Tag Archives: potency

Large Scale Cultivation Planning: 4 Important Factors to Consider

By David Perkins
1 Comment

Before you begin any large-scale cultivation project, you must necessarily consider the four factors highlighted below, among many others, to ensure your cultivation is successful. Failure to do so will cost you greatly in both time and money, and ultimately could lead to failure. While the four areas highlighted below may be the most important considerations to address, you should hire a cultivation advisor to determine the numerous other considerations you must deal with before you begin.

1. Genetics

Genetics will play a huge role in your cultivation plan, as they can ultimately make or break the success of your business. Access to quality, verified genetics will greatly affect your profits. All cannabis genetics grow differently and may require different conditions and nutrients. Further, consumers in today’s regulated market have greater awareness; they are much more knowledgeable about genetics and able to discern between quality cannabis versus commercially produced cannabis.

Market trends will dictate whether or not you’ll ultimately be able to sell your harvest at market rate. You need to project out at least one year in advance the genetics you will be growing. But often it is impossible to predict what consumers will be purchasing a year in advance so this part of your cultivation plan should be well thought out. Further compounding this difficulty is the fact that it may take six months to ramp up production of any given variety.

Genetics that are popular now may still be popular next year, but that also means there will be more competition for shelf space, as more competitors will also likely be growing these same genetics. Therefore, don’t rely on only one trendy variety as the bulk of your selection for the year, no matter how popular it is at the moment. Producing a single variety as the bulk of your crop is always risky, unless you have a contract with a sales outlet, in advance, for a set quantity of that one particular variety. Diversity in your genetics is beneficial, when chosen correctly.

Making proprietary genetics from your own seed collection can give you a big advantage in today’s competitive market. Having a variety with a distinct, unique and desirable smell, taste, effect or cannabinoid profile will allow you to distinguish your brand amongst others. Entire brands have been built off of a single variety: Cookies and Lemontree are two examples of companies that have done this. All it takes is one really good variety to attract a lot of attention to your brand. Having your own breeding project on site will allow you to look for and identify varieties that work for you and your business model, and ultimately will help to distinguish your brand apart from others.

Only buy seeds from reputable breeders! Any new varieties that you are going to be cultivating should be tested out at least three times, on a small scale, before being moved into a full production model. If you are growing from seed there is always the potential for your crop to get pollinated by male plants or hermaphrodites that went unnoticed, and therefore, they could be a potential risk to your entire harvest. Treat them accordingly, i.e. by cultivating them on a small scale in a separate, enclosed area.

Buying clones from a commercial nursery can be risky. Genetics are passed from one grower to another haphazardly, and names are changed far too easily. This can create a lot of confusion as to what variety you are actually purchasing and whether you are getting the best version of the genetics. Just because a clone is called “sour diesel” doesn’t mean you’re actually getting the real, authentic sour diesel. And to further complicate things, the same clone grown in different environments can produce a noticeable difference in flavor, smell and effect depending on your cultivation method. Always try your best to verify the authenticity of the genetics you purchase. Ask about the history and origin of the particular genetics you are purchasing. Better yet, ask for pictures, physical samples, and most importantly, certificates of analysis from a laboratory, indicating the potency. In many states anything under 20% THC is going to be hard to sell, while anything over 30% will easily sell and command the highest price. It’s a good idea to have a laboratory test the terpene profile in order to verify a variety is actually what the seller purports it to be.

Knowing the source of your genetics is imperative. It will help ensure that you actually have the variety that you were intending to grow, and therefore, allow you to achieve your intended results. Knowing what varieties you are going to cultivate, before you grow them, will also give you a better idea of the ideal growing conditions for that specific variety, as well as what nutrients will be required to achieve optimum output.

2. Automated Watering Systems

Installing an automated watering system, during build out, will by far be the most cost-effective use of your money, and will save you the most amount of time in labor. An automated watering system, commonly referred to as a “drip system” or “drip irrigation,” is necessary regardless of whether you are cultivating indoors or outdoors; it will allow you to water multiple different areas at once, or only water a few specific areas of the garden at one time. Hand watering a 22,000 square-foot cultivation site will take one person eight hours every single day, on average, to maintain. However, a properly designed drip system can water an entire large-scale garden in a couple of hours, without any employees, record all the relevant data and notify you if there is a problem. This enables you more time to spend closely inspecting the plants to ensure there are no bugs or other problems present, and that your plants are healthy and thriving. This attention to detail is necessary if you want to have consistent success.

Larger scale cultivation requires bigger and more expensive equipment.

Automated watering systems not only save a great deal of time but also eliminate the possibility of human error, like over watering, which can kill an entire crop quickly. There aresoil moisture sensors  that can be placed in the soil to regulate the supply of water to the plants in a precise manner. Without an extremely skilled, experienced work force, damage to plants due to over watering is very common. A drip system will reduce the threat of human error by ensuring delivery of precisely the correct amount of water and nutrients to each plant every single time they are watered.

Not all drip systems are created equally. There are different types of automated watering systems. Designing the right drip system for your cultivation site(s) can be complicated. Make sure you do your research, or better yet, work with a cultivation advisor who has experience with automated irrigation systems in conjunction with a licensed plumber, to ensure you are installing the best system for your particular set up.

Adding a fertilizer injector to your drip system can further increase the efficiency of your operation and save you money on nutrients by using only what you need and ensuring correct application. Again, automating this process will save you time and money, and reduce the threat of human error.

3. Nutrients

The types of nutrients you use and the amount of nutrients you use, are going to directly affect the quality of your cannabis flower. Conventional agriculture and Dutch hydroponic cannabis cultivation have always used salt-based fertilizers. However, they can be toxic for the plant in high amounts. While cheap and easy to use, salt- based nutrients are made in big factories using chemical processes to manufacture. They are not good for the environment, and overall, they produce an inferior product. The highest quality cannabis, is grown with organic living soil. Although seemingly contrary to popular knowledge, when done properly, cultivating in organic living soil is more cost effective than using powdered or liquid salt-based fertilizers.

Yield and quality depend on the skills of the cultivator, more than the method they are using. Having healthy plants from the start, will always yield better results, no matter what way they were grown. In my 20 years of experience I have seen plants grown in balanced living soil yield just as much as plants grown with synthetic nutrients. Further, the quality is not comparable.

Controlling your clone supply can ensure they are healthy

Always remember, it is the quality of your flower that will determine the price it is sold for, not the yield. Even if you produce more overall weight of chemically grown cannabis, if nobody wants to purchase that product, then you are going to yield far less profit than another company growing in the same amount of space using organic practices that yield a higher quality product.

The difference in quality between plants grown in balanced living soil versus any other method of cultivation is undeniable. It is really easy to post a pretty picture of a flower on Instagram but that picture doesn’t tell you anything about what went into producing it. When flower is produced using chemical nutrients, it is likely going to be harsh and not enjoyable to smoke. Lesson learned: don’t judge a bud by an Instagram photo! There is a stark difference between cannabis grown using synthetic nutrients versus cannabis grown in living soil. Once you’ve experienced the difference you will never want to consume cannabis that is grown any other way.

4. Plant Propagation

Having the ability to propagate your own clones, from mother plants that you have cultivated, can save you a staggering amount of money. In some states, having a cultivation license allows you to produce your own clones for your cultivation, while having a nursery permit will allow you to sell clones for commercial sales to other companies. The average price of a wholesale clone is around eight dollars. If you require 5000 plants for every harvest, that’s a $40,000 expense you must bear, every grow cycle. This can obviously add up quickly. And as previously mentioned there’s the risk of purchasing inferior genetics or unhealthy plants, both of which greatly affect your profit margins.

On the other hand, the cost of materials and labor to produce a healthy clone can be as low as one dollar when using advanced cloning techniques. Controlling your clone supply can ensure they are healthy and allow you to know exactly what you are growing each time. Further, it doesn’t take a lot of space to propagate your own cuttings. In a 400 square-foot space one could produce between 5,000 to 10,000 clones per month, all of which could be maintained by one person depending on your situation.

And last but definitely not least, the most important thing you can do to ensure the success of your cultivation, is hire an experienced knowledgeable grower who is passionate about cannabis. The success of your company depends on it. You need someone with the knowledge, experience, and skills to make your cultivation dreams a reality. You need someone who can plan your build-out and cultivation to ensure success from the start. And you need someone with the skills to handle the multitude of inevitable problems that will arise in a cost effective and efficient way.

These are just some of the many considerations you must account for when planning a large scale grow in the regulated market. An experienced cultivation advisor can help you with these, and many other considerations you will need to contend with before you begin your grow. Creating a well thought out plan at the outset can end up saving you thousands, if not hundreds of thousands of dollars down the road.

Cannabis Extracts for the Informed Consumer: Solvent or Solventless

By Nick J. Bucci
1 Comment

As cannabis markets continue to gain traction, inconsistent and largely unpredictable markets have left recreational consumers in an informational fog. Try as the industry may, or may not to inform consumers, the lack of knowledge was evident when an established Colorado hash company opened a second operation in California. Expecting high demand for their solventless concentrates, the demand for their solvent-based counterparts came as a surprise. Initially hoping to eliminate solvent extracts from their product line-up, the company was forced to devote about half their overall production to solvent extracts, until information spreads and attitudes start to change. Over the past year several companies have joined the solventless side of history, but consumer understanding remains largely stagnant. For those immediately overwhelmed by terminology, cannabis extracts, concentrates or hash are all interchangeable terms describing concentrated cannabis. Under these umbrella terms, two distinct categories emerge depending upon whether chemical solvents were or were not used to extract the hash. Hence: solvent or solventless. A brief overview of cannabis concentrates will help consumers to understand the evolution away from solvent extractions and toward a superior solventless future.

ecxtractionfig2
Science and economics merge when considering all the possible uses of concentrated compounds to final product formulations

Before regulated cannabis markets, cannabis extracts had long been in use. These old-world methods of cannabis extraction use very basic solventless techniques to create more potent, concentrated forms of cannabis. Dry sifting is easily the oldest form of cannabis extraction and a prime example of one solventless technique. Something as simple as shaking dried cannabis over metal screens and collecting the residue underneath creates a solventless product called keif. Dark brown bubble-hash, made popular decades ago, is another ancient technique using only ice and water to perform extractions without chemical solvents. After decades of stagnant and limited old-world methods, changes in legislation allowed cannabis sciences to flourish. These old-world hash methods were quickly forgotten, replaced by the astonishing progress of modern solvent extractions.

Tetrahydrocannabinol (THC), just one of hundreds of cannabinoids found in cannabis.

The emergence of solvent extracts revolutionized cannabis around 2011, creating new categories of cannabis products that exploded onto the scene. Not only did solvent extracts produce the most potent and cleanest forms of hash ever seen at this point, it also created new possibilities for hash-oil vape cartridges and cannabis extract infused edibles. These solvent extracts use butane, propane, or other hydrocarbon solvents to extract, or “blast” cannabinoids from the plant. By running solvents through cannabis and then purging or removing leftover, residual solvents, a super-potent, premium hash product is achieved. Regulated markets require testing to ensure only a safe level, if any, of the solvent used in the extraction process remains in the final product. This technology ushered in the first wave of concentrates to medical and recreational markets under the descriptive titles of wax, shatter and crumble. While these effective and affordable products can still be found today, far superior products have largely replaced wax and shatter. Distillation techniques can further purify and isolate THC-a, while removing harmful residual solvents. For a time, Solvent-free was used to describe this ultra-purified distillate, but the needless term has fallen out of use. Solvent-free is still a solvent extraction using chemical solvents, don’t be fooled. Distillation and CO2 extractions have fallen into general disfavor as they destroy the flavorful terpenes and valuable cannabinoids, that when present create an “entourage effect.” This “entourage effect” happens when the medicinal and recreational properties are most effective, pronounced, and impactful due to a full range of terpenes and cannabinoids being present in the final product. With companies manually reintroducing terpenes to their final extracts, it’s an attempt to restore what was lost during solvent extraction processes. Many brands claim to use cannabis derived or food-grade terpenes to infuse or reintroduce terpenes into their purified hash oils. While this adds flavor and taste, especially to distillate cartridges, it’s far from an ideal solution. Armed with this new information, the informed consumer looks for a full profile of terpenes and cannabinoids in their hash.

THC-A crumble, terpene-rich vape oil, THC sap (from left to right).

With terpene preservation a new priority, all aspects of hash making were reevaluated. By using fresh-frozen cannabis flower, solvent extractions quickly reached new heights. Using the same techniques as prior solvent extractions, the cannabis plant is frozen immediately upon harvesting, rather than trimming and drying the crop as usual. Freezing the plant preserves valuable terpenes helping to create a new category for hydrocarbon extracts under the general label of live resins. This live resin, containing vastly greater profiles of terpenes and cannabinoids than earlier waxes, shatters or crumbles is sold as live-resin sauce, sugar, badder, frosting, diamonds and more. Many versions of live resin re-use previous terms that describe consistencies. These live resin solvent extracts outperform the wax, crumble and shatters of old, and are priced accordingly. Some of the best solvent extracts available today use butane to extract hash oil, which forms THC-a crystals and diamonds seen in live resin sauces. Having learned the value of terpenes and cannabinoids, early efforts to purify THC were clearly misled. The industry defining use of fresh-frozen cannabis flowers greatly improved the quality of all extracts having realized the psychoactive effects are largely dependent on the various profiles of cannabinoids and terpenes. Pure THC-a crystals and isolates are easily achieved with solvent extractions but, produce inferior effects both medicinally and recreationally. Discovering the “entourage effect” as described earlier, these elements of cannabis allowed old-world solventless techniques to be re-inspired and reinvigorated with the benefit of healthy genetics and a hearty understanding of past mistakes.

Having gone full circle, solventless techniques are again at the forefront of the cannabis industry, having attained near perfection for our current understanding of cannabis anatomy.

figure1 extract
The increasingly finer mesh works to separate and extract microscopic trichomes

Using the lessons and tendencies of prior extractions, the solventless method, in all its final forms, begin with the same initial process to make ice-water hash oil. Often referred to as solventless hash oil (SHO), fresh-frozen flowers are submerged in ice and water, soaked and agitated before the water is filtered through mesh screens. As these mesh screens are measured by microns, the increasingly finer mesh works to separate and extract microscopic trichomes that break free from the cannabis plant. The 120- and 90-micron mesh screens usually collect pristine trichome heads. After scraping the remaining material from the screens, its sieved onto trays where the hash can dry using modern techniques of sublimation. The results are beyond phenomenal and are sure to shock even life-long cannabis consumers. This technique isolates only the most potent and psychoactive parts of the plant, to produce white to clear solventless ice water hash. When done with precision 6-star ice water hash is formed. The hash can be sold and consumed as is or undergo additional solventless techniques to produce hash-rosin. Not to be confused with live-resins, rosin uses pressure and slight heat to squeeze ice-water hash, into hash-rosin. Some companies have elected to whip their rosins into a solventless badder or allow their hash rosins to undergo a cold cure process that creates textures and varieties like hash rosin sauce. Regardless of the final solventless product, they all begin as ice water extractions. These simple, natural methods of extraction are quickly being adopted by companies known for live resin. As solventless extracts are safer, cleaner and superior in quality to solvent chemical extractions, the race is on as the industry shifts toward a solventless future.

While I’d be happy to never see another solvent extract again, without the miraculous breakthroughs and advances in all aspects of cannabis manufacturing and production we may have not yet arrived where we are today. When using solvents to extract, the trichomes, which contain the full spectrum of terpenes and cannabinoids, are dissolved by the solvent, which is then evaporated off, leaving behind dissolved trichomes. In solventless hash, these trichomes remain whole and are never dissolved or broken down. Instead they are broken free by agitation in ice and water, separating the trichome heads from their less-active stems. These valuable trichomes heads contain everything pertinent and are never destroyed, dissolved or melted like solvent-extractions are forced to do. The benefit of keeping the heads of these trichomes whole results in a far superior product expressing the full profile of terpenes and cannabinoids the way mother nature intended. This natural profile of trichomes lends itself directly to the entourage effect that solvent extracts were found to be missing.

Extraction techniques are not equal and depend upon whether quality or mass production is the aim. Solvent extracts have quickly begun to represent the old-guard of mass-produced cannabis concentrates, with the solventless new-guard focusing on quality, small batch, hash-rosin excellence.

Cannabis Industry Journal

Cannabis Labs Conference Announced for Spring 2020

By Cannabis Industry Journal Staff
No Comments
Cannabis Industry Journal

EDGARTOWN, MA, Jan. 23, 2020 – Innovative Publishing Co., the publisher of Cannabis Industry Journal and organizer of the Cannabis Quality Conference & Expo is announcing the launch of the Cannabis Labs Conference. The event will address science, technology, regulatory compliance and quality management as they relate to the cannabis testing market. It will take place on June 2–3 at U.S. Pharmacopeia in Rockville, MD.

A few of the noteworthy topics that will be discussed at the conference include hemp testing under new federal guidelines, ISO 17025:2017 accreditation, potency and cannabinoid quantification, regulatory compliance and state regulations, microbiology and sample preparation best practices, among other topic areas.

The event is co-located with the Food Labs Conference, which will focus on regulatory, compliance and risk management issues that companies face in the area of testing and food laboratory management. More information about this event is available on Food Safety Tech. Some of the critical topics include a discussion of FDA’s proposed FSMA rule, Laboratory Accreditation Program for Food Testing; considerations in laboratory design; pathogen testing and detection; food fraud; advances in testing and lab technology; allergen testing, control and management; validation and proficiency testing; and much more.

“By presenting two industry conferences under one roof, we can provide attendees with technology, regulatory compliance and best practices that cannabis and food might share but also focused topics that are unique to cannabis or food laboratory industry needs,” said Rick Biros, president of Innovative Publishing Co., Inc. and director of the Food Labs Conference.

The call for abstracts is open until February 28.

The agenda and speakers will be announced in early March. Click here to learn more.

Strengthen Supply Chain Management with an Integrated ERP & CMS

By Daniel Erickson
1 Comment

Success in the cannabis industry is driven by a company’s ability to adapt to an ever-changing market and meet the demands of the evolving consumer. Selecting the right business management solution to handle the complexities of the growing cycle as well as daily operations and compliance requirements necessitates diligent research. Ensuring that the selected technology solution has a centralized database in a secure platform designed to reinforce quality throughout company operations is essential in today’s competitive industry. An ERP solution with integrated CMS capabilities helps businesses strengthen supply chain management by seamlessly incorporating cannabis cultivation with day-to-day company operations to efficiently deliver seed to sale capabilities and meet marketplace demands.

What are ERP & CMS?

Enterprise resource planning (ERP) is a business system in which all data is centralized – including finances, human resources, quality, manufacturing, inventory, sales and reporting. A cultivation management system (CMS) is an extension of an ERP solution to manage cannabis greenhouse operations, including growing, inventory and labor needs. A CMS maintains a detailed level of tracking to account for continuous cannabis growth periods that require extensive monitoring and incur a multitude of expenses. In an integrated solution, both the ERP and CMS data are managed under the same secure database to provide a forward and backward audit trail of all business processes. This visibility encompasses the entire supply chain from the management of supplier relationships to distribution – including growing, cultivating, extracting, manufacturing and shipping.

How do ERP & CMS strengthen supply chain processes?

Tracks individual plants and growth stages – By tracking plant inventories at the individual plant level in real-time with a unique plant identifier, greenhouse operations are optimized – monitoring the entire lifecycle of the plant throughout the germination, seedling, vegetative and flowering stages. Audit trails maintain regulatory compliance, including information such as terpene profiles and THC and CBD potency. Monitoring genealogy, mother and cloning, crossbreeding, plant genetics and clone propagation are key to success in this industry. Strain tracking is equally important, including identifying which strains are performing best, producing the most yield and how they are received by the marketplace. Tracking of the entire supply chain includes the recording of plant health, harvesting techniques, production, growth, costs, lab testing and batch yields – without any gaps in information.

PlantTag
A plant tagged with a barcode and date for tracking

Optimizes growing conditions to increase yields – By automatically documenting and analyzing data, insights into plant and greenhouse activities create streamlined processes for an optimal cannabis cultivation environment. This includes the monitoring of all growing activities such as space, climate, light cycles, moisture content, nutrient applications, fertilizer and other resources, which all have an effect on plant growth and yields. Most importantly, labor costs are monitored, as it is the highest expense incurred by growers. In an industry for which many companies have limited budgets, enabling efficient greenhouse planning, automation and workflows reduces overhead costs.

Integrates with regulatory compliance systems – Compliance is a mandatory part of the cannabis business, and many companies haven’t expended the effort to ensure their processes are meeting regulations. This has placed their licensing and business at risk. An integration that automates the transfer of required reporting information from the ERP to state government approved software such as METRC, Biotrack THC and Leaf Data Systems to ensure regulatory compliance is imperative. This streamlined process assures that reporting is accurate, timely and meets changing requirements in this complex industry.

Facilitates safety and quality control – With an ERP solution tracking all aspects of growing, manufacturing, packaging, distribution and sales, safety and quality are effectively secured throughout the supply chain. Despite the lack of federal legality and regulatory guidelines, proactive cannabis producers can utilize an ERP’s automated processes and best practices to ensure safe and consistent products. By standardizing and documenting food safety procedures, manufacturers mitigate the risk of cannabis-specific concerns (such as aflatoxins, plant pesticide residue, pest contamination and inconsistent levels of THC/CBD potency) as well as dangers common to traditional food manufacturers (such as improper employee procedures and training) for those in the edibles marketplace. Food safety initiatives and quality control measures documented within the ERP strengthen the entire supply chain.

Maintains recipes and formulations – In manufacturing, to achieve product consistency in regards to taste, texture, appearance, potency and expected results, complex recipe and formula management is a necessity – including monitoring of THC and CBD percentages. The calculation of specific nutritional values to provide accurate labeling and product packaging provides necessary information for consumers. Cannabis businesses have to evolve with the consumer buying habits and marketplace saturation by getting creative with their product offerings. With integrated R&D functionality, the expansion of new and innovative edibles, beverages and forms of delivery, as well as new extractions, tinctures, concentrates and other derivatives, helps to meet consumer demands.

Handles inventory efficiently – Established inventory control measures such as tracking stock levels, expiration dates and product loss are effectively managed in an ERP solution across multiple warehouses and locations. Cannabis manufacturers are able to maintain raw material and product levels, reduce waste, facilitate rotation methods and avoid overproduction to control costs. With the use of plant tag IDs and serial and lot numbers with forward and backward traceability, barcode scanning automatically links product information to batch tickets, shipping documents and labels – providing the ability to locate goods quickly in the supply chain if necessary in the event of contamination or recall. The real-time and integrated information available helps mitigate the risk of unsafe products entering the marketplace.

Food processing and sanitation
By standardizing and documenting food safety procedures, manufacturers mitigate the risk of cannabis-specific concerns

Utilizes user-based software permissions – Access to data and ability to execute transactions throughout the growing stages, production and distribution are restricted to designated employees with proper authorization – ensuring security and accountability throughout the inventory chain.

Manages supplier approvals – Assurance of safety is enhanced with the maintenance of detailed supplier information lists with test results to meet in-house quality and product standards. Quality control testing ensures that critical control points are monitored and only approved materials and finished products are released – keeping undeclared substances, harmful chemicals and impure ingredients from infiltrating the supply chain. When standards are not met, the system alerts stakeholders and alternate vendors can be sought.

Delivers recall preparedness – As part of an edible company’s food safety plan, recall plans that include the practice of performing mock recalls ensures that cannabis businesses are implementing food safety procedures within their facilities. With seed to sale traceability in an ERP solution, mitigating the risk of inconsistent, unsafe or contaminated products is readily maintained. Integrated data from the CMS solution provides greater insight into contamination issues in the growth stages.

An ERP solution developed for the cannabis industry with supporting CMS functionality embodies the inventory and quality-driven system that growers, processors, manufacturers and distributors seek to strengthen supply chain management. Offering a centralized, secure database, seed to sale traceability, integration to compliance systems, in-application quality and inventory control, formula and recipe management functionality and the ability to conduct mock recalls, these robust business management solutions meet the needs of a demanding industry. With a variety of additional features designed to enhance processes in all aspects of your cannabis operation the solution provides a framework to deliver truly supportive supply chain management capabilities.

Nevada Lab License Suspended Amid Potency Results Investigation

By Aaron G. Biros
1 Comment

Back in September, Nevada officials announced a state-wide investigation into how products with high levels of yeast and mold were sold in dispensaries and alleged that labs could possibly be manipulating potency numbers on certificates of analysis. Then in late November, regulators suspended the license for Certified Ag Labs, a cannabis testing laboratory based in Sparks, Nevada.

Nevada regulators issued a press release alleging that products tested at Certified Ag Labs “may be labeled incorrectly and could contain a different level of THC than what is listed on product packaging.” Randy Gardner, a managing member at Certified Ag Labs told the Las Vegas Review-Journal that investigators showed up to his lab in October twice to collect samples for follow up tests.

On November 18, a state notice posted on the door of the lab read, “Registration and License Suspended,” according to the Las Vegas Review-Journal.

After that, Gardner fired back. In a statement sent out shortly after, Gardner said they were accused of lying about THC test results to the Department of Taxation (the agency that regulates cannabis in Nevada).

“The state’s decision to suspend and potentially revoke our license came without warning,” says Gardner’s statement. “This accusation is as baseless as it is appalling, as we have been completely transparent with the state at all times. We take this matter very seriously, and based on my over 30 years of laboratory experience we believe these allegations unconscionable at best.”

“The state came in for their audit then came back and suspended our license without us having a chance to further clarify or refute their findings,” the statement reads. “We hope the state appreciates that a business and its employees’ livelihoods and reputations are at stake. We are pursuing our options and all legal and equitable redress will be on the table.”

The Department of Taxation, which isn’t releasing any more information currently, says they found “inaccurate and misleading” potency test results, once they tested the samples collected from Certified Ag Labs.

This isn’t the first time Nevada regulators have suspended lab testing licenses. When Nevada legalized adult use sales and the market became operational back in 2017, the state suspended a lab’s license in September of that year. Then in late 2017, Certified Ag Labs and another lab had their licenses suspended for “not following proper lab procedures and good laboratory practices,” according to Stephanie Klapstein, spokeswoman for the Department of Taxation. Those licenses were reinstated in January of 2018.

Soapbox

Searching for the Good Stuff

By Cindy Rice
1 Comment

Someone approached me the other day, wanting to know what was the real story about hemp and CBD.

He said he had “a guy” who gave him a CBD salve as part of a study, supposedly “the good stuff,” to help his knee. He couldn’t understand why he was the only one out of 20 people in the group that felt no relief. He happened to have this CBD salve with him, along with a second brand that he hadn’t yet tried. The “good stuff” had slick, colorful packaging, a beautiful logo and powerful marketing messages about the phytocannabinoids and essential oils in the jar. The other CBD product was in a dull grey tin, an ugly duckling, and not nearly so impressive on the outside- I’ll call it “Homer’s Brew.” My friend dismissed Homer’s Brew outright, as not even worth trying. I told him that not all CBD products are created equal, that you can’t always believe the claims on the package, including the cannabinoid potency displayed on the label.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

I told him to search for the Certificate of Analysis (COA) for each of the two products, specifically, lab test results validating the CBD dosage per serving, and also the breakdown of pesticides, heavy metals and microbials. He had to do a little digging and emailing, as it wasn’t readily available for either company, but the next day, results were in. The “good stuff” with the slick packaging and bold claims had mere trace amounts of CBD, with some hemp and essential oils- no tests for pesticides or contaminants of any kind. Hmmm, no wonder he was disappointed. Homer’s Brew’s COA came in with flying colors – a reputable lab had confirmed safe levels of pesticides, pathogens and heavy metals, and the CBD level was substantial, with a detailed cannabinoid breakdown in the lab report.

In spite of the varying legality of hemp-derived CBD products from one state to the next, consumers are gobbling up costly CBD salves, tinctures and edibles in markets, gyms and online. Like moths to a flame, they are pulled in by the CBD name and lofty promises, not always understanding what they are getting for their money. They trust that these products are safe, licensed, inspected and regulated by some agency, otherwise, “they wouldn’t be on the shelves, would they?”

FDAlogoIn spite of the 2018 Farm Bill, FDA still has not recognized the legality of products containing hemp-derived CBD, but some states have gone ahead and given them a green light anyway- check with your own jurisdiction to be sure. In the meantime, hemp-derived CBD products are slipping through the regulatory cracks, depending on the state. It is confusing, for sure, and buyer beware.

Separate yourself from the pack of snake-oil salesmen. Test your products for safety and accurate cannabinoid potency, and make a Certificate of Analysis readily available to your customers. Boldly portray your transparency and belief in the quality of your products through this COA.

Providing this information to consumers is the best path to success- safe, satisfied customers who will refer to their friends and family, and most likely come back for more of your “good stuff.”

From The Lab

Spotlight on Encore Labs: Servicing the Cannabis Market in California

By Kristen Hogerheide
No Comments

Encore Labs is a full-service cannabis testing lab in Pasadena, California, providing all testing needs required by California’s Bureau of Cannabis Control (BCC). The BCC requires that cannabis products being sold in licensed dispensaries be tested for cannabinoid potency, heavy metals, microbial impurities, moisture content and water activity, mycotoxins, residual pesticides, residual solvents and processing chemicals, foreign materials and terpenes. It is Encore Labs’ goal to guarantee the quality and potency of all cannabis products while ensuring regulatory guidelines are met in the state of California.

Encore Labs provides quick turnaround times on a consistent basis. They take pride in offering excellent customer service without diminishing the quality of the work that they do. Their team of laboratory analysts/technicians are passionate about the industry and will never compromise their integrity just to make an extra buck.

Co-Founder, Spencer Wong, mentions their personal connection with clients. “Our customers don’t just see us as their testing laboratory, they see Encore Labs as their laboratory partner,” says Wong. “Besides performing analytical testing, we have worked with many customers to help formulate new products and do root cause analysis to pinpoint inefficiencies in their manufacturing operations and cultivation farms.”

ISO/IEC 17025 Accreditation has been extremely valuable to Encore Labs, especially regarding the new cannabis testing industry. “Our experience with Perry Johnson Laboratory Accreditation, Inc. has been great and has allowed for a very smooth and straightforward initial accreditation process. Their staff has been knowledgeable and responsive every step of the way,” says Wong.

Accreditation establishes that steps are being taken regarding quality and that laboratories are meeting and exceeding the highest testing standards. It also provides further assurance and confidence in data results as well as validated methods, staff training procedures, equipment calibration and successful participation in proficiency testing/interlaboratory comparisons.

Starting out with 1500 square feet of laboratory space, within the last year Encore Labs has doubled its work area. In order to meet the growing demand of the cannabis testing industry, they have added plans to once again double in size by the end of 2019, as well as open a second laboratory by the end of 2020.

Analytical Instruments You Need to Start a Cannabis Testing Laboratory

By Bob Clifford
5 Comments

The cannabis industry is growing exponentially, and the use of cannabis for medical purposes is being adopted across the nation. With this boom in cannabis consumers, there has been an increasing need for knowledge about the product.

The role of testing labs has become crucial to the process, which makes owning and operating a lab more lucrative. Scientists testing for potency, heavy metals, pesticides, residual solvents, moisture, terpene profile, microbial and fungal growth, and mycotoxins/aflatoxins are able to make meaningful contributions to the medical industry by making sure products are safe, while simultaneously generating profits and a return on investment.

Here are the key testing instruments you need to conduct these critical analyses. Note that cannabis analytical testing requirements may vary by state, so be sure to check the regulations applicable to the location of your laboratory.

Potency Testing

High-performance liquid chromatograph (HPLC) designed for quantitative determination of cannabinoid content.

The most important component of cannabis testing is the analysis of cannabinoid profiles, also known as potency. Cannabis plants naturally produce cannabinoids that determine the overall effect and strength of the cultivar, which is also referred to as the strain. There are many different cannabinoids that all have distinct medicinal effects. However, most states only require testing and reporting for the dry weight percentages of delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). It should be noted that delta-9-tetrahydrocannabinolic acid (Δ9-THCA) can be converted to THC through oxidation with heat or light.

For potency testing, traditional high-performance liquid chromatography (HPLC) is recommended and has become the gold standard for analyzing cannabinoid profiles. Look for a turnkey HPLC analyzer that delivers a comprehensive package that integrates instrument hardware, software, consumables and proven HPLC methods.

Heavy Metal Testing

ICP-MS instrument for detecting heavy metals in cannabis.

Different types of metals can be found in soils and fertilizers, and as cannabis plants grow, they tend to draw in these metals from the soil. Heavy metals are a group of metals considered to be toxic, and the most common include lead, cadmium, arsenic and mercury. Most labs are required to test and confirm that samples are under the allowable toxic concentration limits for these four hazardous metals.

Heavy metal testing is performed by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS uses the different masses of each element to determine which elements are present within a sample and at what concentrations. Make sure to include accompanying software that provides assistant functions to simplify analysis by developing analytical methods and automatically diagnosing spectral interference. This will provide easy operation and analytical results with exceptionally high reliability.

To reduce running costs, look for a supporting hardware system that reduces the consumption of argon gas and electricity. For example, use a plasma ignition sequence that is optimized for lower-purity argon gas (i.e., 99.9% argon as opposed to more expensive 99.9999%).

Pesticide Testing

The detection of pesticides in cannabis can be a challenge. There are many pesticides that are used in commercial cannabis grow operations to kill the pests that thrive on the plants and in greenhouses. These chemicals are toxic to humans, so confirming their absence from cannabis products is crucial. The number of pesticides that must be tested for varies from state to state, with Colorado requiring only 13 pesticides, whereas Oregon and California require 59 and 66 respectively. Canada has taken it a step further and must test for 96 pesticides, while AOAC International is developing methods for testing for 104 pesticides. The list of pesticides will continue to evolve as the industry evolves.

Testing for pesticides is one of the more problematic analyses, possibly resulting in the need for two different instruments depending on the state’s requirements. For a majority of pesticides, liquid chromatography mass spectrometry (LCMS) is acceptable and operates much like HPLC but utilizes a different detector and sample preparation.

With excellent sensitivity and ultra-low detection limits, LC-MS/MS is an ideal technique for the analysis of pesticides.

Pesticides that do not ionize well in an LCMS source require the use of a gas chromatography mass spectrometry (GCMS) instrument. The principles of HPLC still apply – you inject a sample, separate it on a column and detect with a detector. However, in this case, a gas (typically helium) is used to carry the sample.

Look for a LC-MS/MS system or HPLC system with a triple quadrupole mass spectrometer that provides ultra-low detection limits, high sensitivity and efficient throughput. Advanced systems can analyze more than 200 pesticides in 12 minutes.

For GCMS analysis, consider an instrument that utilizes a triple quadrupole mass spectrometer to help maximize the capabilities of your laboratory. Select an instrument that is designed with enhanced functionality, analysis software, databases and a sample introduction system. Also include a headspace autosampler, which can also be used for terpene profiles and residual solvent testing.

Residual Solvent Testing

Residual solvents are chemicals left over from the process of extracting cannabinoids and terpenes from the cannabis plant. Common solvents for such extractions include ethanol, butane, propane and hexane. These solvents are evaporated to prepare high-concentration oils and waxes. However, it is sometimes necessary to use large quantities of solvent in order to increase extraction efficiency and to achieve higher levels of purity. Since these solvents are not safe for human consumption, most states require labs to verify that all traces of the substances have been removed.

Testing for residual solvents requires gas chromatography (GC). For this process, a small amount of extract is put into a vial and heated to mimic the natural evaporation process. The amount of solvent that is evaporated from the sample and into the air is referred to as the “headspace.” The headspace is then extracted with a syringe and placed in the injection port of the GC. This technique is called full-evaporated technique (FET) and utilizes the headspace autosampler for the GC.

Look for a GCMS instrument with a headspace autosampler, which can also be used for pesticide and terpene analysis.

Terpene Profile Testing

Terpenes are produced in the trichomes of the cannabis leaves, where THC is created, and are common constituents of the plant’s distinctive flavor and aroma. Terpenes also act as essential medicinal hydrocarbon building blocks, influencing the overall homeopathic and therapeutic effect of the product. The characterization of terpenes and their synergistic effect with cannabinoids are key for identifying the correct cannabis treatment plan for patients with pain, anxiety, epilepsy, depression, cancer and other illnesses. This test is not required by most states, but it is recommended.

The instrumentation that is used for analyzing terpene profiles is a GCMS with headspace autosampler with an appropriate spectral library. Since residual solvent testing is an analysis required by most states, all of the instrumentation required for terpene profiling will already be in your lab.

As with residual solvent testing, look for a GCMS instrument with a headspace autosampler (see above). 

Microbe, Fungus and Mycotoxin Testing

Most states mandate that cannabis testing labs analyze samples for any fungal or microbial growth resulting from production or handling, as well as for mycotoxins, which are toxins produced by fungi. With the potential to become lethal, continuous exposure to mycotoxins can lead to a buildup of progressively worse allergic reactions.

LCMS should be used to qualify and identify strains of mycotoxins. However, determining the amount of microorganisms present is another challenge. That testing can be done using enzyme linked immunosorbent assay (ELISA), quantitative polymerase chain reaction (qPCR) or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), with each having their advantages and disadvantages.

For mycotoxin analysis, select a high-sensitivity LC-MS/MS instrument. In addition to standard LC, using an MS/MS selective detector enables labs to obtain limits of detection up to 1000 times greater than conventional LC-UV instruments.

For qPCR and its associated needs, look for a real-time PCR amplification system that combines thermal cyclers with optical reaction modules for singleplex and multiplex detection of fluorophores. These real-time PCR detection systems range from economical two-target detection to sophisticated five-target or more detection systems. The real-time detection platform should offer reliable gradient-enabled thermal cyclers for rapid assay optimization. Accompanying software built to work with the system simplifies plate setup, data collection, data analysis and data visualization of real-time PCR results.

Moisture Content and Water Activity Testing

Moisture content testing is required in some states. Moisture can be extremely detrimental to the quality of stored cannabis products. Dried cannabis typically has a moisture content of 5% to 12%. A moisture content above 12% in dried cannabis is prone to fungal growth (mold). As medical users may be immune deficient and vulnerable to the effects of mold, constant monitoring of moisture is needed. Below a 5% moisture content, the cannabis will turn to a dust-like texture.

The best way to analyze the moisture content of any product is using the thermogravimetric method with a moisture balance instrument. This process involves placing the sample of cannabis into the sample chamber and taking an initial reading. Then the moisture balance instrument heats up until all the moisture has been evaporated out of the sample. A final reading is then taken to determine the percent weight of moisture that was contained in the original sample.

A moisture balance can provide accurate determination of moisture content in cannabis.

Look for a moisture balance that offers intuitive operation and quick, accurate determination of moisture content. The pan should be spacious enough to allow large samples to be spread thinly. The halogen heater and reflector plate should combine to enable precise, uniform heating. Advanced features can include preset, modifiable measurement modes like automated ending, timed ending, rapid drying, slow drying and step drying.

Another method for preventing mold is monitoring water activity (aW). Very simply, moisture content is the total amount of water available, while water activity is the “free water” that could produce mold. Water activityranges from 0 to 1. Pure water would have an aW of 1.0. ASTM methods D8196-18 and D8297-18 are methods for monitoring water activity in dry cannabis flower. The aW range recommended for storage is 0.55 to 0.65. Some states recommend moisture content to be monitored, other states monitor water activity, and some states such as California recommend monitoring both.

Final Thoughts

As you can see, cannabis growers benefit tremendously from cannabis testing. Whether meeting state requirements or certifying a product, laboratory testing reduces growers’ risk and ensures delivery of a quality product. As medicinal and recreational cannabis markets continue to grow, analytical testing will ensure that consumers are receiving accurately

labeled products that are free from contamination. That’s why it is important to invest in the future of your cannabis testing lab by selecting the right analytical equipment at the start of your venture.

PerkinElmer Awarded Five Emerald Test Badges

By Aaron G. Biros
1 Comment

According to a press release published today, Emerald Scientific awarded PerkinElmer five badges for The Emerald Test, a bi-annual Inter-Laboratory Comparison and Proficiency Test (ILC/PT) program. Awarding the badges for Perkin Elmer’s instruments and testing methods affirms their ability to accurately detect pesticides, heavy metals, residual solvents, terpenes and potency in cannabis.

According to Greg Sears, vice president and general manager of Food, Chromatography & Mass Spectrometry, Discovery & Analytical Solutions at PerkinElmer, they are the only instrument manufacturer to receive all five accolades. “To date, PerkinElmer is the only solutions provider to successfully complete these five Emerald Scientific proficiency tests,” says Sears. “The badges underscore our instruments’ ability to help cannabis labs meet the highest standards available in the industry and effectively address their biggest pain point: Navigating diverse regulations without compromising turnaround time.”

The instruments used were PerkinElmer’s QSight 220 and 420 Triple Quad systems, which are originally designed for accurate and fast detection/identification of “pesticides, mycotoxins and emerging contaminants in complex food, cannabis and environmental samples,” reads the press release. They also used their ICP-MS, GC/MS and HPLC systems for the badges.

PerkinElmer says they developed a single LC/MS/MS method using their QSight Triple Quad systems, which helps labs test for pesticides and mycotoxins under strict regulations in states like California and Oregon. They performed studies that also confirm their instruments can help meet Canada’s testing requirements, which set action limits nearly 10 times lower than California, according to the press release.

Kelly O'Connor
Soapbox

Dishonest Potency Testing In Oregon Remains A Problem

By Kelly O’Connor
9 Comments
Kelly O'Connor

Oregon, we have a problem.

Anyone with a search engine can piece together how much THC certain strains produce and what their characteristics are. Oh wait- there’s an app for that… or dozens, I lose count these days.

Nefarious lab results are rampant in our communityLet’s take one of my favorites, Dutch Treat; relaxing, piney and sweet with a standard production of 18-25% THC, according to three different reviews online. So, did I raise an eyebrow when I saw Dutch Treat on Oregon shelves labeled at 30% THC? Did I take it in to an independent, accredited lab and have it tested for accuracy? You bet your inflated potency results I did! The results? Disappointing.

Nefarious lab results are rampant in our community; it is hurting every participant in our industry affected by the trade, commerce and consumption of recreational cannabis.

“I have had labs ask me what I want my potency numbers to look like and make an offer,” says David Todd, owner and operations manager of Glasco Farms, a craft cannabis producer in central Oregon. “It’s insane- I want to stand behind my product and show through scientific fact that I produce a superior flower.”

But without enforcement of lab practice standards, producers are being pressured to play dirty. In her third year cultivating at a two-tier recreational cannabis farm, a producer who wished to remain anonymous sent me an email about the pressures she is up against to produce high THC strains:

“The only sure way to get my product on the shelf at a profitable price is with THC 25% or above. Not a lot of strains have that potential, but the market has plenty with 28% to 32% floating around so I have to go with the same labs as the rest of the independent farmers to get the best numbers I can. The lab I use … return(s) good numbers.”

Those “good numbers,” aka high THC %, are the driving force of sales. A strain tests at 20% THC and it sells for $1,000/lb. Then it tests at 25% THC, and sells for $1300/lb. You produce cannabis for sale- this is your business. And labs are telling you that they can manipulate samples and reports to make you more money. Everyone else is doing it. If you don’t, your product isn’t “good enough” to sell. What do you do?Labs should operate ethically.

It’s a vicious cycle perpetuated by lies, lack of enforcement resources, coercion and undereducation. We are all responsible. Yet, ask who the source of the problem is and everyone points fingers across the circle.

The consumers are uneducated about cannabis and only focus on THC. The dispensaries and budtenders should be educating them. Producers should take a stand and use an honest lab. Labs should operate ethically.

I repeat: Oregon, we have a problem.

It’s time to stop living in a land where Dutch Treat is hitting 30% THC. It’s time for everyone to demand auditing and ethics.

Laws have been set forth on how to sample, prep, test and report analyses for cannabis to ensure fair commerce, consumer health and public safety. But there’s a clear need to blind test the different labs, and for unbiased, third-party research and development.

As federal eyes turn to the Oregon to investigate black market activity, regulatory bodies are tightening their grip on licensees to maintain legal validity and avoid shut down.

The time to demand change and integrity is now.The crack-down began on August 23, 2018, when the OLCC investigated several prominent producers’ practices. Black market distribution incurred the harshest penalty; the OLCC revoked their wholesale license due to multiple violations.

“We want good compliant, law-abiding partners as OLCC marijuana licensees,” says Paul Rosenbaum, OLCC Commission Chair. “We know the cannabis industry is watching what we’re doing, and believe me, we’ve taken notice. We’re going to find a way to strengthen our action against rule breakers, using what we already have on the books, and if need be working with the legislature to tighten things up further.”

Trends in METRC data lay the foundation for truth, and it’s time to put it to use. “The Cannabis Tracking System worked as it should enabling us to uncover this suspicious activity,” says Steven Marks, OLCC Executive Director. “When we detect possible illegal activity, we need to take immediate steps …”

Potency fraud might not be at the top of the list for investigation, but labs and producers are breaking the law, and there will be consequences. ORELAP and OLCC have the right to investigate and revoke licenses of labs that are falsifying data and consumers can file claims with the Department of Justice.

The time to demand change and integrity is now.