Tag Archives: plant

Soapbox

Break Up Vertical Integration

By Ryan Douglas
No Comments

Editor’s Note: This is an excerpt from chapter ten of From Seed to Success: How to Launch a Great Cannabis Cultivation Business in Record Time by Ryan Douglas. Douglas is founder of Ryan Douglas Cultivation, a cannabis cultivation consulting firm. He was Master Grower from 2013-2016 for Tweed, Inc., Canada’s largest licensed producer of medical cannabis and the flagship subsidiary of Canopy Growth Corporation.


Cultivation businesses should consider specializing in just one stage of the cannabis cultivation process. The industry has focused heavily on vertical integration, and some regulating bodies require licensees to control the entire cannabis value chain from cultivation and processing to retail. This requirement is not always in the best interest of the consumer or the business, and will likely change as the industry evolves. Not only will companies specialize in each step of the value chain, but we’ll see even further segmentation among growers that choose to focus on just one step of the cultivation process. Cannabis businesses that want to position themselves for future success should identify their strengths in the crop production process and consider specializing in just one part.

Ryan Douglas, former Master Grower for Tweed and author of From Seed to Success: How to Launch a Great Cannabis Cultivation Business in Record Time

Elsewhere in commercial horticulture, specialization is the norm. It is unlikely that the begonias you bought at your local garden shop spent their entire life inside that greenhouse. More likely, the plant spent time hopping between specialists in the production chain before landing on the retail shelf. One grower typically handles stock plant production and serves as a rooting station for vegetative cuttings. From there, rooted cuttings are shipped to a grower that cares for the plants during the vegetative stage. Once they’re an appropriate height for flowering, they’re shipped to the last grower to flower out and sell to retailers.

Cannabis businesses should consider imitating this model as a way to ensure competitiveness in the future. In the US, federal law does not yet allow for the interstate transport of plants containing THC, but the process can be segmented within states where vertical integration is not a requirement. As we look ahead to full federal legalization in the US, we should anticipate companies abandoning the vertical integration model in favor of specialization. In countries where cannabis cultivation is federally legal, entrepreneurs should consider specialization from the moment they begin planning their business.

Cultivators that specialize in breeding and genetics could sell seeds, rooted cuttings, and tissue culture services to commercial growers. Royalties could provide a recurring source of income after the initial sale of seeds or young plants. Contracting propagation activities to a specialist can result in consistently clean rooted cuttings that arrive certified disease-free at roughly ¼ the cost of producing them in-house. This not only frees up space at the recipient’s greenhouse and saves them money, but it eliminates the risks inherent in traditional mother plant and cloning processes. If a mother plant becomes infected, all future generations will exhibit that disease, and the time, money, energy, labor, and space required to maintain healthy stock plants is substantial. Growers that focus on large scale cultivation would do well to outsource this critical step.

From Seed to Success: How to Launch a Great Cannabis Cultivation Business in Record Time

Intermediary growers could specialize in growing out seeds and rooted cuttings into mature plants that are ready to flower. These growers would develop this starter material into healthy plants with a strong, vigorous root system. They would also treat the plants with beneficial insects and inoculate the crop with various biological agents to decrease the plant’s susceptibility to pest and disease infestations. Plants would stay with this grower until they are about six to 18 inches in height—the appropriate size to initiate flowering.

The final stage in the process would be the flower grower. Monetarily, this is the most valuable stage in the cultivation process, but it’s also the most expensive. This facility would have the proper lighting, plant support infrastructure, and environmental controls to ensure that critical grow parameters can be tightly maintained throughout the flowering cycle. The grower would be an expert in managing late-stage insect and disease outbreaks, and they would be cautious not to apply anything to the flower that would later show up on a certificate of analysis (COA), rendering the crop unsaleable. This last stage would also handle all harvest and post-harvest activities—since shipping a finished crop to another location is inefficient and could potentially damage the plants.

As the cannabis cultivation industry normalizes, so, too, will the process by which the product is produced. Entrepreneurs keen on carving out a future in the industry should focus on one stage of the cultivation process, and excel at it.

UT-Arlington and UT-El Paso to Evaluate Phytochrome Manipulation in Hemp

By Cannabis Industry Journal Staff
No Comments

The Collaborative Laboratories for Environmental Analysis and Remediation (CLEAR) at the University of Texas at Arlington (UT-Arlington) and the University of Texas at El Paso (UT-El Paso) has begun collaborating with Curtis Mathes Grow Lights (CMGL), a subsidiary of the Curtis Mathes Corporation, and the hemp genetics company ZED Therapeutics. The research will involve characterizing the phytochemical effects of phytochrome manipulation using various LED horticultural lights of differing light spectrum, and novel high-yielding varietals of hemp. All of the hemp plants will be grown by renowned geneticists Adam Jacques, Christian West, and Oriah Love of ZED Therapeutics under the CMGL Harvester LED lights at their Oregon facility. Drs. Kevin Schug and Zacariah Hildenbrand will oversee the analysis of the corresponding samples for the expression of terpenes, flavonoids, and other classes of therapeutic compounds. The expression of 15 primary cannabinoid species will be performed concurrently by Matthew Spurlock of ZED Therapeutics.

“Since its inception, CLEAR has focused almost exclusively on improving environmental stewardship in the energy sector. It is nice to now diversify into the horticultural industry to better understand how chemically-diverse plants like hemp respond to different environmental-friendly LED lights,” says Professor Kevin Schug, Shimadzu Distinguished Professor of Analytical Chemistry and co-founder and the Director of CLEAR.

Hemp has recently garnered significant attention in the mainstream media as a result of the medicinal benefits of its primary natural constituent, CBD. The collaboration amongst UT-Arlington, UT-El Paso, CMGL and ZED Therapeutics is designed to better understand how the variable of light can influence the expression of other medicinal elements.

“We are incredibly excited about our growing collaborations with UT-Arlington, UT-El Paso, and ZED Therapeutics,” says CMGL’s COO, Robert Manes, “This particular research exploring phytochrome manipulation in hemp may unlock new lighting protocols whereby the modulation of different wavelengths is associated with the expression of different phytochemical profiles.”

This research also has the potential to discover novel molecules that may be present in the ZED Therapeutic hemp varietals using high-resolution exploratory instruments that are unique to the laboratories of CLEAR, such as Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS).

“We are always searching for new ways to expand our genetic catalogue and it will be interesting to see what sort of effects light modulation have on cannabinoid, terpene, and flavonoid expression,” says Adam Jacques of ZED Therapeutics, “Phytochrome manipulation, and any resulting epigenetic effects, is a poorly understood principle of horticulture and we see a significant opportunity with this research to unearth new knowledge.”

“Hemp is a unique plant both in its light spectrum adaptation and the wide range of phytochemicals it can potentially produce,” says Christian West of ZED Therapeutics, “I’ve been waiting my whole career to be a part of this research and having the lighting knowledge of CMGL combined with the analytical power of UT-Arlington and UT-El Paso is priceless in expanding our understanding of the plant.”

FDAlogo

CBD Industry Caught Between Regulators & Law Enforcement

By Gregory S. Kaufman
No Comments
FDAlogo

The consumer-facing CBD industry operates in a regulatory gray zone even as it grows in prominence. Illegal to market as an unapproved drug, dietary supplement or food additive under the Food, Drug & Cosmetic Act, nevertheless, the CBD industry has flourished with ingestible products widely available. With the increased consumer interest in CBD, headwinds in the form of mislabeled or contaminated products and unsubstantiated therapeutic claims, combined with regulatory uncertainty, continue to be a drag on legitimate market participants and consumer perception of CBD products. The regulation of hemp-derived CBD falls under the purview of the Food and Drug Administration (FDA) and its charge to protect the public health. Despite having jurisdiction to regulate CBD products, the FDA has done little to bring regulatory certainty to the CBD marketplace. However, the FDA, with the assistance of the National Institute of Standards and Technology (NIST), recently took important steps that can be described as “getting their ducks in a row” for the eventual regulation of hemp-derived CBD in consumer products. Always looming is the threat of criminal enforcement of the Controlled Substances Act (CSA) by the Department of Justice’s Drug Enforcement Administration (DEA) for plants and products not meeting the definition of hemp.

Prior to July 2020, the FDA’s regulation of the CBD industry was limited to a public hearing, data collection, an update report to Congress on evaluating the use of CBD in consumer products, and issuing warning letters to those marketing products for treatment of serious diseases and conditions. The FDA recognizes that regulatory uncertainty does not benefit the Agency, the industry or consumers and, therefore, is evaluating a potential lawful pathway for the marketing of CBD products. In furtherance of this effort, the FDA took several recent actions, including:

  • Producing a CBD Testing Report to Congress1
  • Providing draft guidance on Quality Considerations for Clinical Research2
  • Sending a CBD Enforcement Policy to the Office of Management and Budget for pre-release review and guidance3

FDAlogoNot to be overlooked, the NIST announced a program to help testing laboratories accurately measure compounds, including delta-9 tetrahydrocannabinol (THC) and CBD, in marijuana, hemp and cannabis products, the goal being to increase accuracy in product labeling and to assist labs in identifying THC concentrations in order to differentiate between legal hemp and federally illegal marijuana. These actions appear to be important and necessary steps towards a still be to determined federal regulatory framework for CBD products. Unfortunately, a seemingly innocent interim final rule issued by the DEA on August 21, 2020 (Interim Final Rule), may prove to be devastating to hemp processors and the CBD industry as a whole.4 While the DEA describes its actions as merely conforming DEA regulations with changes to the CSA resulting from the 2018 Farm Bill, those actions may make it exceedingly difficult for hemp to be processed for cannabinoid extraction without violating the CSA in the process.

  1. FDA Report to Congress “Sampling Study of the Current Cannabidiol Marketplace to Determine the Extent That Products are Mislabeled or Adulterated

On July 8, 2020, the FDA produced a report to the House and Senate Committees on Appropriations detailing the results of a sampling study to determine the extent to which CBD products in the marketplace are mislabeled or adulterated. The study confirmed what the FDA, Congress and the marketplace already knew – that in this regulatory vacuum, there are legitimate concerns about the characteristics of consumer CBD products. These concerns include whether products contain the CBD content as described in the label, whether products contain other cannabinoids (including THC) and whether products were contaminated with heavy metals or pesticides. With these concerns in mind, the FDA tested 147 CBD and hemp products purchased online for the presence of eleven cannabinoids, including determinations of total CBD and total THC, and certain heavy metals. The key tests results included the following:

  • 94% contained CBD
  • 2 products that listed CBD on the label did not contain CBD
  • 18% contained less than 80% of the amount of CBD indicated
  • 45% contained within 20% of the amount listed
  • 37% contained more than 20% of the amount of CBD indicated
  • 49% contained THC or THCA at levels above the lowest concentration that can be detected
  • Heavy metals were virtually nonexistent in the samples
The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

Due to the limited sample size, the FDA indicated its intention to conduct a long-term study of randomly selected products across brands, product categories and distribution channels with an emphasis on more commercially popular products. In furtherance of this effort, on August 13, 2020, the FDA published a notice soliciting submissions for a contract to help study CBD by “collecting samples and assessing the quantities of CBD and related cannabinoids, as well as potential associated contaminants such as toxic elements, pesticides, industrial chemicals, processing solvents and microbial contaminants, in foods and cosmetics through surveys of these commodities.”5

Even though this report was not voluntarily produced by the FDA, rather it was required by Congress’ Consolidated Appropriations Act of 2020, it importantly solidified a basis for the need for regulation. With less than half of the products tested falling within the 20% labeling margin of error, this suggests rampant and intentionally inaccurate labeling and/or significant variability in the laboratory testing for cannabinoids.

  1. NIST Program to Help Laboratories Accurately Measure Compounds in Hemp, Marijuana and Cannabis Products

 Proper labeling of cannabinoid content requires reliable and accurate measurement of the compounds found in hemp, marijuana and cannabis products. As part of NIST’s Cannabis Quality Assurance Program, NIST intends to help labs produce consistent measurement results for product testing and to allow forensic labs to distinguish between hemp and marijuana.6 As succinctly stated by a NIST research chemist, “When you walk into a store or dispensary and see a label that says 10% CBD, you want to know that you can trust that number.” Recognizing the lack of standards due to cannabis being a Schedule I drug for decades, NIST intends to produce standardized methods and reference materials the help labs achieve high-quality measurements.

NIST’s efforts to provide labs with the tools needed to accurately measure cannabis compounds will serve as an important building block for future regulation of CBD by the FDA. Achieving nationwide consistency in measurements will make future FDA regulations addressing CBD content in products achievable and meaningful.

  1. FDA Industry Guidance on Quality Considerations for Clinical Research on Cannabis and Cannabis-Derived Compounds

On July 21, the FDA released draft guidance to the industry addressing quality considerations for clinical research of cannabis and cannabis-derived compounds related to the development of drugs. These recommendations are limited to the development of human drugs and do not apply to other FDA-regulated products, including food additives and dietary supplements. However, by indicating that cannabis with .3% or less of THC can be used for clinical research and discussing testing methodologies for cannabis botanical raw material, intermediaries and finished drug products, the FDA is potentially signaling to the consumer-facing CBD industry how the industry should be calculating percentage THC throughout the product formulation process.

While testing of botanical raw material is guided by the USDA Interim Final Rule on Hemp Production,7 the FDA warns that manufacturing processes may generate intermediaries or accumulated by-products that exceed the .3% THC threshold and may be considered by the DEA to be Schedule I controlled substances. This could be the case even if the raw material and finished product do not exceed .3% THC. The FDA’s guidance may eventually become the standard applied to regulated CBD products in a form other than as a drug. However, through its guidance, the FDA is warning the CBD industry that the DEA may also have a significant and potentially destructive role to play in the manufacturing process for CBD products.

  1. FDA Submits CBD Enforcement Policy Guidance to the White House

On July 22, 2020, the FDA submitted to the White House Office of Management and Budget a “Cannabidiol Enforcement Policy – Draft Guidance for Industry” for its review. The contents of the document are not known outside of the Executive Branch and there is no guarantee as to when, or even if, it will be released. Nevertheless, given the FDA’s interest in a legal pathway forward for CBD products, the submission is looked upon as a positive step forward. With this guidance, it is important to remember that the FDA’s primary concern is the safety of the consuming public and it continues to collect data on the effects of ingestible CBD on the human body.

It is doubtful that this guidance will place CBD products in the dietary supplement category given the legal constraints on the FDA and the lack of safety data available to the FDA. The guidance likely does not draw distinctions among products using CBD isolate (as found in Epidiolex), full or broad spectrum hemp extract, despite the FDA’s expressed interest in the differences between these compositions.8 Instead, the FDA is more likely to establish guardrails for CBD ingestible products without authorizing their marketing. These could include encouragement of Good Manufacturing Practices, accuracy in labeling, elimination of heavy metal and pesticide contamination, and more vigorous enforcement against marketing involving the making of disease claims. The FDA is not expected to prescribe dosage standards, but may suggest a maximum daily intake of CBD for individuals along the lines of the U.K.’s Food Standards Agency guideline of a maximum of 70 mg of CBD per day.9

Identifying concerns in the current marketplace; promoting accuracy in testing; highlighting the line between FDA regulation and DEA enforcement; and proposing guidance to the industry all appear to be signs of substantial progress on forging a regulatory path for ingestible CBD products.

  1. The DEA’s Interim Final Rule Addressing Derivatives and Extracts Could Have a Devastating Impact on the Cannabinoid Industry

The seemingly benign Interim Final Rule published by the DEA in August with the stated intent of aligning DEA regulations with the changes to the CSA caused by the 2018 Farm Bill’s definition of hemp could cut the legs out from under the hemp-derived CBD industry.10 Claiming it has “no discretion with respect to these amendments,” the DEA rule states that “a cannabis derivative, extract, or product that exceeds the 0.3% delta-9 THC limit is a schedule I controlled substance, even if the plant from which it was derived contained 0.3% or less delta-9 THC on a dry weight basis.”11 Under this interpretation of the 2018 Farm Bill language and the CSA, it is unclear whether processors of hemp for cannabinoid extraction would be in possession of a controlled substance if, at any time, a derivative or extract contains more than 0.3% delta-9 THC even though the derivative or extract may be in that state temporarily and/or eventually falls below the 0.3% threshold when included in the final product. It would not be unusual for extracts created in the extraction process to exceed 0.3% delta-9 THC in the course of processing cannabinoids from hemp.

The implications of the rule may have a chilling effect on those involved in, or providing services to, hemp processors. It is known, as revealed by the Secretary of the USDA to Congress, that the DEA does not look favorably on the legalization of hemp and development of the hemp industry. The DEA’s position is that the rule merely incorporates amendments to the CSA caused by the 2018 Farm Bill’s definition of hemp into DEA’s regulations. In doing so, the DEA made explicit its interpretation of the Farm Bill’s hemp provisions that it presumably has held since the language became operative. What is not known is whether this changes the DEA’s appetite for enforcing the law under its stated interpretation, which to date it has refrained from doing. Nevertheless, the industry is likely to respond in two ways. First, by submitting comments to the Interim Final Rule, which will be accepted for a 60-day period, beginning on August 21, 2020. Anyone concerned about the implications of this rule should submit comments by the deadline. Second, by the filing of a legal challenge to the rulemaking on grounds that the rule does not correctly reflect Congressional intent in legalizing hemp and, consequently, the rulemaking process violated the Administrative Procedure Act. If both fail to mitigate harm caused to the CBD industry, the industry will have to look to Congress for relief. In the meantime, if the hemp processing industry is disrupted by this rule, cannabis processors holding licenses in legal states may be looked upon to meet the supply needs of the CBD product manufacturers.

The Interim Final Rule also addresses synthetically derived tetrahydrocannabinols, finding them to be Schedule I controlled substances regardless of the delta-9 THC content. This part of the rule could impact the growing market for products containing delta-8 THC. While naturally occurring in hemp in small quantities, delta-8 THC is typically produced by chemically converting CBD, thereby likely making the resulting delta-8 THC to be considered synthetically derived.

The hemp-derived cannabinoid industry continues to suffer from a “one step forward, two steps back” syndrome. The USDA’s highly anticipated Interim Final Rule on hemp production (released Oct. 31, 2019) immediately caused consternation in the CBD industry, and continues to, due to certain restrictive provisions in the rule. Disapproval in the rule is evident by the number of states deciding to operate under their pilot programs for the 2020 growing season, rather than under the conditions of the Interim Final Rule.12 With signs of real progress by the FDA on regulating the CBD products industry, yet another interim final rule could undercut the all-important processing portion of the cannabinoid supply chain by injecting the threat of criminality where there is no intent by processors to violate the law. It is not a stretch to suggest that both the USDA and FDA are being significantly influenced by the DEA. The DEA’s Interim Final Rule is just another troubling example of the legal-illegal dichotomy of cannabis that continues to plague the CBD industry.


References

  1.  U.S. Food & Drug Admin., Report to the U.S. House Committee on Appropriations and the U.S. Senate Committee on Appropriations, Sampling Study of the Current Cannabidiol Marketplace to Determine the Extent That Products are Mislabeled or Adulterated (July 2020).
  2. U.S. Food & Drug Admin., Cannabis and Cannabis-Derived Compounds Quality Considerations for Clinical Research: Guidance for Industry(July 2020).
  3. U.S. Food & Drug Admin., Cannabidiol Enforcement Policy: Draft Guidance for Industry (July 2020).
  4. Implementation of the Agriculture Improvement Act of 2018, 85 FR 51639 (Aug. 21, 2020) (to be codified at 21 C.F.R. §§ 1308, 1312).
  5. U.S. Food & Drug Admin., Collection and Analysis of Products Containing CBD and Cannabinoids, Notice ID RFQ_75F40120R00020 (Aug. 13, 2020).
  6. Nat’l Inst. of Standards and Tech., NIST to Help Labs Achieve Accurate THC, CBD Measurements (July 21, 2020).
  7. Agricultural Improvement Act of 2018, Pub. L. 115-334, title X, 10113 (codified at 7 U.S.C. §§ 1639o-1639s).
  8. U.S. Food & Drug Admin., Report to the U.S. House Committee on Appropriations and the U.S. Senate Committee on Appropriations, Cannabidiol (CBD), p. 14 (March 2020).
  9. U.K. Food Standards Agency, Food Standards Agency Sets Deadline for the CBD Industry and Provides Safety Advice to Consumers (Feb. 2020) at https://www.food.gov.uk/news-alerts/news/food-standards-agency-sets-deadline-for-the-cbd-industry-and-provides-safety-advice-to-consumers.
  10. See supra n. 4.
  11. Id.
  12. U.S. Dept. of Agriculture, Status of State and Tribal Hemp Production Plans for USDA Approval (as of Aug. 26, 2020).

The Top 4 Things Cultivation Directors Should Discuss With Their Operations Manager Right Now

By Lucas Targos
No Comments

Communication is key for efficient interaction between cultivation and business functions at any cannabis operator. So, what are the top four things cultivation directors should be discussing with their operations manager right now, as we face an uncertain Summer 2020 and unique COVID-related challenges (product demand uncertainty, reduced workforce, and immediate response to problems and issues):

  • Labor requirements
    • Operators should be discussing “Who, and what, do I need to operate this facility and how do I make operations more streamlined without diminishing quality, consistency, and yield?”
    • Efficient operations should focus on labor workflow and circulation and document a clear understanding of how employees will move through the spaces while doing their jobs.
    • Having a “less labor” philosophy and understanding—a ‘first in and first out’ mentality—drives down cost of production.
    • By limiting employees’ need to cross paths and segregating processes (e.g. harvest, distro, packaging) in a facility, you can maintain biosecurity and limit the risks of cross-contamination
    • When working with fewer staff members, everyone should be trained to:
      A greenhouse facility that urban-gro helped bring to operation.
      • Operate all necessary equipment
      • Perform keys tasks like nutrient deliver or preventative maintenance
  • Supply chain
    • What sort of products do I use to cultivate, process, distribute and how will potential shortages affect my use/cost related to these?
      • Consider products and supplies that you can order in bulk
      • Examine and update your chemical regime to focus on products that are cheaper to freight ship, and located within the US or even your state
      • Mitigate the risk of availability by using products that are have no shelf-life or expiration issues, and those where the supply chain has not yet had disruptions
  • Automation and technology
    • What’s the availability to allow for remote monitoring and controls?
      • Cultivators can take some of the load off the reduced staff by automating critical tasks
      • Remote monitoring solutions will also allow for faster notification of crop issues
      • Integrating preventative maintenance tasks like equipment schedules and maintenance can increase efficiency
  • Yield expectations
    • Ensure that conversations on yield expectations are as transparent as possible and set realistic and achievable goals
    • Build business models based on the correct numbers that take into account productions numbers on ‘high yield’ genetics versus lower-yielding plants (yield versus price)
    • Ensure you have a detailed plan that combines both plant density and production goals

Kaycha Labs Named Designated Lab for Florida’s Hemp Program

By Cannabis Industry Journal Staff
No Comments

Last week, Kaycha Labs, a cannabis testing laboratory company based in Florida, announced that they have executed an agreement with the Florida Department of Agriculture & Consumer Services (FDACS) to be the first “Designated Compliance Laboratory” for the state of Florida’s new hemp program.

As part of the agreement, Kaycha Labs will be procuring samples for the mandatory compliance testing program, as well as providing the required potency analysis for the Division of Plant Industry (an office under the FDACS).

The USDA recently approved the hemp program under the FDACS, and with that comes a host of regulations that producers need to follow.

Florida’s program requires a “designated approved representative” to go out in the field and collect compliance samples for testing from hemp licensees. Those samples then get tested to ensure they have less than 0.3% THC, per state and federal requirements.

Cynthia Brewer, vice president of Kaycha Labs, says this new regulatory framework will help a lot of stakeholders. “I am thrilled that Florida has created a regulatory framework that incorporates both well-defined procedures and high standards,” says Brewer. “Everyone benefits – consumers are protected and hemp producers become known for as- advertised, quality product. All of us at Kaycha are looking forward to working with both and the cultivators and the Department of Plant Industry.”

The Beginner’s Guide to Integrated Pest Management

By David Perkins
1 Comment

Formulating a Plan

In this article you will learn how to control pests and improve the health of your cannabis plants using integrated pest management, commonly referred to as IPM. This involves a multi-point strategy – there is no quick fix, nor is there one solution that will wipe out all your pest problems. Proper pest management requires patience, consistency and determination.

It is important to understand that not all pesticides are bad. While many are incredibly harmful not only to pests, but also humans, in this article I will educate you about some of the safer alternatives to traditional pesticides. It is possible to safely control unwanted pests in your cannabis garden without harming yourself, your employees or the natural habitat around you.

Every cultivation facility should have a well-thought-out plan for their pest management program. This program should account for the prevention, and if necessary, eradication of: spider mites, russet mites, fungus gnats, root aphids, thrips and caterpillars. These are just a few of the more common pests you’ll find in a cannabis garden. There could also be many other less commonly known bugs, so you have to be vigilant in looking closely at your plants, and the soil, at all times. Complete eradication of a targeted pest can be difficult. Once a pest has established itself, decimating or decreasing the population will require an aggressive regimen that includes spraying daily to control populations and prevent other pests from getting established.

Spraying or applying pesticides to the foliage of plants isn’t the only way to control or eradicate pest populations. There are many other ways that you can minimize the spread of pests without the use of pesticides. In greenhouse and outdoor grows, growing specific types of plants around the cultivation area will attract both beneficial and predator bugs that will naturally control pest populations. Some plants that attract these bugs are: mint, peppers, and marigold. Beneficial and predator bugs, such as ladybugs, predator wasps and predator mites, can control unwanted pest populations in the area before they even have a chance to become a problem in your garden. Plants and flowers that attract bees, birds and insects will also create helpful bio- diversity, making it more difficult for the unwanted pests to thrive.

For indoor cultivation, it is imperative that you have your cultivation facility set up for a proper workflow. If you already have pests, you need to make sure you are not contaminating the rest of your facility when going from one area to the next. Make sure that you only go to contaminated areas at the very end of your day, and when you’re done working in that area, you must immediately exit the building. Do not ever walk back through the uncontaminated parts of your facility or the pests will spread quickly.

An aphid on a plant in a greenhouse

When most people think of pests in their cannabis garden they think of the more common varieties: spider mites, russet mites, aphids and thrips. However, there are also soil-dwelling pests that can exist, without your knowledge. These will decrease the health and vigor of your plants, without you even knowing they’re there, if you’re not careful to check for them. Some of the soil dwelling pests that plague cannabis plants are: root aphids, fungus gnat larvae and grubs. It is just as important to control the pests below the soil, feeding on your roots, as it is to control the pests that feed above soil on your plants.

Maintaining healthy plants is essential to controlling pest populations, both on the foliage and below the soil. Healthy plants will have an easier time fighting off pests than unhealthy plants. Plants have immune systems just like humans, and the stronger the plant’s immune system, the more likely it will be able to ward off pests and diseases. Allowing a plant to reach its full potential, by minimizing pests, means your plants will also have a better quality, smell and flavor, not to mention a bigger yield.

Worker Safety, Regulation and REI times

The application of pesticides requires certification from the state agricultural department. In certain situations, depending on the type of pesticide and method of application, a license may even be required. The application of pesticides without proper certification is against the law. Applying pesticides in a manner that is not in accordance with the label and instructions is also a violation of law.

The proper personal protective equipment (PPE) is required for anybody handling, mixing or applying pesticides. Employees can be a liability to your company if they are applying pesticides improperly. Make sure you and your entire staff are well educated about pesticide use requirements and limitations, prior to usage, and that only a properly certified person is handling the mixing and application at your facility.

The author, David Perkins, In his greenhouse after using insect killing soap.

After a pesticide is applied, you must abide by the re-entry interval (REI). This is the required time period limiting all workers from re-entry into areas where pesticides have been applied. This time period will vary depending on the type of pesticide used and the method of application. In some instances, pesticides applied in the last 30 days may require employee training before work can be done in those areas.

The misuse of or improper handling of pesticides is not only unlawful and dangerous to human health, but can also cause environmental damage to waterways and wildlife. The direct effects of pesticides on wildlife include acute poisoning, immunotoxicity, endocrine disruption, reproductive failure, altered morphology and growth rates and changes in behavior. Pesticides can indirectly impact wildlife through reduction of food resources and refuses, starvation due to decreased prey availability, hypothermia and secondary poisoning. Section 1602 of the California Fish and Game Code governs requirements for permitting of any project where pesticides will be used, and strictly regulates the disposal of all waste and run-off. It is imperative to know the regulations and to abide by them, or heavy fines will ensue!

Using Pesticides in a Regulated Market

Knowing which pesticides you can’t use, to avoid failing mandatory state testing, is just as important as knowing which ones you can use safely to pass required testing. Most states with regulated markets have strict limitations on the pesticides that can be used in cannabis cultivation. Pesticide use in the cultivation of cannabis is the most strictly regulated in the agriculture industry; the pesticides allowed for use in cannabis cultivation are far more limited than any other crop.

Photo: Michelle Tribe, Flickr

Just because a product is certified organic does not mean that it can be used, or that it is safe to be consumed or ingested. Oftentimes when cannabis flower alone is tested it will not fail or show a detectable amount of pesticides or heavy metals. However, when that flower is turned into concentrates, banned substances are then detected in testing, leading to test failures.

Cannabis cultivation facilities that are located on land that was previously used for conventional agriculture, or located near vineyards or other agricultural crops that are heavily sprayed with harmful pesticides, run a very high-risk failing testing. This is because of either spray drift from nearby agriculture, or residual pesticides and heavy metals left in the soil from previous crops that were using pesticides banned for cannabis cultivation. Accordingly, if you’re going to be growing outdoors or in a greenhouse, it is imperative that you get a soil and water test prior to cultivation, so you can determine if there is any potential for test failures due to pesticides or heavy metals in the soil or water in that area. 

Proper Application – Using the Right Tools in the Right Way at the Right Time

One of the most important factors in pest management is proper identification of pests and proper application and coverage of pesticides. It does not require an entomology degree to identify insects, these days there is a lot of information online that can help you identify cannabis pests. Proper identification of insects can make the difference between success and failure. With a good eye and a microscope, if you do your research, you can control most insects in your garden.

In order to control pests in your garden you must get proper coverage of the foliage of the plant when you are applying pesticides. There are different types of equipment that are commonly used to apply pesticides in cannabis cultivation: backpack sprayers, foggers, and airless paint sprayers are the most common. An alternative method involves using an automated dosing system such as a dosatron, which injects fertilizer or pesticides at a specific ratio into your water lines, allowing you to use only the exact amount of pesticide you need. That way you avoid wasting money on unused pesticides. It is also safer for employees because it minimizes employee exposure, since there is no mixing required, and it allows for a large volume to be sprayed, without refilling a tank or a backpack sprayer.

No matter what you are using you must ensure you get the proper coverage on your plants in order to control pests. The temperature and humidity of your cultivation area, as well as the PH and temperature of the pesticide solution, all factor into the success of your IPM. For example, PFR 97 needs to be applied at a higher humidity range, around 70% to be most effective. In some areas this is not possible so repeated applications may be required to ensure the application is effective. A high PH or alkaline PH can cause alkaline hydrolysis which will make your pesticide solution less effective and will dictate how long your pesticides remain effective after they are mixed. It is therefore important to use your pesticide solution as soon as you make it; don’t let it sit around for long periods of time before use or it will be less effective.

In cannabis cultivation there are two different primary growth cycles: vegetative and flower. These cycles require different IPM strategies. In general, during the flowering cycle, pesticides should not be applied after the second week, with some limited exceptions i.e. for outdoor cultivation there is a longer window to spray since the flower set takes longer than a plant being grown inside, or in a light deprivation greenhouse, where there is a 12/12 flowering cycle.

Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle.

For the vegetative (non-flowering) cycle, a strict rotation of foliage spray applications targeting not only pests, but also molds and pathogens, will be necessary to avoid a quick onset of infestation. Starting with an immaculate vegetation room is crucial to maintaining pest and mold free plants in the flowering cycle. Preventative sprays that are safe for use include: safer soap (contact kill) for soft bodied chewing insects; Regalia (biological control) for powdery mildew; and PFR 97 (biological control) for soft bodied chewing insects. It is also helpful to spray kelp, which strengthens the cell walls of plants, making the plant healthier, and thus enabling the plant to better defend itself from pests and diseases. Also, Bacillus thuringiensis (Bt) is useful to prevent or kill caterpillars.

The best way to control a pest infestation in the flowering cycle is at the very beginning on day one. You must start aggressively, with a three-way control consisting of a contact kill and preventative during days 1-14; preventative and biological control during days 10-18; and then release predator bugs on day 25, for optimal results. Knocking back the population with an effective contact kill pesticide early on is essential to ultimately lowering populations throughout the grow cycle, so that you can spray a biological control to preclude them from returning, before you release the predatory bugs at the end of the cycle.

Biological controls can take anywhere from 3 to 10 days before they are effective. Biological pesticides are selected strains of bacteria or fungus. When the plant tissue is eaten by a targeted pest, the bacteria kills the pest from the inside providing control without having to spray pesticides repeatedly. Predator bugs are the last line of defense, used in late flowering. They can be used indoors, outdoors and in greenhouses. An example of a common predator bug is Amblyseius californicus used to control low populations of spider mites, but there are many different varieties and they are specific depending on the type of pest population you seek to control.

A common concern with the use of predatory bugs, is whether they will be present when the flowers are harvested. However, if there is no food for the bugs (i.e. pests) the predator bugs will leave in search of food elsewhere. Further, indoor predator bugs are usually very small in size and difficult to see to an untrained eye. It is very unlikely to see any signs of predator bugs near the end of the flowering cycle, or in the finished flower product. Even when using bigger predator bugs, the bugs will leave the plants when harvested and dried.

Having pests can be very stressful. It is not uncommon to have bugs, pests, rodents, animals and birds cause damage in cannabis gardens. Making an informed decision based on science and not on unproven assumptions can determine how successful you are at pest management. There are many factors that go into pest management and no one situation is the same. You must be dedicated and consistent; pest management never stops. You will always have something ready to invade your garden. Prepare, plan, prevent and repeat!

Soapbox

Clean Grow Still Failing? Check for Endophytic Mold

By Bernie Lorenz, PhD
2 Comments

The journal Frontiers in Plant Science recently shared an important article from researchers at Simon Fraser University in British Columbia, highlighting the “Pathogens and Molds Affecting Production and Quality of Cannabis Sativa.”

As a chemist focused on the science of preventing and mitigating mold in greenhouse and indoor cannabis grow facilities, this piece was fascinating to me. Like many others, it details and explains prevalent mold like Penicillium, Cladosporium and Aspergillus – things I see in grows every day.

But wait, there’s more fungi

The research and resulting article also brought up another type of fungi – endophytic mold. Endophytic mold usually lives symbiotically with plants, or is at least beneficial for both plant and fungi.

But not always.

In the past, the industry has believed that damaging mold spores were found on the outside of the flower. When moved, that flower would release the spores and send them flying – often creating massive cross-contamination issues for indoor grows.

Hope Jones, PhD, CEO of Adivina & ECS

“While cannabis is an incredibly powerful plant in terms of its medicinal properties, it is unfortunately highly susceptible to many pest and pathogens,” says Hope Jones, PhD, CEO, Adivina & ECS. “And it is this susceptibility that is so challenging to many inexperienced or undisciplined grow operations.”

Now, however, we know that there’s another culprit to add to the list: the inner parts of the plant can also be a source of endophytic cross contamination and mold.

Since it grows inside of the plant, this fungus creates high spore counts that can cross contaminate from outside, into the flower.

Treating mold in a facility

Here’s the good news:

This seemingly bad news – that there’s a new fungus to worry about, and it is inside the flower – may actually help cannabis grows struggling with mold, and those who are following the proper protocols already.

A petri dish of mold growth from tested cannabis Photo credit: Steep Hill

Effective mitigation protocols can include things like treating HVAC systems, controlling humidity, using products like chlorine dioxide to treat irrigation lines, enforcing protective clothing and shoe covers for employees, reducing the amount of in-and-out for employees around grow rooms.

These are important upstream and environmentally-focused integrated pest management (IPM) programs that will usually keep facilities clean and relatively mold-free.

But if these programs are in place, and there’s still an issue, Endophytic fungi may be to blame.

If you are having ongoing mold issues but have ruled out cross-contamination and a facility without proper protocol, look to the mother plant.

“Small mistakes in agricultural practices are amplified with cannabis,” Dr. Jones continues. “And today’s propagation practices of traditional cloning add to this vulnerability. Cannabis is an annual plant and by keeping mothers in a perpetual state of vegetative growth for years, and taking repetitive cuttings produces clones in a highly stressed state. This stressed state diminishes genetic potential and weakens a plant’s ability to fight disease and pests.”

Testing for and addressing endophytic fungi

If these concerns are ringing a bell, remember, there is also a way to test for Endophytic mold.

Checking cuttings from suspected mother plants over a period of time is the best way to see if the Endophytic mold is present.

A section of the mother plant cutting is placed into a solution (for example, as outlined by the article, a very concentrated hypochlorite followed by 70% Ethanol) that will kill all of the microorganisms that are present on the surface of the plant tissues.

A large tissue culture facility run in the Sacramento area that produces millions of nut and fruit trees clones a year.

From there, an unadulterated dissection of the internal tissues can be extracted and cultured for quantification and identification of endophytic fungi.

“Tissue culture offers a form of genetic rebooting returning the plant to its natural genetic potential and thereby strengthening its natural ability to defend against environment assault,” says Dr. Jones. “It also allows the breeder to conduct pathogenic disease testing which provides the entire industry with a higher level of scientific certainty and analysis.”

If you find this mold inside of the mother plant, your facility’s mold problem could be a systemic issue, not an environmental one.

If you do find that Endophytic mold is causing issues, of course, you may have to destroy the mother plant.

This should not mean the end of a strain. Tissue culture on a cutting is an option that can eliminate the unwanted fungi and save the genetics. Using those genetics to regrow a mother will start fresh and avoid the intrinsic mold that was plaguing the strain prior.

Growing knowledge

The practice of checking mother plants for Endophytic mold is not yet commonplace in cannabis, but the hemp business is leading the way.

They’re testing to create very clean plants, so you don’t have issues during cultivation.

Major growers in the U.S. could save millions in lost harvests with mold mitigation. If your current IPM program isn’t doing the trick, you may want to follow in hemp’s footsteps and look inside the plant.

Large Scale Cultivation Planning: 4 Important Factors to Consider

By David Perkins
2 Comments

Before you begin any large-scale cultivation project, you must necessarily consider the four factors highlighted below, among many others, to ensure your cultivation is successful. Failure to do so will cost you greatly in both time and money, and ultimately could lead to failure. While the four areas highlighted below may be the most important considerations to address, you should hire a cultivation advisor to determine the numerous other considerations you must deal with before you begin.

1. Genetics

Genetics will play a huge role in your cultivation plan, as they can ultimately make or break the success of your business. Access to quality, verified genetics will greatly affect your profits. All cannabis genetics grow differently and may require different conditions and nutrients. Further, consumers in today’s regulated market have greater awareness; they are much more knowledgeable about genetics and able to discern between quality cannabis versus commercially produced cannabis.

Market trends will dictate whether or not you’ll ultimately be able to sell your harvest at market rate. You need to project out at least one year in advance the genetics you will be growing. But often it is impossible to predict what consumers will be purchasing a year in advance so this part of your cultivation plan should be well thought out. Further compounding this difficulty is the fact that it may take six months to ramp up production of any given variety.

Genetics that are popular now may still be popular next year, but that also means there will be more competition for shelf space, as more competitors will also likely be growing these same genetics. Therefore, don’t rely on only one trendy variety as the bulk of your selection for the year, no matter how popular it is at the moment. Producing a single variety as the bulk of your crop is always risky, unless you have a contract with a sales outlet, in advance, for a set quantity of that one particular variety. Diversity in your genetics is beneficial, when chosen correctly.

Making proprietary genetics from your own seed collection can give you a big advantage in today’s competitive market. Having a variety with a distinct, unique and desirable smell, taste, effect or cannabinoid profile will allow you to distinguish your brand amongst others. Entire brands have been built off of a single variety: Cookies and Lemontree are two examples of companies that have done this. All it takes is one really good variety to attract a lot of attention to your brand. Having your own breeding project on site will allow you to look for and identify varieties that work for you and your business model, and ultimately will help to distinguish your brand apart from others.

Only buy seeds from reputable breeders! Any new varieties that you are going to be cultivating should be tested out at least three times, on a small scale, before being moved into a full production model. If you are growing from seed there is always the potential for your crop to get pollinated by male plants or hermaphrodites that went unnoticed, and therefore, they could be a potential risk to your entire harvest. Treat them accordingly, i.e. by cultivating them on a small scale in a separate, enclosed area.

Buying clones from a commercial nursery can be risky. Genetics are passed from one grower to another haphazardly, and names are changed far too easily. This can create a lot of confusion as to what variety you are actually purchasing and whether you are getting the best version of the genetics. Just because a clone is called “sour diesel” doesn’t mean you’re actually getting the real, authentic sour diesel. And to further complicate things, the same clone grown in different environments can produce a noticeable difference in flavor, smell and effect depending on your cultivation method. Always try your best to verify the authenticity of the genetics you purchase. Ask about the history and origin of the particular genetics you are purchasing. Better yet, ask for pictures, physical samples, and most importantly, certificates of analysis from a laboratory, indicating the potency. In many states anything under 20% THC is going to be hard to sell, while anything over 30% will easily sell and command the highest price. It’s a good idea to have a laboratory test the terpene profile in order to verify a variety is actually what the seller purports it to be.

Knowing the source of your genetics is imperative. It will help ensure that you actually have the variety that you were intending to grow, and therefore, allow you to achieve your intended results. Knowing what varieties you are going to cultivate, before you grow them, will also give you a better idea of the ideal growing conditions for that specific variety, as well as what nutrients will be required to achieve optimum output.

2. Automated Watering Systems

Installing an automated watering system, during build out, will by far be the most cost-effective use of your money, and will save you the most amount of time in labor. An automated watering system, commonly referred to as a “drip system” or “drip irrigation,” is necessary regardless of whether you are cultivating indoors or outdoors; it will allow you to water multiple different areas at once, or only water a few specific areas of the garden at one time. Hand watering a 22,000 square-foot cultivation site will take one person eight hours every single day, on average, to maintain. However, a properly designed drip system can water an entire large-scale garden in a couple of hours, without any employees, record all the relevant data and notify you if there is a problem. This enables you more time to spend closely inspecting the plants to ensure there are no bugs or other problems present, and that your plants are healthy and thriving. This attention to detail is necessary if you want to have consistent success.

Larger scale cultivation requires bigger and more expensive equipment.

Automated watering systems not only save a great deal of time but also eliminate the possibility of human error, like over watering, which can kill an entire crop quickly. There aresoil moisture sensors  that can be placed in the soil to regulate the supply of water to the plants in a precise manner. Without an extremely skilled, experienced work force, damage to plants due to over watering is very common. A drip system will reduce the threat of human error by ensuring delivery of precisely the correct amount of water and nutrients to each plant every single time they are watered.

Not all drip systems are created equally. There are different types of automated watering systems. Designing the right drip system for your cultivation site(s) can be complicated. Make sure you do your research, or better yet, work with a cultivation advisor who has experience with automated irrigation systems in conjunction with a licensed plumber, to ensure you are installing the best system for your particular set up.

Adding a fertilizer injector to your drip system can further increase the efficiency of your operation and save you money on nutrients by using only what you need and ensuring correct application. Again, automating this process will save you time and money, and reduce the threat of human error.

3. Nutrients

The types of nutrients you use and the amount of nutrients you use, are going to directly affect the quality of your cannabis flower. Conventional agriculture and Dutch hydroponic cannabis cultivation have always used salt-based fertilizers. However, they can be toxic for the plant in high amounts. While cheap and easy to use, salt- based nutrients are made in big factories using chemical processes to manufacture. They are not good for the environment, and overall, they produce an inferior product. The highest quality cannabis, is grown with organic living soil. Although seemingly contrary to popular knowledge, when done properly, cultivating in organic living soil is more cost effective than using powdered or liquid salt-based fertilizers.

Yield and quality depend on the skills of the cultivator, more than the method they are using. Having healthy plants from the start, will always yield better results, no matter what way they were grown. In my 20 years of experience I have seen plants grown in balanced living soil yield just as much as plants grown with synthetic nutrients. Further, the quality is not comparable.

Controlling your clone supply can ensure they are healthy

Always remember, it is the quality of your flower that will determine the price it is sold for, not the yield. Even if you produce more overall weight of chemically grown cannabis, if nobody wants to purchase that product, then you are going to yield far less profit than another company growing in the same amount of space using organic practices that yield a higher quality product.

The difference in quality between plants grown in balanced living soil versus any other method of cultivation is undeniable. It is really easy to post a pretty picture of a flower on Instagram but that picture doesn’t tell you anything about what went into producing it. When flower is produced using chemical nutrients, it is likely going to be harsh and not enjoyable to smoke. Lesson learned: don’t judge a bud by an Instagram photo! There is a stark difference between cannabis grown using synthetic nutrients versus cannabis grown in living soil. Once you’ve experienced the difference you will never want to consume cannabis that is grown any other way.

4. Plant Propagation

Having the ability to propagate your own clones, from mother plants that you have cultivated, can save you a staggering amount of money. In some states, having a cultivation license allows you to produce your own clones for your cultivation, while having a nursery permit will allow you to sell clones for commercial sales to other companies. The average price of a wholesale clone is around eight dollars. If you require 5000 plants for every harvest, that’s a $40,000 expense you must bear, every grow cycle. This can obviously add up quickly. And as previously mentioned there’s the risk of purchasing inferior genetics or unhealthy plants, both of which greatly affect your profit margins.

On the other hand, the cost of materials and labor to produce a healthy clone can be as low as one dollar when using advanced cloning techniques. Controlling your clone supply can ensure they are healthy and allow you to know exactly what you are growing each time. Further, it doesn’t take a lot of space to propagate your own cuttings. In a 400 square-foot space one could produce between 5,000 to 10,000 clones per month, all of which could be maintained by one person depending on your situation.

And last but definitely not least, the most important thing you can do to ensure the success of your cultivation, is hire an experienced knowledgeable grower who is passionate about cannabis. The success of your company depends on it. You need someone with the knowledge, experience, and skills to make your cultivation dreams a reality. You need someone who can plan your build-out and cultivation to ensure success from the start. And you need someone with the skills to handle the multitude of inevitable problems that will arise in a cost effective and efficient way.

These are just some of the many considerations you must account for when planning a large scale grow in the regulated market. An experienced cultivation advisor can help you with these, and many other considerations you will need to contend with before you begin your grow. Creating a well thought out plan at the outset can end up saving you thousands, if not hundreds of thousands of dollars down the road.

Top 3 Ways Cultivation Methods Must Change with Regulations

By David Perkins
No Comments

There are obvious upsides and downsides to cannabis regulation. Gone are the days when it was a free for all, for outlaws growing in California’s hills, under the limited protections California’s medical cannabis laws provided. While there is no longer the threat of arrest and incarceration, for the most part, there are also a lot of hoops to jump through, and new rules and standards to contend with. This article highlights three areas in which your cultivation plan must necessarily change due to the new regulations.

1. Integrated Pest Management (IPM) is limited

In the new regulated market, products that were once widely used are now no longer allowed. Prior to regulation, in the days of Prop 215, you could spray your plants with just about anything, since there was no testing mandated for the products that were being sold. However, people unfortunately got sick and experienced negative reactions, with products like Eagle 20, which contains mycobutinol, and Avid, which contains bifenthrin. Accordingly, under new regulations there are thankfully much more stringent standards dictating what pesticides can be used. It’s ironic that for most of the “medical marijuana” era in California there were no mandatory testing requirements for the THC content of your cannabis, let alone testing for toxins, including pesticides, molds or heavy metals.

You need to have a very thorough pest management plan to make sure your bug populations are always in check. Given that there are a small number of allowable products for pest control in the regulated market, this can be tricky. You need to be extremely familiar with what is and isn’t allowed in today’s regulations. You must also make sure that someone who is certified to apply pesticides is applying them.

Photo: Michelle Tribe, Flickr

As a word of caution, there have been instances where approved pesticides were found to have old unused chemicals (that are not approved for use) from the manufacturing process in them. They may have only occurred in very small amounts, but they are harmful to humans and there is no lawful way to dispose of them.

Further, the presence of these harmful chemicals can cause your finished product to fail when undergoing mandated testing.

Rather than using risky chemicals, the best solution for (early detected) control of pests is the use of beneficial insects. Although they may not be the best solution for an infestation, predator bugs like Neoseiulus Californicus can efficiently control small populations of spider mites while ladybugs are good to limit aphids. Strategic planning of your IPM is one of the best ways to keep pest levels in check.

2. Plant size and plant count matter more than ever

Despite widespread legalization in the past few years for both the medical and recreational markets in the United States, the black market is still rampant and most cannabis is still being produced illegally in the US and internationally.

Maximizing plant canopy space is essential to a profitable business in today’s market

Generally speaking, in the black market, the less plants you have the better, as high plant counts lead to longer sentences of incarceration. With the passage of prop 215 in 1996, many growers, especially outdoor, started growing their plants as big as they possibly could because most limitations were based on plant counts. Some outdoor growers were able to cultivate plants that yielded over 10 pounds per plant. These days regulations are based on canopy measurements, meaning you can grow as many plants as you want within a defined, limited square footage area. This is where “light deprivation,” a method used to force plants into flowering, becomes favorable as it allows 2-4 harvests per year instead of just one. It is a much more intensive way of growing when you have tens of thousands of plants. While it is easier to plant, cultivate and harvest a larger number of smaller plants, it also requires a much more detailed level of planning and organization.

In order to achieve 4 harvests per year, you must have a well thought out cultivation plan and an all-star staff, but if you are able to accomplish this, you can increase your revenue significantly. Maximizing plant canopy space is essential to a profitable business in today’s market, and to do that will require more detailed planning, better organization and proper crop management.

3. How you grow and what equipment you use

With regulation comes liability for defects or injury. It is essential that all equipment used is approved for its intended use. Traditionally, cannabis was cultivated in secrecy in the black market. This led to many unsafe grow rooms being built by people who did not have the proper skills to be undertaking projects such as converting a garage into a grow room or handling the electrical and plumbing running into them. Accordingly, there were many instances of damages to property or injuries to people because of this. Now that counties and states permit cannabis cultivation facilities, the infrastructure and labor that is done must meet regulated building codes and general safety requirements. It is therefore imperative to know the codes and regulations and hire a professional that does, to ensure you meet the standards in order to avoid potential liability.

Larger scale cultivation requires bigger and more expensive equipment. Cultivation facilities are more likely to have sophisticated equipment, such as chiller systems, that are designed to control the grow room environment. While very efficient, some are not intended to be used specifically for cannabis cultivation, and can therefore be difficult to control and maintain. They perform very specific functions, and when not properly tuned to your conditions, can malfunction by prioritizing dehumidification over cooling. This can be a real challenge in warmer climates when temperatures rise, requiring cooling, but also necessitate removal of moisture from the cultivation space.

Larger scale cultivation requires bigger and more expensive equipment.

On the other hand, there is new technology that can make a huge difference in the success of your cultivation. I recently worked with two different companies that specialize in root zone heating systems. One manufactured equipment for root zone heating and cooling of 10k sq ft raised beds that had never been used in California previously. The other company specialized in root zone heating using radiant floor heat. They both worked as intended to maintain a constant root zone temperature, which increased plant health, and ultimately increased yield.

Many counties require data collection from your cultivation, requiring you to track the amount of water and nutrients used. Therefore, another useful tool you can use to increase efficiency, is data collection software that will allow you to collect different information about the amount of water and nutrients used, as well as specific information about the conditions in your grow medium. You can also record and display temperature and humidity readings in your grow room, in real time remotely through Wi-Fi, that you can then access from your phone or computer from anywhere in the world. This can be a useful tool when documenting information that your county, state or investors may require from you. Further, the ability to collect and analyze data will allow you to identify areas of inefficiency in order to correct and optimize your grow room’s potential. While you can achieve these same goals with simple in-line water meters, keeping track of nutrients and pesticides is not as easy. Data collection in the most basic form, using a pen and paper, can be an inaccurate and an inefficient use of time, and can easily be misplaced or ruined. Therefore, simple data software collection programs are the best solution to make the process simple and hassle free.

While it is nice to have state of the art equipment, if it does not work properly, or cannot be easily maintained, it will not be worth it in the long run and you will never see a return on your investment. Innovation comes with a price; using equipment that is cutting edge can be risky, but on the flip side, when done properly it can give you a big advantage over your competitors.

In switching from the black market to the regulated market, these three areas have proven to be the biggest areas of change and have presented the biggest challenges. It is important you consider these necessary changes, and make a solid plan before you begin your cultivation. This is where a cultivation consultant can help.

Preventing Mold & Fungus in Cannabis with Data Analytics

By Leighton Wolffe
No Comments

Cannabis legalization has taken the United States by storm, with 33 states approved for medicinal cannabis use — 11 of which are also approved for recreational use for adults aged 21 and over. With new patients and consumers entering the market every day, it’s more important than ever for cannabis cultivators to establish more effective methods for mold and fungal prevention in their crops and to ensure consumer confidence in their brands.

Today, many cultivators address the risk of mold and fungus growth by testing crops for contaminants at the end stage of production. While this helps to catch some infected product before it reaches the market, this method is largely ineffective for mold and fungal prevention during the cultivation process. In fact, recent studies have shown an 80% failure rate in mold and fungal testing in Denver cannabis dispensaries. By relying on late-stage, pass/fail testing, cannabis entrepreneurs also expose themselves to increased risk of lost crops and profits.

Photo credit: Steep Hill- a petri dish of mold growth from tested cannabis

However, emerging sensor technologies exist that can test plants during the grow process, significantly reducing the risks associated with cannabis cultivation while increasing the bottom line for commercial grow operations. By leveraging data from these monitoring sensors along with environmental automation systems that are integrated with data analytics platforms, cannabis professionals can take a proactive approach to achieve the ideal environmental conditions for their crops and prevent against mold and fungal infestation.

Common Causes for Bud Rot in Indoor Growing Systems 

Botrytis cinerea — commonly known as “bud rot” — is a pathogenic fungi species that creates a gray mold infection in cannabis plants. An air-borne contaminant, it is among the most prevalent diseases affecting marijuana crops today and can lead to significant damages, particularly when left untreated during post-harvest storage. Bud rot is one of the most difficult challenges cannabis entrepreneurs face: Once plants have been affected, only 2% can be expected to recover. This is because Botrytis cinerea can use multiple methods for attacking host plants, including using the plant’s natural defenses against it to continue infestation.

While difficult to contain, bud rot is very easy to spot. Plants affected with the fungus will begin yellowing, experience impaired growth, and develop gray fungus around its buds. Overall crop yield will be significantly reduced, leading to decreased profit for cannabis cultivators. The biggest contributing factors to a Botrytis cinerea infestation are as follows:

  • Humidity: Indoor grow facilities that maintain humidity levels in excess of 45% are breeding grounds for mold and fungus. These environments can become perfect conditions for mold and fungal growth.
  • Temperature: Bud rot typically thrives in environments where temperatures fall between 65- and 75-degrees Fahrenheit, which is why greenhouses and grow rooms are often the victim of such infestations.
  • Ventilation: Poor airflow is another contributing factor to Botrytis cinerea Without proper ventilation, excess moisture buildup will eventually result in mold and mildew growth.
  • Strain: Some marijuana strains are better equipped to fend off bud rot infection. In particular, sativa plants have a higher resistance to mold development than their C. indica and C. ruderalis cousins.

Controlling mold and fungal growth in commercial grow facilities is a top priority for cannabis cultivators. Not only detrimental to their profitability and crop yield, infected plants can pose serious health risks to consumers, especially for immunocompromised patients. Consuming cannabis products that have been compromised by bud rot or other mold and fungal infections can cause a wide range of medical concerns, including pneumonitis, bronchitis, and other pulmonary diseases. As a result, growers are required to dispose of all infected plants without the possibility to sell.

Bud rot isn’t the only culprit responsible for cannabis plant destruction. Powdery mildew, Fusarium, sooty molds, and Pythium all contribute to the challenges faced by cannabis professionals. In fact, a recent study conducted by Steep Hill Labs and University of California, Davis – Medical Center found that in 20 randomly-selected samples submitted for testing, all samples showed detectable levels of microbial contamination7. Many of these samples also contained significant pathogenic microorganism contamination. Without proper detection and prevention methods in place, these pesky plant-killers will only continue to terrorize the cannabis cultivation industry.

The Current Cannabis Cultivation Landscape 

The data is clear: Current practices for cannabis cultivation are insufficient for preventing against mold and fungal growth. Sterilization and pass/fail testing do not identify the root cause of harmful infestations in plants, therefore leaving cannabis professionals in the dark about how to better optimize their grow conditions for improved crop reliability and safety. In order to prevent against damages incurred from mold and fungal infestation, marijuana growers must be more diligent in their grow condition monitoring practices.

Many cannabis professionals rely on manual monitoring to identify environmental changes within their indoor grow facilities. While it’s important to collect data on your operation’s essential systems, doing so without the right tools can be time-consuming and ineffective. Manual monitoring often relies on past data and does not illustrate the relationship between different systems and their impact on environmental changes. The goal is to assemble data from all the grow systems and create correlations on actual bio-environmental conditions during the grow process to compare to yield results. This is only available when an information management platform is synthesizing data from all the systems within the grow facility and presenting meaningful information to the growers, facility operators and owners.

Especially as the cannabis industry is expected to grow exponentially in coming years, growers need more robust tools for tracking and manipulating environmental changes within their indoor growing systems.

Leveraging Building Automation Systems & Data Analytics in Cannabis Cultivation 

A powerful approach to prevent environmental conditions that are known to lead to mold and fungus growth exists in leveraging the data produced from your grow facility’s various automation systems. Most commercial cultivation facilities have multiple stand-alone and proprietary systems to control their indoor environment, making it difficult to not only collect all of this valuable data, but also to achieve the level of grow condition monitoring necessary for mold and fungal prevention.

With some data analytics platforms, such as GrowFit Analytics, data is collected across disparate systems that don’t normally communicate with one another, providing access to the key insights necessary for achieving environmental perfection with your cannabis crops. A viable solution collects vital grow facility system data and relevant bio-environmental monitoring data, and delivers this information in one, centralized software interface. The software then will apply analytic algorithms to develop key performance indicators (KPIs) while working to detect system anomalies, faults, and environmental fluctuations. The right analytics solution should also be customizable, allowing you to track the KPIs that are most important to your unique facility, and to achieve the vision of your chief grower. Ultimately, the software should serve up actionable insights that empower facility management and growers.

Sample data visualization dashboard from GrowFit Analytics showing real-time Temperature and Relative Humidity readings and indicating potential Mold Risk as defined by the Grower.

Collecting reliable data from different grow facility systems and environmental sensors can be a complex process and the information collected illustrates more than just what’s working right and what isn’t. By implementing an advanced data analytics solution, cannabis cultivation professionals can now be empowered to track minute details about their indoor grow facility, providing a safer, healthier environment for their crops and avoiding those environmental conditions that lead to mold and fungus altogether.

An ideal data analytics platform won’t simply collect data to be analyzed at a later date, and simple trending of sensor data is not enough. Information — especially in a commercial grow facility — is time-sensitive, which is why growers should select a system that offers real-time analytics capabilities. Some platforms offering real-time analytics utilize cloud computing, allowing for easy access from anywhere while also providing enhanced security to protect sensitive facility data. The most robust data analytics platforms provide detailed historical data for your entire crop’s lifecycle that provide a “digital recipe” to replicate successful crops, and fine-tune the process for continuous improvement.

Data analytics tools can also impact the bottom line by lowering operational costs. GrowFit Analytics, for example, was born out of a software solution designed to lower energy costs for large complex buildings like commercial grow facilities.

The data and insights provided can help identify opportunities for greater energy efficiency, which can lead to significant utility savings. Grow facilities operate 24 hours/day, with energy expenses representing one of the largest operational costs. With data analytics tools at their disposal, facility managers are armed with the information they need to improve system efficiency, increase energy savings, and improve profitability.

Eliminating Mold & Fungus from the Future of Cannabis Cultivation 

By focusing on grow condition monitoring using data analytics tools, cannabis professionals can effectively eliminate the risk of mold and fungus growth in their crops. Leading data analytics tools make tracking environmental changes simple and easy to manage, allowing cannabis professionals to take a proactive approach to mold and fungus prevention. As we look to the future of the cannabis cultivation industry, it’s paramount for professionals to explore the technological advancements available that can help them address their business’ most pressing challenges.