Tag Archives: identification

Building An Integrated Pest Management Plan – Part 1

By Phil Gibson
No Comments

This is the first part of a series of articles designed to introduce an integrated pest management framework for cannabis cultivation facilities. Part one details an overview of the plan as well as pest identification. Part two comes out next week and will delve into the world of pest monitoring and record keeping. Stay tuned for more!

Figure 1: Integrated Pest Management Cycle

Background

Integrated Pest Management (IPM) is a philosophy of pest prevention and control that integrates cultural, mechanical, physical and chemical practices to control pest populations within an acceptable degree of economic tolerance.

IPM encourages growers to take a step-wise approach to determine the most appropriate means necessary for avoiding pest-related economic injury through careful consideration of all available pest control practices.

When practicing IPM, less invasive non-chemical practices are given priority, until escalation necessitates otherwise.

This is Part 1: Pest Identification & Monitoring/Communications

Personal experience in a facility is a great place to start. Review your history and identify a list of pests that you have experienced in this or previous grows. Point out which pests currently exist where they were or are currently and possible sources of the contamination/infestation.

Figure 2: Healthy Aeroponic Mother Stock

Map out your facility with clear entry/exits, plumbing & drainage and air flow access to visually see and understand potential access points for crawling, flying or airborne pests.

From your nursery mother room to cloning and vegetation areas, what are the transfer methods as you move from one area to another. Are pests present in these areas? Where could they have come from? Oftentimes, a cultivator may not have the space for their own mother and cuttings/cloning space. In these cases, where did the outsourced clones come from? What are the IPM controls in place for these genetic sources? Are they carriers of the challenges transferred to your own facility? It is important to identify the possible source of pest potentials

Does your flower room have white flies or fungus gnats? Locating these and identifying the likely source is a good place to start if you have an ongoing infestation.

Figure 3: Example Aeroponic Facility Layout For IPM Planning

Powdery mildew is a routine challenge if air into your facility is not filtered and sterilized to eliminate these spores.

What is the Source of Your Irrigation/Fertigation Water?

Water is a crucial element for high-value indoor farms such as those that grow cannabis. However, water can also be a source of disease-causing microorganisms that can negatively impact the growth and yield of crops. Monitoring, filtering and sterilizing the biological contents of water is therefore crucial in ensuring the health and quality of high-value crops.

Unfiltered water can contain a range of pathogens such as bacteria, viruses, fungi and parasites that can cause root, stem and bud rot. These diseases can cause significant losses in crop yield and quality, which can be devastating for indoor farmers growing high-value crops.

Figure 4: Precision Aeroponics at FarmaGrowers GMP Facility, South Africa

Monitoring the quality of water that is brought into the indoor farm is the first step in ensuring that the water is free from harmful pathogens. This involves regular testing of the incoming water for parameters such as pH, dissolved oxygen, TDS, nutrient content and microbial load. This allows cultivators to identify aspects of the incoming water they need to address before the water is provided to their crops to prevent potential problems.

Is your plumbing building biofilm that is feeding into your irrigation lines? Obviously, there are many potential sources when you go through an inventory of the risks for your facility. From that initial step, you will build your management team and label who should be contacted when a pest is found. Do you have an IPM specialist or is this a resource that needs to be contracted to address an infection?

Building this communications tree is your first step to fewer pest issues and higher yields and potency.

For the complete white paper on Integrated Pest Management Recommendations, download the document here. Part two comes out next week and will delve into the world of pest monitoring and record keeping. Stay tuned for more!

Beyond Compliance: Understanding and Combating Contamination

By Jill Ellsworth MS, RDN, Tess Eidem, Ph.D.
No Comments

As an emerging field in cannabis, contaminant testing remains a gray area for many businesses. The vast differences in state-by-state regulations, along with the frequent changes of previously established rules make testing a difficult, time-consuming process. But at its core, the science and reasoning behind why we test cannabis is very clear – consumer safety and quality assurance are key factors in any legal, consumer market. The implications of federal legalization make cannabis testing even more important to the future of the cannabis supply chain. Understanding the types of contaminants, their sources and how to prevent them is essential to avoiding failures, recalls and risking consumer safety.

When talking about cannabis contaminant testing there are four groups of contaminants: pesticides, heavy metals, foreign materials and microbes. The microbes found on cannabis include plant pathogens, post-harvest spoiling microbes, allergens, toxin release and human pathogens. While all of these can be lurking on the surface of cannabis, the specific types that are tested for in each state vary widely. Understanding the full scope of contaminants and looking beyond state-specific compliance requirements, cultivators will be able to prevent these detrimental risks and prepare their business for the future.

Environmental controls are essential to monitor and regulate temperature and humidity

Beyond just the health of the plant, both medical patients and adult use consumers can be adversely affected by microbial contaminants. To immunocompromised patients, Aspergillus can be life-threatening and both adult use and medical consumers are susceptible to allergic reactions to moldy flower. But Aspergillus is just one of the many contaminants that are invisible to the human eye and can live on the plant’s surface. Several states have intensive testing regulations when it comes to the full breadth of possible harmful contaminants. Nevada, for example, has strict microbial testing requirements and, in addition to Aspergillus, the state tests for Salmonella, STEC, Enterobacteriaceae, coliforms and total yeast and mold. Over 15 states test for total yeast and mold and the thresholds vary from allowing less than 100,000 colony forming units to allowing less than 1,000 colony forming units. These microbes are not uncommon appearances on cannabis – in fact, they are ever-present – so understanding them as a whole, beyond regulatory standards is a certain way to future-proof a business. With such vast differences in accepted levels of contamination per state, the best preparation for the future and regulations coming down the pipeline is understanding contamination, addressing it at its source and harvesting disease-free cannabis.

The risk of contamination is present at every stage of the cultivation process and encompasses agricultural practices, manufacturing processes and their intersection. From cultivation to manufacturing, there are factors that can introduce contamination throughout the supply chain. A quality control infrastructure should be employed in a facility and checkpoints within the process to ensure aseptic operations.

Microbial monitoring methods can include frequent/consistent testing

Cultivators should test their raw materials, including growing substrates and nutrient water to ensure it is free of microbial contamination. Air quality plays an important role in the cultivation and post-harvest processes, especially with mold contamination. Environmental controls are essential to monitor and regulate temperature and humidity and ensure unwanted microbes cannot thrive and decrease the value of the product or make it unsafe for worker handling or consumers. Developing SOPs to validate contact surfaces are clean, using proper PPE and optimizing worker flow can all help to prevent cross-contamination and are part of larger quality assurance measures to prevent microbes from spreading across cultivars and harvests.

Methods of microbial examination include air quality surveillance, ATP surface and water monitoring, raw materials testing, and species identification. Keeping control of the environment that product is coming into contact with and employing best practices throughout will minimize the amount of contamination that is present before testing. The solution to avoiding worst case scenarios following an aseptic, quality controlled process is utilizing a safe, post-harvest kill-step, much like the methods used in the food and beverage industries with the oversight of the FDA.

The goal of the grower should be to grow clean and stay clean throughout the shelf life of the product. In order to do this, it is essential to understand the critical control points within the cultivation and post-harvest processes and implement proper kill-steps. However, if a product is heavily bio-burdened, there are methods to recover contaminated product including decontamination, remediation and destroying the product. These measures come with their own strengths and weaknesses and cannot replace the quality assurance programs developed by the manufacturer.

The Path Forward to a Safer Cannabis Industry

By Roshan Sebastian
1 Comment

Two decades ago, California became the first state to legalize the medical use of cannabis. In 2021, medical use of cannabis is legal is 36 US states, and 17 states allow adult (‘recreational’) use. This trend of rapid legalization of the cannabis industry, while encouraging for industry growth, attracts more attention from federal regulatory bodies such as the Occupational Safety and Health Administration (OSHA). Following a number of incidents and near misses, cannabis facilities have been increasingly frequented by OSHA visits, leading to a spike in citations and fines. A review of past OSHA citations reveals that the most common citations in the cannabis industry pertains to the employer’s lack of awareness about the hazardous nature of some operations and materials handled in the facility. This leads to an absence of a formal fire prevention plan, lack of proper hazardous chemical training, deficiency in proper documentation related to workplace injury and limited evaluation of required personal protective equipment (PPE).1

Cannabis industry data suggests that as of today, an incident is often followed by an OSHA inspection.  This naturally leads to the facility asking, ‘How do we prepare for an OSHA inspection and prevent future citations?’ The answer is a combination of identifying and mitigating risks in advance to avoid incidents and developing management systems that support the identification and risk mitigation efforts. Recent collaboration between cannabis business owners and organizations that write codes and standards have provided a framework in which to address the industry’s unique safety challenges to help reduce inherent risk to a facility. These codes and standards typically impact building construction/safety features and operation of the facility, however, additional risk mitigation can be drawn from the best practices already in place in process industries with similar hazards. These process industries have embraced process safety management (PSM) programs, which are built around principles flexible enough to be successfully implemented in the cannabis industry. Adopting such programs will serve the dual purpose of improving the overall safety record of the cannabis industry while enhancing company sustainability2 and help avoid events that lead to OSHA citations.

Figure 1. Risk Based Process Safety Management System

The risk-based process safety (RBPS) approach developed by the Center for Chemical Process Safety (CCPS)3 may prove to be the most effective framework to implement PSM programs in the cannabis industry. Unlike the prescriptive regulatory approach provided by OSHA 29 CFR 1910.119, the RBPS methodology recognizes that not all hazards and risks are equal. By assessing risk, an organization can develop an effective management system that will prioritize allocation of limited resources to address the highest risks. Figure 1 shows the four foundational blocks (pillars) of RBPS and the various elements that make up each pillar.

If a cannabis business owner were to develop programs on each of the pillars presented in Figure 1, a comprehensive safety program would be in place that delivers sustainable risk reduction and mitigation.  However, as with any industry, the elements can be prioritized and tackled over time, starting with the elements having the most influence on the overall safety of a given facility. For example, a given facility may have great procedures and practices, but may not consistently train or instill employee knowledge or competency. Conversely, a facility may have personnel with great knowledge of hazards and risks, but are less developed with regard to documenting procedures, safe practices or training for new hires. Focusing available resources on the less developed elements will lead to an overall improvement in facility risk, leading to a lower likelihood of an incident and OSHA inspection.

Figure 2. Still image from surveillance video of an explosion at New MexiCann Natural Medicine in July 2015.

As with any industry, positive and negative public perception is driven by the media, which tends to focus on attention-grabbing headlines. The majority of past incidents reported in the news for the cannabis industry were explosions that occurred during the extraction process. One such extraction explosion, shown in Figure 2, occurred in July 2015 at the New MexiCann Natural Medicine facility in Santa Fe, New Mexico. With a focus on the ‘hazard identification and risk analysis’ pillar of RBPS, future such events may be mitigated.

Of the twenty RBPS elements, hazard identification and risk analysis (HIRA) stands out as having the highest potential for immediate impact on the cannabis industry’s safety profile.

HIRA is a collection of activities carried out through the life cycle of a facility to ensure that the risks to employees and the public are constantly monitored to be within an organization’s risk tolerance. The four major areas to analyze are:

  • Hazards – What are the possible deviations from the design intent?
  • Consequences – What are the worst possible consequences (or severity) if any deviation occurs?
  • Safeguards – Are there safeguards in the system to reduce the likelihood of this event?
  • Risk – Is the risk within the tolerable level? If not, what steps are needed to reduce the risk? (Severity X Likelihood = Risk)
Figure 3. A simplified HIRA flow chart for an Extraction Process

Let us consider an example case where the extraction process utilizes propane or butane as the extracting solvent. Figure 3 shows a simplified HIRA flow chart for the extraction process.

This systematic approach helps to understand the hazards and evaluate the associated risk. In addition, this approach highlights operator training as a crucial safeguard that can be credited to lower the overall risk of the extraction facility. Remember, lack of proper safety training (another element!) is one of the most cited OSHA violations in the cannabis industry. Another advantage to the HIRA methodology is that other safeguards that may be present can be identified, their effectiveness evaluated and additional risk reduction measures may be recognized. This will help business owners allocate their limited resources on the critical safeguards that provide the greatest risk reduction. Identifying, analyzing and solving for potential hazards is a key step in safe operation of a facility and avoiding OSHA citations.

While this article discusses only a single RBPS element, this example demonstrates how best practices from process industries can become a powerful tool for use in the cannabis industry. The “hazard identification and risk analysis” element of the RBPS approach is pertinent not only for the extraction process as discussed above, but also directly applicable to other aspects of the industry (e.g., dust explosions in harvesting and processing facilities, toxic impacts from fertilizers, hazards from the CO2 enrichment process in growing facilities, etc.).


References

  1. Top 5 OSHA Infractions for Cannabis Businesses
  2. The Business Case for Process Safety; 4th Edition; Center for Chemical Process Safety; 2018
  3. Guidelines for Risk Based Process Safety; Center for Chemical Process Safety: An AICHE Technology Alliance; published March 2007
  4. Video: Explosion rips through medical marijuana facility

The Need for Standardization in Medical Cannabis Testing

By Andrew James
2 Comments

There has been a move towards the legalization of cannabis for medical and/or recreational use across many countries and US states in recent years, leading to greater demand for accurate potency and safety testing. Despite this, there are currently no standardized regulations between states or countries for quality control including content, composition, adulterants, potency or levels of toxic residues. As such, in many cases where regulations are in place, testing is generally carried out at a small number of approved independent testing laboratories.

The need for self-regulation has led to the growth of portable gas chromatography (GC) being used in the field of cannabis testing.This lack of clarity makes it difficult for consumers to make informed decisions about what they are purchasing, an issue which could be damaging to the industry’s changing reputation. As it stands, producers of cannabis and cannabis-derived products can supply goods with potentially harmful contaminants such as fungi or pesticide residues, which are potentially threatening to human health. Most cannabis products sold legally in the US are required to be tested and labelled for THC, the chemical responsible for most of cannabis’s psychoactive effects. A US study found that as few as 20% of recreational cannabis products are accurately labelled with only 17% of products reviewed accurately labelled for THC content (i.e. within 10% of the labeled value). It also found 23% were under labelled, and 60% were over labelled.

If cannabis were to be categorized as a regulated pharmaceutical drug, it would be rigorously tested to comply with stringent rules and regulations regarding quality and safety of the product, as are all other drugs. However, as there is currently no centralized regulatory body that oversees this, the responsibility of quality assurance falls to the grower, manufacturer and sometimes the consumer.

The Need for Cannabis Analysis

The most common requirement when testing cannabis is positive identification and quantification of the total THC:CBD ratio. In a highly competitive marketplace, this information is important, as cannabis consumers tend to equate THC levels with price. In many instances, lower THC products are cheaper and higher THC concentrations make products more expensive. Without robust systems in place for sufficient testing, this information cannot be accurately determined, meaning the customer often cannot make an informed decision.

Pesticide use is surprisingly common in the cannabis cultivation industry

In addition to potency testing, one of the core issues facing the industry and by extension, the end consumer, is the prevalence of pesticides in cannabis products. In the Netherlands, the Ministry of Environment and Health reported that over 90% of cannabis plants tested had pesticides on them. While steps have been taken to tackle this, the lack of cohesion in testing standards combined with the onus on individual labs to carry out testing, has led to some issues within the industry.

Many individual retailers in the U.S. and internationally are self-testing for impurities such as pesticides, heavy metals and microbials. While there is a clear need for standard testing across all locations, the need for self-regulation at present has led to the growth of portable gas chromatography (GC) being used in the field of cannabis testing.

Using GC as an analytical tool 

With the increased need for quality control and quality assurance in the largely unregulated cannabis industry, technology is now more accessible to smaller companies and to people with minimal laboratory experience. There are a range of cannabis testing packages available for smaller individual labs which offer more mobile testing with affordable packages. The lower entry price makes GC analysis affordable for more laboratories while still delivering reliable, high quality results.

Portable GC instruments can offer high quality potency testing, pesticide screening, terpene and flavor profiling, and residual solvents analysis. These instruments can give growers and processors an accurate result of cannabinoid percentages, a fundamental piece of information for growers and dispensaries. Systems can be configured for manual injection or a range of autosampler options can be added.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

GC enables the rapid and accurate identification and quantification of the THC:CBD ratio. This is important for companies which are carrying out self-testing as it allows their customers to have assurances in the short term over the quality of their product, as well as reducing any potential risks to public health.

An example of this in practice is the use of GC by Dutch company Shamanics which carries out testing service for coffee shops in the Netherlands. The company conducts terpene analysis and potency testing to assure the quality of the products it supplies, with a portable GC, which offers the flexibility required without any established guidelines on testing in place.

When testing for potency using the GC, they look for total THC and CBD by converting the acidified versions of the cannabinoids into neutral forms within the heat of the GC injector. The process has flexibility which means that if they need to see both the acidified and neutral versions, they can do this by derivatizing the sample. The accuracy of this process is crucial to Shamanics and similar companies within the industry so that they can accurately judge the quality of a product, and relay this information to retailers and consumers.

The future of GC in standardized testing

While the growing availability of portable GC instruments and the increasing sophistication of individual labs means more companies are able to self-test products, there is still a significant hurdle to overcome in terms of standardising and regulating both the medical and recreational cannabis markets. Where regulation is brought in it should be consistent across states and countries and most importantly, it should be monitored and enforced. In the meantime, responsible producers are using the technology available to them to provide consumers with guarantees that their cannabis products are safe and of a high quality.

PerkinElmer Awarded Five Emerald Test Badges

By Aaron G. Biros
1 Comment

According to a press release published today, Emerald Scientific awarded PerkinElmer five badges for The Emerald Test, a bi-annual Inter-Laboratory Comparison and Proficiency Test (ILC/PT) program. Awarding the badges for Perkin Elmer’s instruments and testing methods affirms their ability to accurately detect pesticides, heavy metals, residual solvents, terpenes and potency in cannabis.

According to Greg Sears, vice president and general manager of Food, Chromatography & Mass Spectrometry, Discovery & Analytical Solutions at PerkinElmer, they are the only instrument manufacturer to receive all five accolades. “To date, PerkinElmer is the only solutions provider to successfully complete these five Emerald Scientific proficiency tests,” says Sears. “The badges underscore our instruments’ ability to help cannabis labs meet the highest standards available in the industry and effectively address their biggest pain point: Navigating diverse regulations without compromising turnaround time.”

The instruments used were PerkinElmer’s QSight 220 and 420 Triple Quad systems, which are originally designed for accurate and fast detection/identification of “pesticides, mycotoxins and emerging contaminants in complex food, cannabis and environmental samples,” reads the press release. They also used their ICP-MS, GC/MS and HPLC systems for the badges.

PerkinElmer says they developed a single LC/MS/MS method using their QSight Triple Quad systems, which helps labs test for pesticides and mycotoxins under strict regulations in states like California and Oregon. They performed studies that also confirm their instruments can help meet Canada’s testing requirements, which set action limits nearly 10 times lower than California, according to the press release.