Tag Archives: Pesticide

emerald test retail

Analyzing The Emerald Test Results: Cannabis Labs Making Progress

By Aaron G. Biros
No Comments
emerald test retail

The Emerald Test advisory panel recently convened to review the results from the Fall 2016 round of the semi-annual Inter-Laboratory Comparison and Proficiency Test (ILC/PT), ahead of the third annual Emerald Conference just a few weeks away. After reviewing and analyzing the results, the panel noticed a significant improvement across the board over their Spring 2016 round of proficiency testing.rsz_emerald-scientific_letterhead-1

Emerald Scientific’s ILC/PT program is a tool laboratories use to check how accurate their testing capabilities are compared to other labs. A lab receiving The Emerald Test badge indicates their testing meets the criteria established by the panel to demonstrate competency. This means that they were within two standard deviations of the consensus mean for all analytes tested, according to Wes Burk, vice president of Emerald Scientific. He says the labs performed better than expected on both the microbial and pesticide tests.

Wes Burk, vice president of Emerald Scientific.
Wes Burk, vice president of Emerald Scientific.

emerald test retailEach lab has access to raw, anonymized data including a consensus mean, z-scores and kernel density plots. This round measured how well 35 cannabis labs perform in testing for potency, pesticides, residual solvents and microbial contaminants such as E. coli, Salmonella, Coliform, yeast and mold.

The advisory panel includes: Robert Martin, Ph.D., founder of CW Analytical, Cynthia Ludwig, director of technical services at AOCS, Rodger Voelker, Ph.D., lab director, OG Analytical, Tammie Mussitsch, QA manager at RJ Lee Group, Shawn Kassner, senior scientist at Neptune & Company, Inc., Jim Roe, scientific director at Steep Hill Labs, Chris Hudalla, Ph.D., founder and chief scientific officer at ProVerde Labs, Sytze Elzinga, The Werc Shop and Amanda Rigdon, Chief Technical Officer at Emerald Scientific.

amandarigdon
Amanda Rigdon, chief technical officer at Emerald Scientific

According to Amanda Rigdon, chief technical officer at Emerald Scientific, the labs performed very well in potency, residual solvents and microbial testing PTs. This is the first year the proficiency testing includes pesticides. “All of the labs did a great job identifying every pesticide in our hemp-based PT, but some more work will most likely have to be done to bring quantitative results in line,” says Rigdon. “Since this was the first pesticide PT we had offered, we were pretty conservative when choosing analytes and their levels. For the most part, analytes and levels were taken from the Oregon pesticide list, which is widely recognized to be the most reasonable and applicable pesticide list out there to date.” They covered pesticides of high concern, like abamectin and Myclobutanil, but also included a wide range of other pesticides that labs are expected to encounter.

Shawn Kassner, senior scientist at Neptune
Shawn Kassner, senior scientist at Neptune & Company, Inc.

Shawn Kassner, senior scientist at Neptune & Company, Inc., believes microbial contamination proficiency testing should be a priority for improving public health and safety going forward. Although five participating labs did not receive badges for the microbial contamination PTs, panel members say the overall performance was really quite good. “Microbiology testing are essential analyses for all cannabis products and it’s just slower in regulatory implementation than potency testing,” says Kassner. “The risk of Salmonella and E. coli to an individual using a medical cannabis product could be very life threatening. Microbiology contamination is a huge concern for any public health agency, which is why we have seen that microbiology testing is usually the first analytical test required after potency.” Kassner notes that there were few outliers and with each Emerald PT program, he is seeing an improvement in overall laboratory performance.

For The Emerald Test’s next round, the panel hopes to make some improvements in the test’s robustness and consistency, like obtaining assigned values for all samples and comparing to a consensus mean. “We want to develop permanent badge criteria, streamline the appeals process and possibly implement a qualitative performance review in the pesticide PT,” says Burk. For the next round of pesticide PTs, they want to build a better list of pesticides to cover more states, allowing labs to pick a set based on their state’s regulations. Burk says they also want to collect data on whether or not matrix-matched curves were used for pesticides.

Rodger Voelker, Cynthia Ludwig and Shawn Kassner, all members of the advisory panel, will be speaking at the Emerald Conference, discussing some of their findings from this round of proficiency testing. The Emerald Conference will take place February 2nd and 3rd in San Diego, CA.

Canadian Cannabis Recalls Raise Questions About Choices in Testing Methods

By Aaron G. Biros
6 Comments

Cannabis sold between August and December of 2016 is being voluntarily recalled by Organigram, a Canadian cannabis producer, due to the detection of unapproved pesticides, according to a press release. Organigram is a licensed medical cannabis producer in Canada, which received an organic certification back in 2014 by ECOCERT, a third-party organic certification organization based in France.

health-canada-logo

Organigram and Health Canada deemed it a Type III recall, meaning “a situation in which the use of, or exposure to, dried marijuana, fresh marijuana or cannabis oil, marijuana plants or seeds is not likely to cause any adverse health consequences,” according to that press release. They don’t know how the products were contaminated as routine use of pesticides is barred under their organic certification. Organigram is cooperating with Health Canada to conduct a full investigation to determine how the cannabis was contaminated.

About a month before Organigram’s recall, Mettrum Health Corp., a Toronto-based licensed medical cannabis producer, voluntarily recalled medical cannabis products that might have contained trace levels of pyrethrin, an insecticide not approved for use on cannabis, but generally regarded as safe with a low toxicity. That press release only mentions the detection of pyrethrin and downplays the health effects. “While the ingredient is not harmful and there is no negative effect on product quality and safety, we are doing everything possible to ensure client satisfaction and confidence is upheld,” says Michael Haines, director and chief executive officer of Mettrum Health Corp.

Pesticide Use was a major issue of 2016 Photo: Michelle Tribe, Flickr
Photo: Michelle Tribe, Flickr

Reporting in an article last week, The Globe and Mail discovered that Mettrum’s recall included lots where they detected trace levels of Myclobutanil, a hazardous and illegal pesticide that is banned in a number of states as well. Myclobutanil has been discovered as the culprit in a slew of pesticide-related recalls in Colorado and Washington.

But Mettrum’s updated press release doesn’t include any mention of Myclobutanil. Health Canada also didn’t make any public disclosures addressing the detection of Myclobutanil. The Globe and Mail only found out that the recall included the banned pesticide after asking a Mettrum employee.

teganheadshot
Tegan Adams, business development manager at Eurofins-Experchem

Tegan Adams, business development manager at Eurofins-Experchem Laboratories, Inc., a Toronto-based GMP testing lab, indicated that while the regulations are clear in their statement on zero tolerance for pesticides- reasons for inconsistent testing results are in part related to variations in rigor of testing methods available to monitor for pesticides in cannabis. “Licensed producers do not have to release routine test results to the public,” says Adams. “There is a group of us, inclusive of representatives from licensed producers (LPs), working on proposing a new federal cannabis accreditation standard that would make testing results, grading quality, DNA and a few other things public for each cannabis batch legally released to the public to be accredited. Making information like this public would help remove a lot of consumer scrutiny on LPs, as it currently exists in the marketplace. Most of them care so much about their products and patients, they work very hard to create safe quality products”

According to Adams, routine pesticide testing typically scans for roughly 100 pesticides. She says a more rigorous test could scan for 500-700 different pesticides, a more accurate representation of what’s on the market. Adams says the regulations have zero tolerance for any detection of pesticides, not necessarily an action level for what is a safe amount to be present.

Toronto Photo: Paul Bica, Flickr
Toronto
Photo: Paul Bica, Flickr

More research is needed on the smoking and inhalation aspects of pesticide products to say what is safe and what is not. “There are different methods available to test for pesticides, and SOPs to follow to avoid their application,” says Adams. “But if a licensed producer chose a testing method that doesn’t for some reason cover a pesticide they are later found to have on their product, that could present the need for a recall if Health Canada or another entity were to somehow to detect it using a different method.”

Health Canada determined both of those recalls to be Type III recalls. Both companies said they are cooperating fully with the regulatory body. By embracing the proposed new cannabis testing accreditation standard, Health Canada could remedy the testing methodology discrepancies and require a greater level of transparency.

Biros' Blog

2016 Year in Review: Why the Cannabis Industry Needs Resiliency

By Aaron G. Biros
No Comments

2016 was a tumultuous, but productive year for the cannabis industry. Larger companies began to take interest in the fledgling market, like Microsoft and Scotts Miracle-Gro. This year brought major innovations in technology like market data tools, advances in LED tech, efficient cultivation tech and patient education tools. The Supreme Court set an important precedent by shutting down a challenge to Colorado’s cannabis market.

Voters legalized cannabis in 8 states last month Photo: Nicole Klauss, Flickr
Voters legalized cannabis in 8 states on Election Day.
Photo: Nicole Klauss, Flickr

Election Day brought a renewed sense of vigor to the market with voters in eight states legalizing forms of cannabis. California, Nevada, Maine and Massachusetts passed recreational cannabis measures, making legalization’s momentum seem exponential.

But November 8th also gave Donald Trump the presidency, and his cabinet appointments, namely Sen. Jeff Sessions as Attorney General, gave many a feeling of uncertainty for the future of federal legalization. Adding insult to injury, the DEA repeatedly stood by their antiquated and ludicrous judgment for cannabis to remain a Schedule 1 narcotic.

Gage Skidmore, Flickr
Trump nominated Sen. Jeff Sessions (R) for Attorney General Photo: Gage Skidmore, Flickr

A lot of the fervor surrounding public safety could be described as overdramatic or somewhat unwarranted. 2016 was the year of misinformation. Fake news spread like wildfire with people sharing stories like this or this that turned out to be very misleading or just downright false.

States with legal cannabis came under heavy public scrutiny and addressed problems like consumer education, public safety and lab testing. Pesticides became a highly publicized and persistent issue in a number of areas, with some states regulating it heavily and addressing public health concerns. Plenty of new rules were formed surrounding labeling and testing, with Oregon, Colorado and Washington experiencing some regulatory growing pains.

Those growing pains shed light on the need for regulators to craft rules that allow for changes, adding rules where necessary and getting rid of cumbersome rules that might thwart market growth. Rules need to be able to adapt as the industry grows, much like businesses need to adapt to a changing market climate to stay afloat. This is all the more reason why cannabis businesses need to make their voices heard and work with regulators to move things forward.

Pesticide Use was a major issue of 2016 Photo: Michelle Tribe, Flickr
Pesticide use was a major issue in 2016
Photo: Michelle Tribe, Flickr

With so much uncertainty surrounding the future of legal cannabis in America, the word of the year for 2017 should be resiliency. In a social-ecological context, resiliency is “the capacity of a system to absorb or withstand perturbations and other stressors such that the system remains within the same regime, essentially maintaining its structure and functions. It describes the degree to which the system is capable of self-organization, learning and adaptation.”

img_6245
A warning label for cannabis in Oregon after the October 1st compliance deadline

Self-organization, learning and adaptation are three very important attributes of a resilient system. Without knowing what will happen when Trump’s cabinet takes the reigns of federal agencies, it is important to prepare for the unexpected. Adhering to standards like FOCUS allows cannabis businesses to prepare for unexpected events like recalls or product safety failures.

Those standards could also become the law down the road, as government officials often look to an industry’s voluntary consensus-based standards when deciding how to regulate it. In 2017, a number of state governments will embark on the heavy undertaking of writing the regulatory framework for legal cannabis.

2017 will bring opportunities and challenges to the cannabis industry. The industry’s rapid growth juxtaposed with political, economic and regulatory uncertainties create a climate that requires resilience to be built into the system at all levels. It is critical, now more than ever, that cannabis businesses build strong relationships with industry groups, advocacy groups and regulators to craft the institutional capacity and mutual trust needed to weather the uncertainty ahead.

amandarigdon
The Nerd Perspective

Pesticide Detection in Cannabis: Lab Challenges and Why Less Isn’t Always More

By Amanda Rigdon
2 Comments
amandarigdon

Almost as soon as cannabis became recreationally legal, the public started to ask questions about the safety of products being offered by dispensaries – especially in terms of pesticide contamination. As we can see from the multiple recalls of product there is a big problem with pesticides in cannabis that could pose a danger to consumers. While The Nerd Perspective is grounded firmly in science and fact, the purpose of this column is to share my insights into the cannabis industry based on my years of experience with multiple regulated industries with the goal of helping the cannabis industry mature using lessons learned from other established markets. In this article, we’ll take a look at some unique challenges facing cannabis testing labs, what they’re doing to respond to the challenges, and how that can affect the cannabis industry as a whole.

Photo: Michelle Tribe, Flickr
Photo: Michelle Tribe, Flickr

The Big Challenge

Over the past several years, laboratories have quickly ‘grown up’ in terms of technology and expertise, improving their methods for pesticide detection to improve data quality and lower detection limits, which ultimately ensures a safer product by improving identification of contaminated product. But even though cannabis laboratories are maturing, they’re maturing in an environment far different than labs from regulated industry, like food laboratories. Food safety testing laboratories have been governmentally regulated and funded from almost the very beginning, allowing them some financial breathing room to set up their operation, and ensuring they won’t be penalized for failing samples. In contrast, testing fees for cannabis labs are paid for by growers and producers – many of whom are just starting their own business and short of cash. This creates fierce competition between cannabis laboratories in terms of testing cost and turnaround time. One similarity that the cannabis industry shares with the food industry is consumer and regulatory demand for safe product. This demand requires laboratories to invest in instrumentation and personnel to ensure generation of quality data. In short, the two major demands placed on cannabis laboratories are low cost and scientific excellence. As a chemist with years of experience, scientific excellence isn’t cheap, thus cannabis laboratories are stuck between a rock and a hard place and are feeling the squeeze.

Responding to the Challenge

One way for high-quality laboratories to win business is to tout their investment in technology and the sophistication of their methods; they’re selling their science, a practice I stand behind completely. However, due to the fierce competition between labs, some laboratories have oversold their science by using terms like ‘lethal’ or ‘toxic’ juxtaposed with vague statements regarding the discovery of pesticides in cannabis using the highly technical methods that they offer. This juxtaposition can then be reinforced by overstating the importance of ultra-low detection levels outside of any regulatory context. For example, a claim stating that detecting pesticides at the parts per trillion level (ppt) will better ensure consumer safety than methods run by other labs that only detect pesticides at concentrations at parts per billion (ppb) concentrations is a potentially dangerous claim in that it could cause future problems for the cannabis industry as a whole. In short, while accurately identifying contaminated samples versus clean samples is indeed a good thing, sometimes less isn’t more, bringing us to the second half of the title of this article.

Less isn’t always more…

Spiral Galaxy Milky Way
The Milky Way

In my last article, I illustrated the concept of the trace concentrations laboratories detect, finishing up with putting the concept of ppb into perspective. I wasn’t even going to try to illustrate parts per trillion. Parts per trillion is one thousand times less concentrated than parts per billion. To put ppt into perspective, we can’t work with water like I did in my previous article; we have to channel Neil deGrasse Tyson.

The Milky Way galaxy contains about 100 billion stars, and our sun is one of them. Our lonely sun, in the vastness of our galaxy, where light itself takes 100,000 years to traverse, represents a concentration of 10 ppt. On the surface, detecting galactically-low levels of contaminants sounds wonderful. Pesticides are indeed lethal chemicals, and their byproducts are often lethal or carcinogenic as well. From the consumer perspective, we want everything we put in our bodies free of harmful chemicals. Looking at consumer products from The Nerd Perspective, however, the previous sentence changes quite a bit. To be clear, nobody – nerds included – wants food or medicine that will poison them. But let’s explore the gap between ‘poison’ and ‘reality’, and why that gap matters.

FDAIn reality, according to a study conducted by the FDA in 2011, roughly 37.5% of the food we consume every day – including meat, fish, and grains – is contaminated with pesticides. Is that a good thing? No, of course it isn’t. It’s not ideal to put anything into our bodies that has been contaminated with the byproducts of human habitation. However, the FDA, EPA, and other governmental agencies have worked for decades on toxicological, ecological, and environmental studies devoted to determining what levels of these toxic chemicals actually have the potential to cause harm to humans. Rather than discuss whether or not any level is acceptable, let’s take it on principle that we won’t drop over dead from a lethal dose of pesticides after eating a salad and instead take a look at the levels the FDA deem ‘acceptable’ for food products. In their 2011 study, the FDA states that “Tolerance levels generally range from 0.1 to 50 parts per million (ppm). Residues present at 0.01 ppm and above are usually measurable; however, for individual pesticides, this limit may range from 0.005 to 1 ppm.” Putting those terms into parts per trillion means that most tolerable levels range from 100,000 to 50,000,000 ppt and the lower limit of ‘usually measurable’ is 10,000 ppt. For the food we eat and feed to our children, levels in parts per trillion are not even discussed because they’re not relevant.

green apple with slice isolated on the white background.

A specific example of this is arsenic. Everyone knows arsenic is very toxic. However, trace levels of arsenic naturally occur in the environment, and until 2004, arsenic was widely used to protect pressure-treated wood from termite damage. Because of the use of arsenic on wood and other arsenic containing pesticides, much of our soil and water now contains some arsenic, which ends up in apples and other produce. These apples get turned into juice, which is freely given to toddlers everywhere. Why, then, has there not an infant mortality catastrophe? Because even though the arsenic was there (and still is), it wasn’t present at levels that were harmful. In 2013, the FDA published draft guidance stating that the permissible level of arsenic in apple juice was 10 parts per billion (ppb) – 10,000 parts per trillion. None of us would think twice about offering apple juice to our child, and we don’t have to…because the dose makes the poison.

How Does This Relate to the Cannabis Industry?

The concept of permissible exposure levels (a.k.a. maximum residue limits) is an important concept that’s understood by laboratories, but is not always considered by the public and the regulators tasked with ensuring cannabis consumer safety. As scientists, it is our job not to misrepresent the impact of our methods or the danger of cannabis contaminants. We cannot understate the danger of these toxins, nor should we overstate their danger. In overstating the danger of these toxins, we indirectly pressure regulators to establish ridiculously low limits for contaminants. Lower limits always require the use of newer testing technologies, higher levels of technical expertise, and more complicated methods. All of this translates to increased testing costs – costs that are then passed on to growers, producers, and consumers. I don’t envy the regulators in the cannabis industry. Like the labs in the cannabis industry, they’re also stuck between a rock and a hard place: stuck between consumers demanding a safe product and producers demanding low-cost testing. As scientists, let’s help them out by focusing our discussion on the real consumer safety issues that are present in this market.

*average of domestic food (39.5% contaminated) and imported food (35.5% contaminated)

OHA Addresses Oregon Growing Pains, Changes Testing Rules

By Aaron G. Biros
No Comments

Last week, the Oregon Health Authority (OHA) published a bulletin, outlining new temporary testing requirements effective immediately until May 30th of next year. The changes to the rules come in the wake of product shortages, higher prices and even some claims of cultivators reverting back to the black market to stay afloat.img_6245

According to the bulletin, these temporary regulations are meant to still protect public health and safety, but are “aimed at lowering the testing burden for producers and processors based on concerns and input from the marijuana industry.” The temporary rules, applying to both medical and retail products, are a Band-Aid fix while the OHA works on a permanent solution to the testing backlog.

Here are some key takeaways from the rule changes:

Labeling

  • THC and CBD amounts on the label must be the value calculated by a laboratory, plus or minus 5%.

Batch testing

  • A harvest lot can include more than one strain.
  • Cannabis harvested within a 48-hour period, using the same growing and curing processes can be included in one harvest lot.
  • Edibles processors can include up to 1000 units of product in a batch for testing.
  • The size of a process lot submitted for testing for concentrates, extracts or other non-edible products will be the maximum size for future sampling and testing.

    Oregon Marijuana Universal Symbol for Printing
    Oregon Marijuana Universal Symbol for Printing

Sampling

  • Different batches of the same strain can be combined for testing potency.
  • Samples can be combined from a number of batches in a harvest lot for pesticide testing if the weight of all the batches doesn’t exceed ten pounds. This also means that if that combined sample fails a pesticide test, all of the batches fail the test and need to be disposed.

Solvent testing

  • Butanol, Propanol and Ethanol are no longer on the solvent list.

Potency testing

  • The maximum concentration limit for THC and CBD testing can have up to a 5% variance.

Control Study

  • Process validation is replaced by one control study.
  • After OHA has certified a control study, it is valid for a year unless there is an SOP or ingredient change.
  • During the control study, sample increments are tested separately for homogeneity across batches, but when the control study is certified, sample increments can be combined.

Failing a test

  • Test reports must clearly show if a test fails or passes.
  • Producers can request a reanalysis after a failed test no later than a week after receiving failed test results and that reanalysis must happen within 30 days.
Gov. Kate Brown Photo: Oregon Dept. of Transportation
Gov. Kate Brown
Photo: Oregon Dept. of Transportation

The office of Gov. Kate Brown along with the OHA, Oregon Department of Agriculture (ODA) and Oregon Liquor Control Commission (OLCC) issued a letter in late November, serving as a reminder of the regulations regarding pesticide use and testing. It says in bold that it is illegal to use any pesticide not on the ODA’s cannabis and pesticide guide list. The letter states that failed pesticide tests are referred to ODA for investigation, which means producers that fail those tests could face punitive measures such as fines.

Photo: Michelle Tribe, Flickr
Photo: Michelle Tribe, Flickr

The letter also clarifies a major part of the pesticide rules involving the action level, or the measured amount of pesticides in a product that the OHA deems potentially dangerous. “Despite cannabis producers receiving test results below OHA pesticide action levels for cannabis (set in OHA rule), producers may still be in violation of the Oregon Pesticide Control Act if any levels of illegal pesticides are detected.” This is crucial information for producers who might have phased out use of pesticides in the past or might have began operations in a facility where pesticides were used previously. A laboratory detecting even a trace amount in the parts-per-billion range of banned pesticides, like Myclobutanil, would mean the producer is in violation of the Pesticide Control Act and could face thousands of dollars in fines. The approved pesticides on the list are generally intended for food products, exempt from a tolerance and are considered low risk.

As regulators work to accredit more laboratories and flesh out issues with the industry, Oregon’s cannabis market enters a period of marked uncertainty.

Steep Hill, ACCL Find Pesticides in Over 50% of Cannabis Samples

By Aaron G. Biros
4 Comments

On Election Day, voters in California passed Proposition 64, establishing a recreational cannabis market and regulatory environment. While the state won’t issue the first licenses under the new regulatory scheme until 2018, the medical cannabis industry is already well established.

Steep Hill Labs, Inc., based in Berkeley, California, found in October that 84.3% of samples submitted tested positive for pesticide residue, according to a press release. The announcement came before Election Day, but is particularly eye opening given the massive new market created overnight by Prop 64.rsz_steephill_lab_images_25_of_415_copy

Particularly concerning is their detection of Myclobutanil, which was found in more than 65% of samples submitted to the lab. According to the press release, when Myclobutanil is heated (i.e. smoked or vaporized), it is converted to Hydrogen Cyanide, which is extraordinarily toxic to humans and can be fatal in higher doses.

Reggie Gaudino, Ph.D., vice president of scientific operations and director of genetics at Steep Hill Laboratories. (photo credit: Preston Gannaway)
Reggie Gaudino, Ph.D. (photo credit: Preston Gannaway)

According to Reggie Gaudino, Ph.D., vice president of science, genetics and intellectual property at Steep Hill, their more recent study shows they detected pesticides in roughly 70% of the samples they received and 50% of those contained Myclobutanil. Gaudino says that up to a third of those samples would have failed under Oregon’s regulatory standards.

If a lab test were failed, it would contain pesticides at or higher than the required action level. Oregon’s action level, or the measured amount of pesticides in a product that the OHA deems potentially dangerous, for Myclobutanil is 0.2 parts-per-million (PPM). Steep Hill’s instrumentation has a method detection limit down to the parts-per-trillion (PPT) level, which is a more precise and smaller amount than Oregon’s action level.

“Those in the cannabis community who feel that all cannabis is safe are not correct given this data – smoking a joint of pesticide-contaminated cannabis could potentially expose the body to lethal chemicals,” says Jmichaele Keller, president and chief executive officer of Steep Hill. “As a community, we need to address this issue immediately and not wait until 2018.”

Potentially harmful pesticides, and specifically Myclobutanil, have been detected in Colorado and Washington’s recreational markets on a number of occasions, proving this is a widespread issue. Steep Hill’s release suggests that California regulators take a look at Oregon’s pesticide regulations for guidance when developing the regulatory framework.

What’s even more troubling is that not all laboratories have or had the capability of detecting pesticides at sufficiently low levels and because of this, other labs had significantly lower rates of pesticide detection, suggesting possible inconsistencies in testing methods, instrumentation, sample preparation or other variations. During a 30-day period in late September and early October, Steep Hill found, using publicly available data, or data from contracted testing, that other labs were only reporting between 3% and 21% pesticide detection.

Examination of cannabis prior to testing- credit Steep Hill Labs, Inc.
Examination of cannabis prior to testing- credit Steep Hill Labs, Inc.

It is important to note that those samples were not identical and there could be a great degree in variation on the quality of samples sent to different laboratories, so it is not an entirely accurate comparison. Steep Hill does however detect pesticides down to the parts-per-trillion level, whereas many common methods for detecting pesticides look at the parts-per-billion level.

Reggie Gaudino says the Association of Commercial Cannabis Laboratories (ACCL) is using this data to work with Steep Hill and a number of other labs to address these issues. “As a member of the ACCL, and after discussion with ACCL, we have agreed that all future discussion of this issue should not include laboratory names, as this is about educating the industry in general, and making sure all members of the ACCL are developing the best possible methods for detecting pesticides,” says Gaudino. “The ACCL has responded to this data, by inquiring on a larger, industry-wide basis, which represents a better picture of the issue, rather than only in California’s still-technically unregulated market.” The important message is this is a major issue that needs addressing urgently. “As such, the troubling issue remains, across the larger ACCL membership, there is still detection of pesticides in at least 50% of the cannabis being tested.”

ACCL logoAccording to Jeffrey Raber, Ph.D., president of the ACCL, the industry is experiencing a pesticide problem, but it is very difficult to quantify. “It is fair to say that around 50% of the cannabis being tested contains pesticides, but we really don’t know that exact number until a much more comprehensive statistical analysis is performed,” says Raber. “We agree this is a big problem and that it needs to be addressed, but we are not sure just how big of a problem it really is.” With so much variation in labs in a state where not everyone is required to test products, it is very difficult to pin down how consistent lab results are and how contaminated the cannabis really is. “If all of the labs had the same methodology, samples and shared statistical analyses for a real study then we can look at it closely but it seems we are a ways off from that. I can say confidently however that this is a pretty significant problem that needs addressing.”

Still, Steep Hill detecting pesticides in a majority of their samples and some labs finding as little as 3% should raise some eyebrows. “Unfortunately, our recent study discovered that 84.3% of the samples assessed by our triple quadrupole mass spectrometer contained pesticides,” says Keller. “As of today, this tainted product could be sold in most dispensaries throughout the state of California without any way of informing the patients about the risks of pesticide exposure.”

These findings could mean potentially enormous health risks for medical and recreational cannabis consumers alike, unless regulators, labs and growers take quick action to address the problem.

The Practical Chemist

Appropriate Instrumentation for the Chemical Analysis of Cannabis and Derivative Products: Part 1

By Rebecca Stevens
1 Comment

Election Day 2016 resulted in historic gains for state level cannabis prohibition reform. Voters in California, Maine, Massachusetts and Nevada chose to legalize adult use of Cannabis sp. and its extracts while even traditionally conservative states like Arkansas, Florida, Montana and North Dakota enacted policy allowing for medical use. More than half of the United States now allows for some form of legal cannabis use, highlighting the rapidly growing need for high quality analytical testing.

For the uninitiated, analytical instrumentation can be a confusing mix of abbreviations and hyphenation that provides little obvious information about an instrument’s capability, advantages and disadvantages. In this series of articles, my colleagues and I at Restek will break down and explain in practical terms what instruments are appropriate for a particular analysis and what to consider when choosing an instrumental technique.

Potency Analysis

Potency analysis refers to the quantitation of the major cannabinoids present in Cannabis sp. These compounds are known to provide the physiological effects of cannabis and their levels can vary dramatically based on cultivation practices, product storage conditions and extraction practices.

The primary technique is high performance liquid chromatography (HPLC) coupled to ultraviolet absorbance (UV) detection. Gas chromatography (GC) coupled to a flame ionization detector (FID) or mass spectrometry (MS) can provide potency information but suffers from issues that preclude its use for comprehensive analysis.

Pesticide Residue Analysis

Pesticide residue analysis is, by a wide margin, the most technically challenging testing that we will discuss here. Trace levels of pesticides incurred during cultivation can be transferred to the consumer both on dried plant material and in extracts prepared from the contaminated material. These compounds can be acutely toxic and are generally regulated at part per billion parts-per-billion levels (PPB).

Depending on the desired target pesticides and detection limits, HPLC and/or GC coupled with tandem mass spectrometry (MS/MS) or high resolution accurate mass spectrometry (HRAM) is strongly recommended. Tandem and HRAM mass spectrometry instrumentation is expensive, but in this case it is crucial and will save untold frustration during method development.

Residual Solvents Analysis

When extracts are produced from plant material using organic solvents such as butane, alcohols or supercritical carbon dioxide there is a potential for the solvent and any other contaminants present in it to become trapped in the extract. The goal of residual solvent analysis is to detect and quantify solvents that may remain in the finished extract.

Residual solvent analysis is best accomplished using GC coupled to a headspace sample introduction system (HS-GC) along with FID or MS detection. Solid phase microextraction (SPME) of the sample headspace with direct introduction to the GC is another option.

Terpene Profile Analysis

While terpene profiles are not a safety issue, they provide much of the smell and taste experience of cannabis and are postulated to synergize with the physiologically active components. Breeders of Cannabis sp. are often interested in producing strains with specific terpene profiles through selective breeding techniques.

Both GC and HPLC can be employed successfully for terpenes analysis. Mass spectrometry is suitable for detection as well as GC-FID and HPLC-UV.

Heavy Metals Analysis

Metals such as arsenic, lead, cadmium, chromium and mercury can be present in cannabis plant material due to uptake from the soil, fertilizers or hydroponic media by a growing plant. Rapidly growing plants like Cannabis sp. are particularly efficient at extracting and accumulating metals from their environment.

Several different types of instrumentation can be used for metals analysis, but the dominant technology is inductively coupled plasma mass spectrometry (ICP-MS). Other approaches can also be used including ICP coupled with optical emission spectroscopy (ICP-OES).

Rebecca is an Applications Scientist at Restek Corporation and is eager to field any questions or comments on cannabis analysis, she can be reached by e-mail, rebecca.stevens@restek.com or by phone at 814-353-1300 (ext. 2154)

An inductively coupled plasma torch used in MS reaches local temperatures rivaling the surface of the sun. Image by W. Blanchard, Wikimedia
An inductively coupled plasma torch used in Optical Emission Spectroscopy (OES) reaches local temperatures rivaling the surface of the sun. Image by W. Blanchard, Wikimedia

Second Oregon Health Alert for Tainted Cannabis with Pesticides.

By Aaron G. Biros
No Comments

 

Three health alerts were issued Thursday, November 4th for contaminated cannabis sold to consumers at North Bend, Salem and Eugene dispensaries. Green-Way Medicinal in Salem and Stonies in North Bend sold two strains of cannabis flower found to have high levels of piperonyl butoxide, an ingredient commonly found in pesticides that acts as a synergist to amplify the effects of certain compounds.

The two batches in question, including the strains Pleeze (batch number G6J0039-02) and Dryzl (batch number G6J0039-01), were found to contain the potentially dangerous chemical at levels of 15.39 ppm and 16.24 ppm, respectively. The Oregon Health Authority (OHA) action level for piperonyl butoxide is 2.0 ppm. To see the full health alert, click here.

The dispensary in Eugene, Flowr of Lyfe, sold one strain of cannabis that had levels of the insecticide spinosad over the 0.2-ppm action level. The very popular indica hybrid, Dutch Treat (batch number G6J0018-01), was found to contain 0.9-ppm of spinosad. Though it still tested above the 0.2-ppm action level for that insecticide, it pales in comparison to October’s health alert, where a batch of cannabis had over 200 times the acceptable level of that insecticide. Both spinosad and piperonyl butoxide are considered toxic to humans.oha_logo_lrg

According to the health alert, “All tests were performed by an OHA-accredited and Oregon Liquor Control Commission-licensed laboratory.” It is unclear exactly how or why the cannabis was able to get transported and transferred from the grower to the dispensary and then sold to consumers after failing the pesticide test. According to Jonathan Modie, spokesman for the OHA, they are currently investigating the matter and following up with the dispensaries and growers to find out what happened. “We need to find out how this got transferred in the first place and then sold,” says Modie. “They had access to the test results and should have been able to determine for themselves that these products should not have been sold or transferred.”

“We don’t know, we are still gathering information, there is a risk of civil penalty as well as losing your registration for a dispensary or grower that illegally transferred products that have tested for analytes above the action levels,” says Modie, when asked if punitive measures would be taken. While there are no particular regulations for this scenario in performing a mandatory recall, the OHA is obligated under law to issue health alerts when there is a situation that might affect public health, according to Modie.

“We deal with this with infectious disease outbreaks or during a food borne illness outbreak; if they [the public] can avoid it by hearing from us then we want to get the word out and this is a very similar situation.” For medical patients that purchase potentially contaminated cannabis such as this, it is easy to contact them to have the patient dispose or return the cannabis. Dispensaries are not required to collect information from recreational customers, and most dispensaries do not, which is a major problem when this situation happens, as it has twice in the past two weeks.

“We can never do too much communication,” says Modie. “We will let the public know in any way possible that they should return this product or dispose of it responsibly.”

Oregon Issues Health Alert for Contaminated Cannabis

By Aaron G. Biros
No Comments

According to Jonathan Modie, spokesman for the Oregon Health Authority (OHA), on Friday, October 21st, the OHA issued a ‘health alert’ regarding cannabis products sold from a McMinnville dispensary that were possibly tainted with extremely high levels of Spinosad, an insecticide commonly used to combat mites and other pests. “My understanding is that two medical patients purchased the cannabis products whom we had contact info for, but most of the purchasers were recreational customers,” says Modie. “Because it is not required to get contact info for recreational customers, we issued the health alert to get the word out as quickly as possible because we didn’t know who bought the product.” The OHA is urging consumers who purchased cannabis from New Leaf CannaCenter in McMinnville to check the labels and see if they purchased potentially dangerous cannabis, and to either return the cannabis to the dispensary or dispose of it appropriately.

oha_logo_lrgThe action level, the measured amount of pesticides in a product that the OHA deems potentially dangerous, for Spinosad is 0.2 parts-per-million (PPM). The two batches in question are the strains Dr. Jack (batch number G6J0051-02) and Marion Berry (batch number G6J0051-01), which were tested to contain approximately 42 PPM and 22 PPM respectively, much higher than the OHA’s action level.

While this is the first health alert issued in Oregon in connection with potentially contaminated cannabis, Modie says he expects there will be more health alerts in the future. “Unfortunately the product was inappropriately transferred from the grower to the dispensary and from the dispensary to customers, so we are working to get the word out to dispensaries, growers and processors about the testing rules to prevent this from happening in the future,” says Modie. “We want to make it clear that any grower, processor or dispensary that does not follow the testing requirements or fail to label, store or retain batches that fail a test will be subject to enforcement actions such as fines, penalties, suspension or revocation of their license.” The OHA has a list of pesticide analytes and their action levels on their website.

“We are advising recreational and medical users alike to read the product labels closely; the labels must have the license or registrant number, the packaging or distributor license number, the name of the strain and the universal symbol,” says Modie. “We are also suggesting consumers request a copy of pesticide test results from the dispensary.” It is unclear at this time if all of the cannabis products in question have been properly disposed of, but OHA was informed that New Leaf has pulled all products in question off of the shelf.

Oregon October 1st Compliance Deadline: What You Need to Know

By Aaron G. Biros
2 Comments

Oregon cannabis regulators began enforcing new rules over the weekend when the October 1st compliance deadline passed. Compared to the relatively cut-and-dried new Colorado regulations, the Oregon cannabis market faces more complex and changing regulatory compliance issues.

The new rules in Oregon address changes to testing, packaging and labeling regulations along with concentration and serving size limits, according to a bulletin published by the Oregon Health Authority (OHA) and the Oregon Medical Marijuana Program (OMMP) earlier this week. Most of the new rules are meant to add safeguards for public health and consumer safety, while putting an emphasis on keeping cannabis away from children.oha_logo_lrg

Around the same time, the Oregon Liquor Control Commission (OLCC) published a bulletin with a new temporary rule that is meant to prevent marketing to children. The OLCC’s temporary rule clarifies “restrictions on product wording commonly associated with products marketed by or to children.” The OLCC reviewed around 500 strain names and found roughly 20 of them that could appeal to children. The OLCC will not approve labels that include strain names like Girl Scout Cookies, Candyland and Charlotte’s Web, among others. This means that breeders and growers have to change strain names on labels like Death Star, Skywalker and Jedi Kush because they contain a reference to the Star Wars franchise, which is marketed to children.

Oregon Marijuana Universal Symbol for Printing
Oregon Marijuana Universal Symbol for Printing

The new testing regulations establish requirements for testing cannabis products for THC and CBD concentrations, water activity, moisture content, pesticides and solvents in concentrates. They also stipulate that ORELAP-accredited laboratories must perform the testing. In the time leading up to the compliance deadline, many lacked confidence that ORELAP would accredit enough laboratories to meet the demand for testing. “We have heard from existing accredited labs that they can meet demand for cannabis product testing,” says Jonathan Modie, spokesman for the OHA. “We don’t yet know how much product requires testing, so we can’t speculate on whether labs will indeed be able to meet demand.” It is still unclear at this time if there are enough laboratories to perform all of the testing for cannabis products in the state.

img_6245
The universal symbol on a label of a cannabis product purchased after Oct. 1

At this time, 16 laboratories have been accredited for some form of testing, but only four labs have been accredited for pesticide testing. A list of the labs that ORELAP has accredited can be found here. Notably, only one lab is accredited for testing microbiological contaminants, such as E. coli. Testing for microbiological contaminants is not required for all cannabis products sold, rather it is only required upon written request by the OHA or OLCC.

The new labeling and packaging requirements concern testing, consumer education, childproofing and preventing marketing to minors. All cannabis products must contain a label that has been pre-approved by the OLCC. “Cannabis products have to be clearly labeled, showing that is has been tested, or if it has not been tested then it must display ‘does not meet new testing requirements’,” says Modie. “It [the label] must be clear, legible and readable, so they [the consumer] know exactly what it contains, including what cannabis product is inside the package, how much of it, how much THC, and where the product came from.”

According to Modie, it is particularly important that the packaging is not attractive to minors. Cartoons, designs and names that resemble non-cannabis products intended for, or marketed to children, should not be on the packaging or label. “Part of our education to the public and recreational cannabis users focuses on keeping these products out of reach of children in the first place, like storing cannabis in a locked area or an area where a child cannot reach or see,” says Modie. “Our goal is always to protect public health.”