Tag Archives: potency

Shimadzu, Cure And CK Sciences Partner On R&D of Pharmaceutical Cannabis Products

By Aaron G. Biros
1 Comment

Yesterday, Shimadzu announced the formation of a partnership with Cure Pharmaceutical Group and CK Sciences to research and develop pharmaceutical cannabis-based products, according to a press release. The three organizations entered a collaborative agreement with the goal of researching and developing products, then moving them through clinical trials using FDA guidelines.

According to the press release, the partnership’s primary goal will be researching and profiling the synergistic effects of the cannabinoids and terpenes, called the “Entourage Effect.”

Shimadzu, a well-know analytical instrument manufacturer, has been making a name for itself in the scientific cannabis space with a number of exciting new ventures. They have worked extensively with cannabis laboratories throughout the country in refining methods and improving analytical chemistry in the space. For example, Shimadzu powers EVIO Labs Florida with over $1.2 million in the latest testing instrumentation.

The Cannabis Analyzer For Potency

Tracy Ryan, chief executive officer and founder of CK Sciences, says outfitting their lab for pharmaceutical research was a big priority for starting their venture. “When we met with Shimadzu, and we saw their passion for our mission, we knew we were in incredible hands! When analyzing cannabis everything has to be so precise,” says Ryan. “With Shimadzu’s platforms and team of brilliant scientists supporting our efforts, we have already set ourselves up for success.”

Back in March, Shimadzu launched their Cannabis Analyzer for Potency, a high-performance liquid chromatograph (HPLC) designed specifically for quantitative determination of cannabinoid content. The organizations in the partnership will be using that instrument, in addition to a headspace Gas Chromatograph Mass Spectrometer (GCMS) for terpene profiling. Both Cure and CK will use the instruments to generate data, with the goal to validate cannabis as a viable pharmaceutical treatment, according to the press release.

Bob Clifford, Ph.D., general manager of marketing for Shimadzu, says they are excited to work with the organizations. “The emerging pharmaceutical cannabis market requires dedicated, thoughtful leaders eager to showcase the pharmaceutical benefits of cannabis on a scientific level,” says Clifford. “The Cure/CK Sciences group has continuously demonstrated such a leadership commitment, and we’re excited about the opportunities this agreement provides.”

Quality Assurance In The Field: Instruments For Growers & Processors

By Aaron G. Biros
2 Comments

As the cannabis marketplace evolves, so does the technology. Cultivators are scaling up their production and commercial-scale operations are focusing more on quality. That greater attention to detail is leading growers, extractors and infused product manufacturers to use analytical chemistry as a quality control tool.

Previously, using analytical instrumentation, like mass spectrometry (MS) or gas chromatography (GC), required experience in the laboratory or with chromatography, a degree in chemistry or a deep understanding of analytical chemistry. This leaves the testing component to those that are competent enough and scientifically capable to use these complex instruments, like laboratory personnel, and that is still the case. As recent as less than two years ago, we began seeing instrument manufacturers making marketing claims that their instrument requires no experience in chromatography.

Instrument manufacturers are now competing in a new market: the instrument designed for quality assurance in the field. These instruments are more compact, lighter and easier to use than their counterparts in the lab. While they are no replacement for an accredited laboratory, manufacturers promise these instruments can give growers an accurate estimate for cannabinoid percentages. Let’s take a look at a few of these instruments designed and marketed for quality assurance in the field, specifically for cannabis producers.

Ellutia GC 200 Series

Shamanics, a cannabis extractor in Amsterdam, uses Ellutia’s 200 series for QA testing

Ellutia is an instrument manufacturer from the UK. They design and produce a range of gas chromatographs, GC accessories, software and consumables, most of which are designed for use in a laboratory. Andrew James, marketing director at Ellutia, says their instrument targeting this segment was originally designed for educational purposes. “The GC is compact in size and lightweight in stature with a full range of detectors,” says James. “This means not only is it portable and easy to access but also easy to use, which is why it was initially intended for the education market.”

Andrew James, marketing director at Ellutia

That original design for use in teaching, James says, is why cannabis producers might find it so user-friendly. “It offers equivalent performance to other GC’s meaning we can easily replace other GC’s performing the same analysis, but our customers can benefit from the lower space requirement, reduced energy bills, service costs and initial capital outlay,” says James. “This ensures the lowest possible cost of ownership, decreasing the cost per analysis and increasing profits on every sample analyzed.”

Shamanics, a cannabis oil extraction company based in Amsterdam, uses Ellutia’s 200 series for quality assurance in their products. According to Bart Roelfsema, co-founder of Shamanics, they have experienced a range of improvements in monitoring quality since they started using the 200 series. “It is very liberating to actually see what you are doing,” says Roelfsema. “If you are a grower, a manufacturer or a seller, it is always reassuring to see what you have and prove or improve on your quality.” Although testing isn’t commonplace in the Netherlands quite yet, the consumer demand is rising for tested products. “We also conduct terpene analysis and cannabinoid acid analysis,” says Roelfsema. “This is a very important aspect of the GC as now it is possible to methylate the sample and test for acids; and the 200 Series is very accurate, which is a huge benefit.” Roelfsema says being able to judge quality product and then relay that information to retail is helping them grow their business and stay ahead of the curve.

908 Devices G908 GC-HPMS

908 Devices, headquartered in Boston, is making a big splash in this new market with their modular G908 GC-HPMS. The company says they are “democratizing chemical analysis by way of mass spectrometry,” with their G908 device. That is a bold claim, but rather appropriate, given that MS used to be reserved strictly for the lab environment. According to Graham Shelver, Ph.D., commercial leader for Applied Markets at 908 Devices Inc., their company is making GC-HPMS readily available to users wanting to test cannabis products, who do not need to be trained analytical chemists.

The G908 device.

Shelver says they have made the hardware modular, letting the user service the device themselves. This, accompanied by simplified software, means you don’t need a Ph.D. to use it. “The “analyzer in a box” design philosophy behind the G908 GC-HPMS and the accompanying JetStream software has been to make using the entire system as straightforward as possible so that routine tasks such as mass axis calibration are reduced to simple single actions and sample injection to results reporting becomes a single button software operation,” says Shelver.

He also says while it is designed for use in the field, laboratories also use it to meet higher-than-usual demand. Both RM3 Labs in Colorado, and ProVerde in Massachusetts, use G908. “RM3’s main goal with the G908 is increased throughput and ProVerde has found it useful in adding an orthogonal and very rapid technique (GC-HPMS) to their suite of cannabis testing instruments,” says Shelver.

Orange Photonics LightLab Cannabis Analyzer

Orange Photonics’ LightLab Cannabis Analyzer

Dylan Wilks, a third generation spectroscopist, launched Orange Photonics with his team to produce analytical tools that are easy to use and can make data accessible where it has been historically absent, such as onsite testing within the cannabis space. According to Stephanie McArdle, president of Orange Photonics, the LightLab Cannabis Analyzer is based on the same principles as HPLC technology, combining liquid chromatography with spectroscopy. Unlike an HPLC however, LightLab is rugged, portable and they claim you do not need to be a chemist to use it.

“LightLab was developed to deliver accurate repeatable results for six primary cannabinoids, D9THC, THC-A, CBD, CBD-A, CBG-A and CBN,” says McArdle. “The sample prep is straightforward: Prepare a homogenous, representative sample, place a measured portion in the provided vial, introduce extraction solvent, input the sample into LightLab and eight minutes later you will have your potency information.” She says their goal is to ensure producers can get lab-grade results.

The hard plastic case is a unique feature of this instrument

McArdle also says the device is designed to test a wide range of samples, allowing growers, processors and infused product manufacturers to use it for quality assurance. “Extracts manufacturers use LightLab to limit loss- they accurately value trim purchases on the spot, they test throughout their extraction process including tests on spent material (raffinate) and of course the final product,” says McArdle. “Edibles manufacturers test the potency of their raw ingredients and check batch dosing. Cultivators use LightLab for strain selection, maturation monitoring, harvesting at peak and tinkering.”

Orange Photonics’ instrument also connects to devices via Wi-Fi and Bluetooth. McArdle says cannabis companies throughout the supply chain use it. “We aren’t trying to replace lab testing, but anyone making a cannabis product is shooting in the dark if they don’t have access to real time data about potency,” says McArdle.

Colorado To Begin Requiring Potency Testing For Medical Infused Products

By Aaron G. Biros
No Comments

After a delay due to their proficiency testing program roll out, the Colorado Marijuana Enforcement Division (MED) will now require all medical infused products and concentrates be tested for potency and homogeneity, starting November 1st, 2017.

After November 1st, all production batches of concentrates from medical product manufacturers will need to have a potency test before being sold, transferred or processed. The same goes for medical infused products, such as edibles and topicals. The homogeneity test refers to making sure THC or other active ingredients are distributed evenly throughout the product.

According to Alex Valvassori, author of a regulatory compliance-focused blog post on Complia’s website, these new testing requirements could lead to a surge in pricing, passed on to patients. He also recommends dispensaries take a close look at labels coming in from suppliers. They need to make sure potency data is listed clearly on the label to stay compliant.

Production batches created before November 1st are not required to meet the new testing regulations, but any and all batches after that date will be required to perform those tests.

Nevada Cannabis Lab License Suspended

By Aaron G. Biros
1 Comment

Last month, G3 Labs LLC, a Las Vegas-based cannabis-testing lab, had their license suspended for an unknown regulatory compliance issue. According to Stephanie Klapstein, spokeswoman for the Nevada Department of Taxation, the reason why their license was suspended is confidential. “We can’t disclose the details of the suspension, including anything about penalties,” says Klapstein.

When asked about the license suspension, Klapstein told us it was a compliance issue, but could not go into detail. “I can confirm that we did suspend G3’s license for compliance issues,” says Klapstein. “We are working with them to bring them back into compliance. In the meantime, they cannot operate.” Klapstein told the Las Vegas Review-Journal that the Nevada Department of Agriculture tested cannabis samples from the lab to determine if there was a need for a recall. She also confirmed with us that the compliance issue does not necessitate any product recalls.

According to the Las Vegas Review-Journal, this is the first time a cannabis business license is suspended in the state since the beginning of adult-use sales back in July of this year. Nevada’s cannabis regulations require independent lab testing of products before they reach shelves. That required testing includes checking for potency, microbials, pesticides, residual solvents, moisture content, growth regulators, Mycotoxins and foreign matter.

When we reached out to G3 Labs, they did not immediately respond to a request for comment.

Dr. Chao-Hsiung Tung, lab director at G3 Labs, told the Las Vegas Review-Journal that they couldn’t comment, based on advice from their legal counsel. “G3 Labs is actively sorting out the issues with the Department,” Dr. Tung told the Review-Journal in an email.

EVIO Logo

EVIO Labs Expands To Florida

By Aaron G. Biros
1 Comment
EVIO Logo

Currently, there are no lab testing regulations for Florida’s medical cannabis market. Chris Martinez, co-founder and chief operating officer of EVIO Labs Florida, a veteran-owned business, is looking to change that.

Chris Martinez, co-founder and president of EVIO Labs Florida

When Martinez co-founded EVIO Labs Florida, he saw the need for a dedicated cannabis lab to ensure safety and quality of medicine for patients in the state. Partnering with EVIO Labs to accomplish this goal, Martinez secured a 5,500 sq. ft. facility in Broward County to test for potency, pesticides, microbial contaminants, terpenes, residual solvents and heavy metals. Their lab, a first of its kind in the industry, qualifies as a true pharmaceutical-grade clean room. This week, Martinez also secured their 2nd laboratory location in the City of Gainsville, where they will test for potency, microbials, terpenes and residual solvents. And he isn’t doing it on the cheap. “Our Broward lab is powered by Shimadzu with over $1.2M in the latest testing equipment utilizing LCMS technology with the world’s fastest polarity switching time of 5 m/sec and scan speeds of 30,000 u/sec with UF Qarray sensitivity 90 times that of previously available technologies,” says Martinez.

Martinez, an entrepreneur at heart, started the lab with a team of experts to become the first completely cannabis-focused laboratory in Florida. Jorge Segredo, their head chemist and quality assurance director, has over 18 years of experience in the development of nutraceutical and pharmaceutical products under ISO and FDA accreditation. Segredo has helped launch three independent FDA-accredited laboratories and has extensive knowledge of HPLC, GCMS, LCMS, ICPMS technologies and development/validation of testing methods and procedures. Cynthia Brewer, their director of operations, was an active participant in the 2017 state legislative session and has been an advocate for medical cannabis, working with legislators on a suitable framework to increase patient access to cannabis.

The EVIO team is using instruments from Shimadzu

EVIO is one of the nation’s leaders in cannabis testing, research science and advisory services. It is an evolving network of laboratories with nine EVIO cannabis laboratories operating in five different states: Oregon, Colorado, Massachusetts, Florida and California. “After speaking with industry chemists around the country for months, the EVIO name was constantly brought up in conversation,” says Martinez. “When we spoke with the EVIO Team it was an easy decision for us to partner.” He says Lori Glauser, chief operating officer of EVIO, and William Waldrop, chief executive officer of EVIO, are truly visionaries in the cannabis industry.

According to Martinez, their licensing agreement with EVIO Labs (OTC:SGBYD) marked a first for the publicly traded company with exclusivity in the Florida market. The agreement includes proprietary testing methodologies, operating procedures, training and support.

In addition to testing cannabis for safety and quality, they are launching a technology platform called MJ Buddy, essentially a software tool that takes efficacy feedback from patients and uses testing and genetic data they gather from EVIO Labs across the country. “This will provide real data to the cannabis industry as to the medical benefits for thousands of patients in relation to the genotype and cannabinoid profiles of their medicine,” says Martinez.

Of the states that have legalized some form of cannabis, a large number of them have some lab testing regulations on the book, with some more comprehensive than others. Martinez says he hopes the Florida Department of Health, Office of Medical Marijuana Use follows some of the more thorough state programs, such as Oregon. His team has compiled a set of documents for regulators with recommendations for regulating the lab testing industry.

Without any regulations on paper, it is up to businesses to produce safe and quality medicine, without any oversight. EVIO Labs Florida follows FDA Good Laboratory Practices, has an ISO 17025:2005 accreditation pending, and is working on TNI 2016 accreditation.

When discussing what he wants to see happen with Florida’s regulatory framework, Martinez says the rules need to be specific to Florida. For example, due to the climate being so humid, microbial contaminant testing for things like yeast and mold will be particularly imperative. Because processing methods like butane and alcohol extraction are legal, he emphasizes the need for comprehensive residual solvents testing. “The most important regulation would be to have the laboratories select the samples at the MMTC facility and have the state randomly verify laboratory results to ensure accurate unbiased testing,” says Martinez.

In addition to that, he hopes their pesticide thresholds will be realistic and based on actual science. “We believe the public should receive carcinogenic data for products that are inhaled,” says Martinez. “Chemicals may be introduced into the processing of cannabis to vape liquid that may cause harm. This is important information for public health and communication of the risk related to exposure to such materials.” Martinez says EVIO Labs Florida was founded on the belief that through technology and science we can increase safety and patient outcomes.

emerald test retail

Analyzing The Emerald Test Results: Cannabis Labs Making Progress

By Aaron G. Biros
No Comments
emerald test retail

The Emerald Test advisory panel recently convened to review the results from the Fall 2016 round of the semi-annual Inter-Laboratory Comparison and Proficiency Test (ILC/PT), ahead of the third annual Emerald Conference just a few weeks away. After reviewing and analyzing the results, the panel noticed a significant improvement across the board over their Spring 2016 round of proficiency testing.rsz_emerald-scientific_letterhead-1

Emerald Scientific’s ILC/PT program is a tool laboratories use to check how accurate their testing capabilities are compared to other labs. A lab receiving The Emerald Test badge indicates their testing meets the criteria established by the panel to demonstrate competency. This means that they were within two standard deviations of the consensus mean for all analytes tested, according to Wes Burk, vice president of Emerald Scientific. He says the labs performed better than expected on both the microbial and pesticide tests.

Wes Burk, vice president of Emerald Scientific.
Wes Burk, vice president of Emerald Scientific.

emerald test retailEach lab has access to raw, anonymized data including a consensus mean, z-scores and kernel density plots. This round measured how well 35 cannabis labs perform in testing for potency, pesticides, residual solvents and microbial contaminants such as E. coli, Salmonella, Coliform, yeast and mold.

The advisory panel includes: Robert Martin, Ph.D., founder of CW Analytical, Cynthia Ludwig, director of technical services at AOCS, Rodger Voelker, Ph.D., lab director, OG Analytical, Tammie Mussitsch, QA manager at RJ Lee Group, Shawn Kassner, senior scientist at Neptune & Company, Inc., Jim Roe, scientific director at Steep Hill Labs, Chris Hudalla, Ph.D., founder and chief scientific officer at ProVerde Labs, Sytze Elzinga, The Werc Shop and Amanda Rigdon, Chief Technical Officer at Emerald Scientific.

amandarigdon
Amanda Rigdon, chief technical officer at Emerald Scientific

According to Amanda Rigdon, chief technical officer at Emerald Scientific, the labs performed very well in potency, residual solvents and microbial testing PTs. This is the first year the proficiency testing includes pesticides. “All of the labs did a great job identifying every pesticide in our hemp-based PT, but some more work will most likely have to be done to bring quantitative results in line,” says Rigdon. “Since this was the first pesticide PT we had offered, we were pretty conservative when choosing analytes and their levels. For the most part, analytes and levels were taken from the Oregon pesticide list, which is widely recognized to be the most reasonable and applicable pesticide list out there to date.” They covered pesticides of high concern, like abamectin and Myclobutanil, but also included a wide range of other pesticides that labs are expected to encounter.

Shawn Kassner, senior scientist at Neptune
Shawn Kassner, senior scientist at Neptune & Company, Inc.

Shawn Kassner, senior scientist at Neptune & Company, Inc., believes microbial contamination proficiency testing should be a priority for improving public health and safety going forward. Although five participating labs did not receive badges for the microbial contamination PTs, panel members say the overall performance was really quite good. “Microbiology testing are essential analyses for all cannabis products and it’s just slower in regulatory implementation than potency testing,” says Kassner. “The risk of Salmonella and E. coli to an individual using a medical cannabis product could be very life threatening. Microbiology contamination is a huge concern for any public health agency, which is why we have seen that microbiology testing is usually the first analytical test required after potency.” Kassner notes that there were few outliers and with each Emerald PT program, he is seeing an improvement in overall laboratory performance.

For The Emerald Test’s next round, the panel hopes to make some improvements in the test’s robustness and consistency, like obtaining assigned values for all samples and comparing to a consensus mean. “We want to develop permanent badge criteria, streamline the appeals process and possibly implement a qualitative performance review in the pesticide PT,” says Burk. For the next round of pesticide PTs, they want to build a better list of pesticides to cover more states, allowing labs to pick a set based on their state’s regulations. Burk says they also want to collect data on whether or not matrix-matched curves were used for pesticides.

Rodger Voelker, Cynthia Ludwig and Shawn Kassner, all members of the advisory panel, will be speaking at the Emerald Conference, discussing some of their findings from this round of proficiency testing. The Emerald Conference will take place February 2nd and 3rd in San Diego, CA.

The Practical Chemist

Potency Analysis of Cannabis and Derivative Products: Part 2

By Rebecca Stevens
3 Comments

As mentioned in Part 1, the physiological effects of cannabis are mediated by a group of structurally related organic compounds known as cannabinoids. The cannabinoids are biosynthetically produced by a growing cannabis plant and Figure 1 details the biosynthetic pathways leading to some of the most important cannabinoids in plant material.

Potency figure 1
Figure 1: The biosynthetic pathway of phytocannabinoid production in cannabis has been deeply studied through isotopic labeling experiments

The analytical measurement of cannabinoids is important to ensure the safety and quality of cannabis as well as its extracts and edible formulations. Total cannabinoid levels can vary significantly between different cultivars and batches, from about 5% up to 20% or more by dry weight. Information on cannabinoid profiles can be used to tailor cultivars for specific effects and allows end users to select an appropriate dose.

Routine Analysis vs. Cannabinomics 

Several structurally analogous groups of cannabinoids exist. In total, structures have been assigned for more than 70 unique phytocannabinoids as of 2005 and the burgeoning field of cannabinomics seeks to comprehensively measure these compounds.¹

Considering practical potency analysis, the vast majority of cannabinoid content is accounted for by 10-12 compounds. These include Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabivarian (THCV), cannabidivarin (CBDV) and their respective carboxylic acid forms. The cannabinoids occur primarily as carboxylic acids in plant material. Decarboxylation occurs when heat is applied through smoking, vaporization or cooking thereby producing neutral cannabinoids which are more physiologically active.

Potency Analysis by HPLC and GC

Currently, HPLC and GC are the two most commonly used techniques for potency analysis. In the case of GC, the heat used to vaporize the injected sample causes decarboxylation of the native cannabinoid acids. Derivatization of the acids may help reduce decarboxylation but overall this adds another layer of complexity to the analysis² ³. HPLC is the method of choice for direct analysis of cannabinoid profiles and this technique will be discussed further.

A sample preparation method consisting of grinding/homogenization and alcohol extraction is commonly used for cannabis flower and extracts. It has been shown to provide good recovery and precision² ³. An aliquot of the resulting extract can then be diluted with an HPLC compatible solvent such as 25% water / 75% acetonitrile with 0.1% formic acid. The cannabinoids are not particularly water soluble and can precipitate if the aqueous percentage is too high.

To avoid peak distortion and shifting retention times the diluent and initial mobile phase composition should be reasonably well matched. Another approach is to make a smaller injection (1-2 µL) of a more dissimilar solvent. The addition of formic acid or ammonium formate buffer acidifies the mobile phase and keeps the cannabinoid acids protonated.

The protonated acids are neutral and thus well retained on a C18 type column, even at higher (~50% or greater) concentrations of organic solvent² ³.

Detection is most often done using UV absorbance. Two main types of UV detectors are available for HPLC, single wavelength and diode array. A diode array detector (DAD) measures absorbance across a range of wavelengths producing a spectrum at each point in a chromatogram while single wavelength detectors only monitor absorbance at a single user selected wavelength. The DAD is more expensive, but very useful for detecting coelutions and interferences.

References

  1. Chemical Constituents of Marijuana: The Complex Mixture of Natural Cannabinoids. Life Sciences, 78, (2005), pp. 539
  2. Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis. Journal of AOAC International, 98, (2015), pp. 1503
  3. Innovative Development and Validation of an HPLC/DAD Method for the Qualitative and Quantitative Determination of Major Cannabinoids in Cannabis Plant Material. Journal of Chromatography B, 877, (2009), pp. 4115

Rebecca is an Applications Scientist at Restek Corporation and is eager to field any questions or comments on cannabis analysis, she can be reached by e-mail, rebecca.stevens@restek.com or by phone at 814-353-1300 (ext. 2154)

OHA Addresses Oregon Growing Pains, Changes Testing Rules

By Aaron G. Biros
No Comments

Last week, the Oregon Health Authority (OHA) published a bulletin, outlining new temporary testing requirements effective immediately until May 30th of next year. The changes to the rules come in the wake of product shortages, higher prices and even some claims of cultivators reverting back to the black market to stay afloat.img_6245

According to the bulletin, these temporary regulations are meant to still protect public health and safety, but are “aimed at lowering the testing burden for producers and processors based on concerns and input from the marijuana industry.” The temporary rules, applying to both medical and retail products, are a Band-Aid fix while the OHA works on a permanent solution to the testing backlog.

Here are some key takeaways from the rule changes:

Labeling

  • THC and CBD amounts on the label must be the value calculated by a laboratory, plus or minus 5%.

Batch testing

  • A harvest lot can include more than one strain.
  • Cannabis harvested within a 48-hour period, using the same growing and curing processes can be included in one harvest lot.
  • Edibles processors can include up to 1000 units of product in a batch for testing.
  • The size of a process lot submitted for testing for concentrates, extracts or other non-edible products will be the maximum size for future sampling and testing.

    Oregon Marijuana Universal Symbol for Printing
    Oregon Marijuana Universal Symbol for Printing

Sampling

  • Different batches of the same strain can be combined for testing potency.
  • Samples can be combined from a number of batches in a harvest lot for pesticide testing if the weight of all the batches doesn’t exceed ten pounds. This also means that if that combined sample fails a pesticide test, all of the batches fail the test and need to be disposed.

Solvent testing

  • Butanol, Propanol and Ethanol are no longer on the solvent list.

Potency testing

  • The maximum concentration limit for THC and CBD testing can have up to a 5% variance.

Control Study

  • Process validation is replaced by one control study.
  • After OHA has certified a control study, it is valid for a year unless there is an SOP or ingredient change.
  • During the control study, sample increments are tested separately for homogeneity across batches, but when the control study is certified, sample increments can be combined.

Failing a test

  • Test reports must clearly show if a test fails or passes.
  • Producers can request a reanalysis after a failed test no later than a week after receiving failed test results and that reanalysis must happen within 30 days.
Gov. Kate Brown Photo: Oregon Dept. of Transportation
Gov. Kate Brown
Photo: Oregon Dept. of Transportation

The office of Gov. Kate Brown along with the OHA, Oregon Department of Agriculture (ODA) and Oregon Liquor Control Commission (OLCC) issued a letter in late November, serving as a reminder of the regulations regarding pesticide use and testing. It says in bold that it is illegal to use any pesticide not on the ODA’s cannabis and pesticide guide list. The letter states that failed pesticide tests are referred to ODA for investigation, which means producers that fail those tests could face punitive measures such as fines.

Photo: Michelle Tribe, Flickr
Photo: Michelle Tribe, Flickr

The letter also clarifies a major part of the pesticide rules involving the action level, or the measured amount of pesticides in a product that the OHA deems potentially dangerous. “Despite cannabis producers receiving test results below OHA pesticide action levels for cannabis (set in OHA rule), producers may still be in violation of the Oregon Pesticide Control Act if any levels of illegal pesticides are detected.” This is crucial information for producers who might have phased out use of pesticides in the past or might have began operations in a facility where pesticides were used previously. A laboratory detecting even a trace amount in the parts-per-billion range of banned pesticides, like Myclobutanil, would mean the producer is in violation of the Pesticide Control Act and could face thousands of dollars in fines. The approved pesticides on the list are generally intended for food products, exempt from a tolerance and are considered low risk.

As regulators work to accredit more laboratories and flesh out issues with the industry, Oregon’s cannabis market enters a period of marked uncertainty.

The Practical Chemist

Appropriate Instrumentation for the Chemical Analysis of Cannabis and Derivative Products: Part 1

By Rebecca Stevens
1 Comment

Election Day 2016 resulted in historic gains for state level cannabis prohibition reform. Voters in California, Maine, Massachusetts and Nevada chose to legalize adult use of Cannabis sp. and its extracts while even traditionally conservative states like Arkansas, Florida, Montana and North Dakota enacted policy allowing for medical use. More than half of the United States now allows for some form of legal cannabis use, highlighting the rapidly growing need for high quality analytical testing.

For the uninitiated, analytical instrumentation can be a confusing mix of abbreviations and hyphenation that provides little obvious information about an instrument’s capability, advantages and disadvantages. In this series of articles, my colleagues and I at Restek will break down and explain in practical terms what instruments are appropriate for a particular analysis and what to consider when choosing an instrumental technique.

Potency Analysis

Potency analysis refers to the quantitation of the major cannabinoids present in Cannabis sp. These compounds are known to provide the physiological effects of cannabis and their levels can vary dramatically based on cultivation practices, product storage conditions and extraction practices.

The primary technique is high performance liquid chromatography (HPLC) coupled to ultraviolet absorbance (UV) detection. Gas chromatography (GC) coupled to a flame ionization detector (FID) or mass spectrometry (MS) can provide potency information but suffers from issues that preclude its use for comprehensive analysis.

Pesticide Residue Analysis

Pesticide residue analysis is, by a wide margin, the most technically challenging testing that we will discuss here. Trace levels of pesticides incurred during cultivation can be transferred to the consumer both on dried plant material and in extracts prepared from the contaminated material. These compounds can be acutely toxic and are generally regulated at part per billion parts-per-billion levels (PPB).

Depending on the desired target pesticides and detection limits, HPLC and/or GC coupled with tandem mass spectrometry (MS/MS) or high resolution accurate mass spectrometry (HRAM) is strongly recommended. Tandem and HRAM mass spectrometry instrumentation is expensive, but in this case it is crucial and will save untold frustration during method development.

Residual Solvents Analysis

When extracts are produced from plant material using organic solvents such as butane, alcohols or supercritical carbon dioxide there is a potential for the solvent and any other contaminants present in it to become trapped in the extract. The goal of residual solvent analysis is to detect and quantify solvents that may remain in the finished extract.

Residual solvent analysis is best accomplished using GC coupled to a headspace sample introduction system (HS-GC) along with FID or MS detection. Solid phase microextraction (SPME) of the sample headspace with direct introduction to the GC is another option.

Terpene Profile Analysis

While terpene profiles are not a safety issue, they provide much of the smell and taste experience of cannabis and are postulated to synergize with the physiologically active components. Breeders of Cannabis sp. are often interested in producing strains with specific terpene profiles through selective breeding techniques.

Both GC and HPLC can be employed successfully for terpenes analysis. Mass spectrometry is suitable for detection as well as GC-FID and HPLC-UV.

Heavy Metals Analysis

Metals such as arsenic, lead, cadmium, chromium and mercury can be present in cannabis plant material due to uptake from the soil, fertilizers or hydroponic media by a growing plant. Rapidly growing plants like Cannabis sp. are particularly efficient at extracting and accumulating metals from their environment.

Several different types of instrumentation can be used for metals analysis, but the dominant technology is inductively coupled plasma mass spectrometry (ICP-MS). Other approaches can also be used including ICP coupled with optical emission spectroscopy (ICP-OES).

Rebecca is an Applications Scientist at Restek Corporation and is eager to field any questions or comments on cannabis analysis, she can be reached by e-mail, rebecca.stevens@restek.com or by phone at 814-353-1300 (ext. 2154)

An inductively coupled plasma torch used in MS reaches local temperatures rivaling the surface of the sun. Image by W. Blanchard, Wikimedia
An inductively coupled plasma torch used in Optical Emission Spectroscopy (OES) reaches local temperatures rivaling the surface of the sun. Image by W. Blanchard, Wikimedia

Colorado Rule Changes Increase Costs for Edibles Producers

By Aaron G. Biros
No Comments

Cannabis processors and dispensaries in Colorado were hit with new rule changes over the weekend, going into effect on October 1st. The rule changes affect those producing edibles and dispensaries that sell retail and medical cannabis products.

The universal symbol required on all cannabis products in Colorado
The universal symbol required on all cannabis products in Colorado

As of October 1st, all cannabis edibles must be marked with the universal THC symbol, according to a bulletin posted by the Colorado Department of Revenue’s Marijuana Enforcement Division (MED). Both medical and retail cannabis products require labeling that includes a potency statement and a contaminant testing statement.

The rules also set “sales equivalency requirements” which essentially means a resident or non-resident at least 21 years of age can purchase up to one ounce of cannabis flower or up to 80 ten-milligram servings of THC or 8 grams of concentrate, according to the MED. The packaging must also include: “Contains Marijuana. Keep out of the reach of children.”

The universal symbol printed on products from Love's Oven.
The universal symbol printed on products from Love’s Oven.

It seems that cannabis edible manufacturers have two clear choices for complying with the new rule requiring the THC symbol: They can use a mold to imprint the symbol on their product or they can use edible ink. Peggy Moore, board chair of the Cannabis Business Alliance and owner of Love’s Oven, a Denver-based manufacturer of cannabis baked goods, uses edible ink to mark each individual serving. The printer uses similar technology and ink used to print on m&m’s, according to Moore. “Baked goods are difficult to find a solution for marking them because they are a porous product, not smooth.” Complying with the new rules almost certainly means added costs for processors and edibles producers.

Moore said she updated all of their labels to include the appropriate information in compliance with the rules. “In terms of regulatory compliance, there have been some disparities for labeling and testing requirements between medical and retail cannabis products, however they are coming into alignment now,” says Moore. “The testing statement rule has been in place for some time on the retail side, but now we are seeing this aligned with both medical and retail markets.” This new rule change could be seen as a baby step in making the different markets’ regulations more consistent.