the next bit of exciting news. Tilray, apparently, is not the only large Canadian cannabis company now operating in Europe that appears to be trying to get around GMP certifications for medical market penetration. Or appear oblivious to the distinctions in the international (and certainly European market).

german flag
Photo: Ian McWilliams, Flickr

And things are a bit smelly on that front, not only in Denmark post CannTrust, but in truth even in Germany, the supposed “Fort Knox” of regulatory consumer and pharmaceutical standards.

In fact, at least according to insiders, there is apparently quite a bit of gray market product sloshing around in the Teutonic medical market. Even though so far, at least not publicly punished for the same, nobody has been caught. Or at least publically reprimanded.

And who is on the hot seat at least according to most of the licensed if not just pre-licensed indie producers and distributors who were contacted for this story? Sure, there are dark horse “start-up” indie violators, but they are not the only problem. Many who talked to CIJ named big public Canadian companies too. And potentially Bedrocan beyond that.

Who Is Who And What Is What?

Part of the problem, beyond any kind of deliberate flouting of regulations on the part of many companies who are at least trying to understand them, is that global standards are different. “GMP certifications” of every country, even within a region like Europe, are in fact, not uniform. That is why, for example, the new EU-US MRA agreement had to be signed first regionally and then on a state-by-state level across the EU.

Beyond Germany of course, there are other problems that are coming to the fore.In the medical cannabis space, in particular, right now, that is causing problems simply because many with pharma experience are not hip to the many risks in the cannabis industry itself. On the Canadian, Australian and American side, there is also a lot of bad advice, in particular, coming from consultants who should know better.

To be properly EU and German GMP-certified, one of the required steps is to have German inspectors walk your production floor. It is also not good enough to have “pesticide-free” or national organic certification at the crop cultivation site, and add GMP cert at time of “processing.” That piece of misadvise has been showing up not only in Canada, but Australia too. And creates a nasty reality if not expensive retooling upon entering the legitimate market in Europe, for starters.

These Issues Affect Everyone In The Industry

German Parliament Building

In an environment where ex-im is the name of the game, and even the big guys are short of product, compliance is getting granular as smaller players step up to the plate – and many if not most hopeful Canadian producers (in particular) now looking to Europe for sales are not (yet) up to speed.

A big piece of the blame also lies in the lack of proper administration at the federal and state level too – even auf Deutschland. To get a distribution license, a company must actually get three licenses, although there are plenty in the market right now who begin to describe themselves as “distributors” with less than the required certs.

The lack of coordination and communication, including which certs to accept as equivalent and from where is creating a market where those who know how to game the system are.

For example, several people who contacted CIJ, claimed that uncertified product was making its way into Germany via Central and Latin America, through Canada, picking up “GMP cert” along the way. In other words, not actually GMP-certified but labelled fraudulently to make it appear that way.

The same claims were also made by those with on-the-ground industry knowledge in South Africa (Lesotho).

Beyond Germany of course, there are other problems that are coming to the fore. As CIJ recently learned, a firm authorized by the Dutch government to provide cannabis packaging, including for exports, was not GMP certified until July 2019 – meaning that all product they shipped internationally even within Europe before that date potentially has labelling issues. Cue domestic importers. If not regulators.

Grey Market Product Is Making Its Way In Through Official Channels

For those who are taking the time to actually get through the legal registration and licensing process, it is infuriating to see others who are apparently fairly flagrantly buying market position but are in no position to fulfil such obligations. It is even more infuriating for those who intend to meet the requirements of the regulations to realize that the vast amounts spent in consulting fees was actually money paid for inaccurate information.

And the only way ultimately the industry can combat that, is by standing up, as an industry, to face and address the problem.German distributors are so aware of the problem that they are starting to offer gap analysis and specific consulting services to help their import partners actually get compliant.

Government agencies also might be aware of the problems, but they have been reluctant to talk about the same. CIJ contacted both BfArM and the local Länderauthorities to ask about the outdoor grow in Portugal and the lack of GMP cert for a Dutch packager. After multiple run-arounds, including sending this reporter on a wild rabbit chase of federal and state agencies (who all directed us back to BfArm) and an implication by the press officer at BfArM that the foreign press was not used to talking to multiple sources, CIJ was redirected back to state authorities with a few more instructions on which bureau to contact. The state bureau (in Berlin) did not return comments to questions asked by email.

Here is the bottom line that CannTrust has helped expose this summer: the entire global cannabis industry is trying hard to legitimize. Not every company is shady, and there are many who are entering it now who are playing by the rules. But those who are hoping to exploit loopholes (including “name” if not “public” companies) are also clearly in the room.

And the only way ultimately the industry can combat that, is by standing up, as an industry, to face and address the problem.


Editors Note: This is a developing story. CIJ has been contacted by the Dutch Cannabis Agency as it investigates what appears to be an intra-government debate over qualification of EU-GMP cert, acceptance of audit documents and other matters within European countries that appear to have caused much of this confusion with regards to Bedrocan and its packager Fagron. Many reputable, licensed sources within the industry spoke to us on deep background, out of concern that they too would be held liable. That said, so far, nobody can explain why the only licensed Dutch packager, was issued a new EU GMP cert document on July 9, 2019, the same day that Danish authorities halted CannTrust product entering Denmark. That is a government decision. Further it is also still unclear why rival cannabis companies would attempt to contact the cannabis media with a certain (and misguided) spin on this situation.

Keeping Your Environment Clean: Preventative Measures Against Contamination

By Jeff Scheir
2 Comments

For years we have heard about and sometimes experienced, white powdery mildew when growing cannabis. It is a problem we can see, and we have numerous ways to combat it. But now more and more states are introducing regulatory testing on our harvests and they are looking for harmful substances like Escherichia coli., Aspergillis Fumigatus, Aspergillis terreus, …  just to name a few. Mycotoxins, mold and bacteria can render a harvest unusable and even unsellable- and you can’t see these problems with the naked eye. How much would it cost you to have to throw away an entire crop?

You bring in equipment to control the humidity. You treat the soil and create just the right amount of light to grow a superior product. You secure and protect the growing, harvesting, drying and production areas of your facility. You do everything you can to secure a superior yield… but do you?

Many of the organisms that can hurt our harvest are being multiplied, concentrated and introduced to the plants by the very equipment we use to control the growing environment. This happens inherently in HVAC equipment.

Your air conditioning equipment cools the air circulating around your harvest in a process that pulls moisture from the air and creates a perfect breeding ground in the wet cooling coil for growth of many of the organisms that can destroy your yield. As these organisms multiply and concentrate in the HVAC system, they then spew out into the very environment you are trying to protect at concentrated levels far greater than outside air. In effect, you are inoculating the very plants you need to keep safe from these toxins if you want to sell your product.

The cannabis industry is starting to take a page from the healthcare and food safety industries who have discovered the best way to mitigate these dangers is the installation of a proper UVC solution inside their air conditioning equipment.

Why? How does UVC help? What is UVC?

What is Ultraviolet?

Ultraviolet (UV) light is one form of electromagnetic energy produced naturally by the sun. UV is a spectrum of light just below the visible light and it is split into four distinct spectral areas – Vacuum UV or UVV (100 to 200 nm), UVC (200 to 280 nm), UVB (280 to 315 nm) and UVA (315 to 400 nm). UVA & UVB have been used in the industry to help promote growth of cannabis.

What is UVC (Ultraviolet C)?

The entire UV spectrum can kill or inactivate many microorganism species, preventing them from replicating. UVC energy at 253.7 nanometers provides the most germicidal effect. The application of UVC energy to inactivate microorganisms is also known as Germicidal Irradiation or UVGI.

UVC exposure inactivates microbial organisms such as mold, bacteria and viruses by altering the structure and the molecular bonds of their DNA (deoxyribonucleic acid). DNA is a “blue print” these organisms use to develop, function and reproduce. By destroying the organism’s ability to reproduce, it becomes harmless since it cannot colonize. After UVC exposure, the organism dies off leaving no offspring, and the population of the microorganism diminishes rapidly.

Ultraviolet germicidal lamps provide a much more powerful and concentrated effect of ultraviolet energy than can be found naturally. Germicidal UV provides a highly effective method of destroying microorganisms.

To better understand how Steril-Aire UVC works, it is important to understand the recommended design. Directed at a cooling coil and drain pan, UVC energy destroys surface biofilm, a gluey matrix of microorganisms that grows in the presence of moisture. Biofilm is prevalent in HVAC systems and leads to a host of indoor air quality (IAQ) and HVAC operational problems. UVC also destroys airborne viruses and bacteria that circulate through an HVAC system and feed out onto the crop. HVAC cooling coils are the largest reservoir and amplification device for microorganisms in any facility.

For the most effective microbial control, UV germicidal Emitters are installed on the supply side of the system, downstream from the cooling coil and above the drain pan. This location provides more effective biofilm and microbial control than in-duct UVC installations. By irradiating the contaminants at the source – the cooling coils and drain pans – UVC delivers simultaneous cleaning of surface microorganisms as well as destruction of airborne microorganisms and mycotoxins. Steril-Aire patented this installation configuration in 1998.

The recirculating air in HVAC systems create redundancy in exposing microorganisms and mycotoxins to UVC, ensuring multiple passes so the light energy is effective against large quantities of airborne mycotoxins and cleaning the air your plants live by.

Where are these mycotoxins coming from?

Aspergillus favors environments with ample oxygen and moisture. Most pre-harvest strategies to prevent these mycotoxins involve chemical treatment and are therefore not ideal for the cannabis industry.

Despite the lack of cannabis protocols and guidelines for reducing mycotoxin contamination, there are some basic practices that can be utilized from other agricultural groups that will help avoid the production of aflatoxins and ochratoxins.

When guidelines are applied correctly to the cannabis industry, the threat of aflatoxin and ochratoxin contamination can be significantly reduced. The place to start is a clean air environment.

Design to win

The design of indoor grow rooms for cannabis is critical to the control of airborne fungal spores and although most existing greenhouses allow for the ingress of fungal spores, experience has shown that they can be retrofitted with air filters, fans, and UVC systems to make them relatively free of these spores. Proper designs have shown clearly that:

  1. Prevention via air and surface disinfection using germicidal UVC is much better than chemical spot treatment on the surface of plants
  2. High levels of air changes per hour enhance UVC system performance in reducing airborne spores
  3. Cooling coil inner surfaces are a hidden reservoir of spores, a fertile breeding ground and constitute an ecosystem for a wide variety of molds. Continuous UVC surface decontamination of all coils should be the first system to be installed in greenhouses to reduce mildew outbreaks.

UVC can virtually eliminate airborne contaminants

Steril-Aire graphic 4

Steril-Aire was the first and is the market leader in using UVC light to eliminate mold and spores to ensure your product will not be ruined or test positive.

  1. Mold and spores grow in your air handler and are present in air entering your HVAC system.
  2. Steril-Aire UVC system installs quickly and easily in your existing system.
  3. The Steril-Aire UVC system destroys up to 99.999% of mold/spores.
  4. Plants are less likely to be affected by mold…with a low cost and no down time solution.

It’s time to protect your harvest before it gets sick. It’s time to be confident your yield will not test positive for the contaminants that will render it unusable. It’s time to win the testing battle. It’s time for a proper UVC solution to be incorporated throughout your facilities.

Cannabusiness Sustainability

Environmental Sustainability in Cultivation: Part 3

By Carl Silverberg
No Comments

Part 1 in this series went into a discussion of resource management for cannabis growers. Part 2 presented the idea of land use and conservation. In Part 3 below, we dive into pesticide use and integrated pest management for growers, through an environmental lens.

Rachel Carson’s book Silent Spring in 1962, is often credited with helping launch the environmental movement. Ten years later, VP Edmund Muskie elevated the environment to a major issue in his 1972 Presidential campaign against Richard Nixon. 57 years after Ms. Carson’s book, we’re still having the same problems. Over 13,000 lawsuits have been filed against Monsanto and last month a jury in Alameda County ruled that a couple came down with non-Hodgkin’s lymphoma because of their use of Roundup. The jury awarded them one billion dollars each in punitive damages. Is there a safer alternative?

“Effectively replacing the need for pesticides, we use Integrated Pest Management (IPM) which is a proactive program designed to control the population of undesirable pests with the use of natural predators, a system commonly known as “good bugs (such as ladybugs) fighting bad bugs”, states the website of Mucci Farms, a greenhouse grower. While this applies to cannabis as well, there is one major problem with the crop that isn’t faced by other crops.

Rachel Carson’s Silent Spring- often credited with starting the environmental movement of the 20th century.

While states are moving rapidly to legalize it, the EPA is currently not regulating cannabis. That is in the hands of each state. According to a story in the Denver Post in 2016, “Although pesticides are widely used on crops, their use on cannabis remains problematic and controversial as no safety standards exist.” Keep in mind that it takes a lot more pesticides to keep unwarranted guests off your cannabis plant when it’s outdoors than when it’s in a controlled environment.

We’re accustomed to using endless products under the assumption that a range of governmental acronyms such as NIH, FDA, OSHA, EPA, USDA are protecting us. We don’t even think about looking for their labels because we naturally assume that a product we’re about to ingest has been thoroughly tested, approved and vetted by one of those agencies. But what if it’s not?

Again, cannabis regulation is at the state level and here’s why that’s critical. The budget of the EPA is $6.14 billion while Colorado’s EPA-equivalent agency has a budget of $616 million. According to the federal budget summary, “A major component of our FY 2019 budget request is funding for drinking water and clean water infrastructure as well as for Brownfields and Superfund projects.” In short, federal dollars aren’t going towards pesticide testing and they’re certainly got going towards a product that’s illegal at the federal level. That should make you wonder how effective oversight is at the state level.

What impact does this have on our health and what impact do pesticides have on the environment? A former Dean of Science and Medical School at a major university told me, “Many pesticides are neurotoxins that affect your nervous system and liver. These are drugs. The good news is that they kill insects faster than they kill people.” Quite a sobering thought.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”Assuming that he’d be totally supportive of greenhouses, I pushed to see if he agreed. “There’s always a downside with nature. An enclosure helps you monitor access. If you’re growing only one variety, your greenhouse is actually more susceptible to pests because it’s only one variety.” The problem for most growers is that absent some kind of a computer vision system in your greenhouse, usually by the time you realize that you have a problem it’s already taken a toll on your crop.

Following up on the concept of monitoring, I reached out to Dr. Jacques White, the executive director of Long Live the Kings, an organization dedicated to restoring wild salmon in the Pacific Northwest. Obviously, you can’t monitor access to a river, but you certainly can see the effects of fertilizer runoff, chemicals and pesticides into the areas where fish live and eventually, return to spawn.

“Because salmon travel such extraordinary long distances through rivers, streams, estuaries and into oceans they are one of the best health indicators for people. If salmon aren’t doing well, then we should think about whether people should be drinking or using that same water. The salmon population in the area around Puget Sound is not doing well.”

We talked a bit more about pesticides in general and Dr. White summed up the essence of the entire indoor-outdoor farming and pesticides debate succinctly.

“We have the ability to control what kinds of pesticides we put in our water and how much pesticides we put in our water.”

If you extrapolate that thought, the same applies to agriculture. Greenhouse farming, while subject to some problems not endemic to outdoor farming, quite simply puts a lot fewer chemicals in the air we breathe, the water we drink and the food we eat.

Flooring Tips for Cannabis Growing Facilities

By Sophia Daukus
2 Comments

In the burgeoning cannabis market, grow facilities are facing more and more competition every day. New indoor cultivation enterprises are often being set up in formerly vacant industrial buildings and commercial spaces, while in other cases, companies are planning and constructing new grow facilities from the ground up. For all these establishments, continually lowering production costs while supplying the highest possible quality in ever-increasing yields is the way forward.

Whether in existing or new structures, concrete floors are ubiquitous throughout the majority of cannabis growing facilities. With the right treatment, these indoor concrete traffic surfaces can greatly contribute to a company achieving its operational objectives. Alternatively, insufficiently protected concrete floors can create annoying and costly barriers to accomplishing company goals.

Challenges in Cannabis Grow Facility Construction

As with any emergent industry, mainstream acceptance and market growth is bringing regulation to cannabis cultivation. Local governments are paying more attention to how cannabis growing facilities are constructed and operated. In addition to the standard business matters of building safety, employee working conditions and tax contributions, elected officials are increasingly under pressure from constituents to analyze the overall effect of grow facilities on their communities at large.

High consumption of energy for grow room lights and high water usage are just part of the equation. The temperature and humidity needs of a grow facility can be similar to that of an indoor swimming pool environment. While warmth and moisture are ideal for cannabis growth, they also provide the ideal conditions for the growth and proliferation of fungi and other undesirable microorganisms. Therefore, to help preserve plant health in the moist indoor climate, fumigation often comes into play.

Carbon dioxide (CO2) enrichment of grow room air, a common practice proven to increase crop yields, presents another set of safety and health considerations in dense urban environments.

Adding to these challenges, many cannabis grow facilities are producing plants destined for either pharmacological or nutritional use. This in itself demands scrutiny by regulators for the sake of the consuming public.

As a result, grow room managers and owners must stay informed about the evolution of the industry in terms of local and federal agency regulations concerning their facilities, their overall operation and their products.

Bare Concrete Floors in Grow Rooms

As a foundational construction material, concrete continues to lead the way in commercial and industrial construction. Despite the many advantages of concrete floors, when left unprotected they can present significant challenges specific to cannabis grow rooms.

  • Untreated, bare concrete is naturally porous, easily absorbing liquids and environmental moisture. Substances found in grow rooms, such as fertilizers, fungicides and other chemicals, can leach through the porous concrete floor slab into the soil and ground water. Whether organic or synthetic, concentrations of such substances can be highly detrimental to the surrounding environment.
  • Whether in an existing or newly constructed facility, it is not uncommon for the under-slab vapor barrier to be compromised during construction. When this occurs, moisture from the soil beneath the floor slab can enter the concrete and move osmotically upward, creating a phenomenon known as Moisture Vapor Transmission (MVT). The resulting moisture and moisture vapor tends to become ever more alkaline as it rises upward through the concrete slab. MVT can result in blistering, bubbles and other damage to floor coverings.
  • The warm temperatures, regular watering of plants and high relative humidity maintained within many grow rooms can contribute to a weakening of the structural integrity of unprotected grow room slabs.
  • Within the confined space of a grow room, the warm, moist air invites microbe proliferation. Food and pharmaceutical plants are high on the priority list when it comes to facility hygiene levels, as demanded by code.

Public health guidelines for cannabis cultivation facilities in various parts of the country are increasingly mirroring those of food processing. Typical requirements include having smooth, durable, non-absorbent floor surfaces that are easily cleaned and in good repair, possessing proper floor slope towards a sanitary floor drain, with no puddling, as well as an integral floor-to-wall cove base. These directives cannot be met with bare concrete alone.

Optimal Grow Room Flooring Performance

In some locations, cannabis growing facilities are already subject to strict building codes and regulations. This will no doubt be spreading to other regions in the near future. For example, the Public Health Agency of Los Angeles County publishes construction guidelines to ensure cannabis facility floors meet standards mirroring the food processing and pharmaceutical manufacturing industries, where sanitation, facility hygiene and safety are paramount. In these types of facilities, bare, unprotected concrete floor slabs are not allowed as a general rule, due to the material’s innate porosity and absorbency.

Flooring in grow rooms, like in their food and pharma industry counterparts, should optimally:

  1. Provide a monolithic and virtually seamless surface to help eliminate crevices, grout lines and other dark, damp locations where soil and pathogens tend to hide
  2. Be impervious and non-porous, providing a surface that can isolate toxic materials on the surface for proper clean-up where needed
  3. Enable correction or improvement of the floor slope for proper drainage, with no low spots to help avoid puddling
  4. Be installed with integral floor-to-wall cove options for easier wash-down and sanitizing
  5. Have the strength and thermal shock resistance, plus the tenacious bond, to undergo steam-cleaning and/or hot power washing, where needed
  6. Enable seamless, continuous surface installation over concrete curbs and containment areas
  7. Offer antimicrobial options for highly sensitive locations
  8. Demonstrate high compressive strength and impact resistance for durability under heavy loads
  1. Display excellent abrasion resistance, allowing the system to perform under grueling daily wear-and-tear
  2. Present customizable slip-resistance options that can be balanced with easy clean-ability
  3. Facilitate the use of floor safety markings, such as color-coded traffic and work area designations
  1. Be formulated with low odor, low-VOC chemistries that meet all EPA and similar regulations
  2. Be able to contribute LEED Green Building Credits, where desired
  3. Include options for refurbishing old or damaged concrete surfaces to allow reuse of existing facility resources, as opposed to having to be demolished, thus unnecessarily contributing to landfill waste
  4. Withstand and perform in continually damp grow room conditions, without degrading
  5. Be compliant with FDA, USDA, EPA, ADA, OSHA, as well as local regulations and/or guidelines
  6. Include MVT mitigating solutions where Moisture Vapor Transmission site issues are present
  7. Provide waterproofing underlayment options for multi-story facilities
  8. Demonstrate excellent resistance to a broad range of chemicals, fertilizers and extreme pH substances

Finding an affordable floor system with all the above features may seem like a tall order. Luckily, innovative manufacturers now offer cannabis facility flooring that meets sanitation, regulatory compliancy, durability and budgetary needs of growers.

Resinous Flooring Value for Cannabis Facilities

Choosing the right floor solutions for a given cultivation facility may be one of the most important decisions an owner or manager makes. Since floors are present throughout the structure, poor selection and compromised protection of concrete slabs can end up wreaking havoc with profits and yields over time.

Few facilities can afford the inconvenience and expense of an otherwise unnecessary floor repair or replacement. Having to suddenly move cumbersome plant beds and heavy pots in order to give workers access to the floor area can be headache. In addition, the unscheduled downtime and overall juggling of resources that invariably must take place make a strong case for investing in optimal grow room flooring from the start.

An excellent long-term value, professional-grade resinous floor systems present cannabis growers with a unique set of solutions for cultivation rooms. Not only does this type of flooring offer all the desirable features listed above, but also furnish a host of added benefits to grow room operations, including:

Very High Gloss Finish

  • Highly reflective floor surfaces enable light entering the space from overhead to bounce back upward, exposing the underside of leaves to the light and potentially increasing yields
  • Exceptionally high gloss floor finishes in light colors help make the most of your existing lighting sources, significantly increasing room illumination
  • Achieving greater illumination without adding fixtures helps reduce energy consumption and associated costs

Virtually Seamless Surface

  • Fluid-applied resin-based flooring provides an impermeable, monolithic surface that is exceptionally easy to clean and maintain
  • The virtually seamless finish of resinous coated floors greatly reduces the number of locations for soil, pathogens and microbes to gather
  • Resinous floors, by incorporating integral cove bases to eliminate ninety degree angles, correcting floor slope to eliminate puddling, and allowing for a virtually seamless surface, provide an optimally sanitary flooring solution

Outstanding Moisture Tolerance

  • Designed specifically for use in wet industrial environments, cementitious urethane flooring is a top choice for humid grow rooms
  • Also called “urethane mortar”, this type of floor can help mitigate certain undesirable site conditions, such as Moisture Vapor Transmission (MVT)

Chemical, Acid and Alkali Resistance

  • Whether organic or synthetic, many soil enhancers and substances used to eradicate undesirable fungi and pests can damage concrete and shorten the usable life of foundational slabs
  • Protecting concrete slabs with monolithic, non-absorbent and appropriately chemical resistant coating systems allows concrete to perform as designed, for as long as intended
  • A proper barrier coating on the floor allows spilled or sprayed substances to be properly cleaned up and disposed of, rather than allowing the liquids to seep through the porous slab, and into the surrounding natural environment

Added Safety

  • Resinous coating systems’ slip-resistance is completely customizable at the time of installation, enabling growers to request more traction in pedestrian walkways and less slip-resistance under raised beds.
  • Epoxy, urethane and polyaspartic resinous flooring systems accommodate the installation of safety and line markings, as well as varying colors to delineate specific work areas
  • The antimicrobial flooring options available from some manufacturers offer further hygiene support in highly sensitive facilities
  • Today’s industrial resinous floor coatings from reputable suppliers are very low to zero V.O.C. and compliant with EPA and other environmental regulations

Resinous coating systems provide ideal value to informed growers who require durable, reliable and long-lasting high performance flooring for their facilities.

Support from the Ground Up

From incredible medical advances to high tensile fiber in construction materials, the expanding cannabis industry is bringing exciting opportunities to many areas of the economy. As more and more growers enter the market, so increases the pressure to compete.

By choosing light reflective, seamless and moisture tolerant resinous flooring that meets regulatory guidelines for grow rooms, managers can help reduce their overhead costs on multiple fronts — and get a jump on the competition.