Tag Archives: quality

How to Develop Quality Cannabis Products with Advanced Analytical Testing

By Vanessa Clarke, Melody Lin
No Comments

A thorough cannabis product development process goes far beyond extracting and packaging. Performing advanced analytical testing at each and every stage allows producers to know the quantity, quality and behaviour of compounds in samples. Here are the four key stages from flower to consumption.

Stage 1: Flower

Developing a quality cannabis product begins with knowing the composition of compounds in your starting material. The best analytical tests utilize a metabolomics approach. Metabolomics is a suite of techniques that include a variety of instruments to run samples through in order to receive compositional data. In this stage, LC-qTOF and GC-MS are the best instruments to track all the compounds in the starting plant material. Essentially, metabolomics establishes a fingerprint of the compounds in a plant sample. This is beneficial because producers have to understand how their chosen cannabis plant differs from other cultivars and how it would potentially behave in their desired end product formulations.

Stage 2: Concentrate

After the plant material has gone through an extraction process, producers want to know precisely what is in the extract. Are there compounds that should not be there and are all the desired compounds present? The best way to test the quality of cannabis oils is again to use metabolomics (e.g. via LC-qTOF). This test reveals all the compounds in the sample in order to help the producer determine the purity and consistency of molecules beyond just THC and CBD.

When testing cannabis isolates, it is best to use NMR spectroscopy and X-ray diffraction. NMR characterizes and assesses the purity of single compounds or mixtures in solution or solid state. X-ray diffraction provides information about the crystal structure, chemical composition and the physical properties of the cannabis sample to help the producer prove the identification of desired compounds. Establishing that the concentrates are pure and aligned with what the producer intended to extract is key in this stage of product development.

Stage 3: Formulation

Designing an appropriate drug delivery formula is a universal challenge producers face at this stage of product development. Where nanoemulsion or other carrier approaches are being used, formulation characterization allows producers to understand how their active compounds behave in simulated physiological environments as well as how stable their products are over time. Specifically, nanoparticle sizing and assessing size changes over time can help a formulation scientist ensure the highest quality product is being mixed, and that the desired effect will be imparted on the consumer/patient.

Stage 4: Smoke/Vapor

Many producers might not consider this final stage, but it is critical for all inhalable cannabis products and devices. Using a smoke analyzer and metabolomics testing can identify and quantify compounds present within the formed smoke or vapor from pre-roll joints to vape devices. This is not only important for preventing the production of toxic by-products, but it can help producers create an optimal smoking experience for consumers.

One area that is often an afterthought is quality compliance testing. Despite a number of groups using the required tests well during development, many forget to continue the same robust testing on end products. In the current cannabis product development landscape, there is little guidance on how compliance testing should be conducted on every product “batch.” With these advanced analytical tests, producers can confidently develop compliant, stable and quality cannabis products.

 

The Ten Biggest Mistakes When Building a Cultivation Facility

By Michael Burnstein
3 Comments

As cannabis legalization becomes more prolific across the United States, entrepreneurs are entering the cultivation business in droves. With so many new companies entering the market and growing cannabis, there are a lot of common errors made when getting started. Here are ten of the biggest mistakes you can make when building a cannabis grow facility:

  • Failure to consult with experts in the cannabis business – poor planning in floorplan and layout could create deficient workflow causing extra time and costing profits. Bad gardening procedures may result in crop failure and noncompliance could mean a loss of license. Way too often, people will draft a design and begin construction without taking the time to talk to an expert first. Some important questions to ask yourself and your consultant are: What materials should be used in the building of the grow? Is my bed-to-flower ratio correct? How long will it take before I can see my first harvest? 
  • Contractor selection – DO NOT build your own facility; leave it to the experts. Sure, you have experience building things and you have a friend who has worked in construction. Do not make this mistake – Our experience can save you from the mistake’s others have made. To stay lucrative in this competitive industry and to maximize your products’ quality and yields, have the facility built right the first time. Paying an experienced, qualified cannabis professional to build you a facility will produce better yields and will save you time, stress and money in getting you from start of construction to your first crop.
  • Not maximizing your square footage potential – With today’s fast changing environment, multi-tiered stationary racks, rolling benches and archive style rolling racks help maximize square footage. Without the proper garden layout, you will find yourself pounds short of your potential each harvest.
  • Inadequate power – Not planning or finding out if there is sufficient power available at the site for your current and future needs. This will stop you from building the overall square footage you want. When finding a building make sure you first know how much power you will need for the size grow you want. With proper engineering you will find out what load requirements will be so you can plan accordingly.
  • Material selection – The construction material that goes into a cultivation and extraction facility should consist of nonabsorbent anti-microbial finishes. The days of wood grow benches are long gone. Epoxy flooring, metal studs and other materials are mandatory for a quality-built, long-lasting facility.
  • Hand watering – Once your facility is up and running, many people feel they have spent enough money and they can save by hiring people to water by hand, rather than going with an automated system to handle the watering and nutrients. The problem with this is your employees are not on your plants timetable. What if an employee calls off and can’t come into water at the right time or they mix the wrong amount of nutrients from the formula you have selected? These are issues we see a lot. It is critical to perform precise, scheduled watering and nutrient delivery to increase your yields.
  • Failure to monitor and automate – Automating your grow is important for controlling the light and fertigation schedules as well as data collection and is crucial to maximizing yields. Being able to do this remotely gives you peace of mind in that you can monitor your grow room temperature and humidity at all times and be notified when something is not right.
  • MedicineManTechGrowPoor climate – This can cause stunted growth, smaller harvests and test failures. Our experience has taken us to facilities that have had mold and mildew issue due to poor climate. Proper air balancing, additional dehumidification along with a proper cleaning procedure can get a facility back in working order. Installing proper climate control systems could save millions of dollars.
  • Choosing the wrong site or building – Not knowing the history of the building you are choosing to rent or buy can create logistical and monetary nightmares. The wrong site can be a distribution and marketing disaster. In the wrong building, exponentially more money is spent to bring that building up to the standards needed for successful production and yields. For example, bringing in the ceiling and the cleaning of an existing facility can be a great expense. If you do not know what you are looking at when you purchase, you may be in for months of unaccounted expenses and inaccurate timelines. This can be detrimental for companies and individuals that are on restricted timelines and have to start producing successful and continuous yields from a space that has to be converted into a prime grow facility.
  • Failure to maintain your facility – A dirty site creates an invitation for pests, workplace injuries, unhealthy working environment and equipment failure. Keeping the facility and equipment properly maintained with routine service will ensure efficiency, longevity of equipment life span and reduce mold and bacteria risk. Clean facilities = clean plants and better flower.

Is Your CBD Product Verifiably Natural?

By Jordan Turner
No Comments

Natural product analysis using Carbon-14 is a valuable scientific tool that can be used to confirm the naturality of cannabidiol-based (CBD) ingredients by verifying the percentage of a product that is obtained from naturally-sourced ingredients. Determining the percentage of biobased content in a product allows companies to ensure their CBD ingredients are truly natural-derived, identify the presence of synthetic adulterants, and authenticate marketing and “natural” labeling claims.

Why consider natural product analysis using Carbon-14 to validate your natural CBD products?

Carbon-14 is an isotope present in naturally-sourced materials. Natural product analysis measures the percentage of Carbon-14 present in an ingredient or product. Higher percentages indicate that a product is primarily or completely made with natural-sourced ingredients as opposed to synthetic, petroleum-derived alternatives. These cheaper, synthetic alternatives created from petroleum-based sources cannot be measured using Carbon-14. A product that is all-natural and completely plant-sourced will show a result of 100% biobased content whereas a low or zero percentage will reveal a product that is partially or completely formulated with synthetic adulterants.

The structure of cannabidiol (CBD), one of 400 active compounds found in cannabis.

Why should you be concerned with verifying the naturality of your CBD products? In recent years, the popularization of CBD extract has increased its demand as an ingredient in personal care and cosmetic products. Higher costs associated with the use of natural CBD extract instead of artificial extracts leads to the use of adulterated ingredients by some manufacturers or false label claims that a product is natural when it is not.

How can you prove your products are the real deal and ensure your customers are sure they’re getting the natural ingredients they expect? Artificial ingredients derived from petrochemical sources do not contain any carbon-14 content. The results of natural product analysis reveal the percentage of a sample that is procured from natural sources, allowing manufacturers and quality assurance teams to confirm their CBD ingredients and products are not synthetic or adulterated and to strengthen claims that their product is truly natural-derived.

Natural product analysis can authenticate the natural content of your CBD products. Validating naturality with Carbon-14 testing strengthens label and marketing claims and confirms your products and ingredients are completely natural and do not contain cheap synthetic adulterants. By verifying the percentage of our product that comes from natural sources as opposed to artificial, petrochemical sources, you can guarantee your product is genuinely made with natural CBD extract.

Soapbox

Reduce Environmental Impact of Cannabinoid Production Through Biosynthesis

By Maxim Mikheev
1 Comment

Cannabinoids—the molecules found in the cannabis plant—are becoming an immensely popular industry, with applications in pharmaceuticals, food and beverage, cosmetics and more. However, the traditional method of harvesting cannabinoids through plants has a tremendous environmental footprint, with the energy-intensive practices required to produce the cannabis plant costing the U.S. billions of dollars each year 

Fortunately, new innovations have emerged that will make this process require significantly less time, energy and natural resources. This article will explore two methods of rare cannabinoid production—the traditional method of cultivation through plants and the newer method of biosynthesis—and will compare their impact on the environment. 

Natural Cultivation

The companies that use the traditional process of growth, harvest, extraction and purification have a major problem when it comes to harvesting rare cannabinoids. Rare cannabinoids only show up in trace amounts in plants, which means you need to grow vast quantities of plants to harvest just a tiny amount of rare cannabinoids.

Once you factor in the amount of plants that need to be grown, equipment, fuel, fertilizers, water, man hours, harvesting, extraction and purification, the costs are economically unfeasible. This process uses so much energy, natural resources, water and fertilizers that the end product is not affordable for the majority of consumers.

Cultivation through plants requires hundreds of acres of land, thousands of pounds of fertilizer, thousands of gallons of water and thousands of man hours. In addition, this process uses significant amounts of energy to run equipment, in addition to extraction and purification. Plus, the end products can contain contaminants and toxins due to heavy metals, pesticides, pests, mold and more.

Biosynthesis

Biosynthesis is the production of a desired compound through the natural means of an organism’s biological processes. It produces identical compounds to those found in nature, lending itself as the optimal pathway for the manufacture of cannabinoids identical to their naturally occurring counterparts. ​

While cultivation through plants is harmful to the environment, biosynthesis produces a much lower environmental footprint because it requires significantly fewer resources. Biosynthesis requires over 90% less energy, natural resources and man hours, along with zero fertilizers, contaminants and toxins. There also no extraction and purification costs.

Biosynthesis needs only 6,000 square feet to produce the same amount of rare cannabinoids as hundreds of acres of plants. This process produces pharmaceutical-grade, organic, non-GMO products at a 70-90% lower cost than cultivation through plants—resulting in cannabinoid products that are more affordable for the consumer.

With climate change increasingly becoming a concern, it’s crucial for us to rely on more environmentally friendly avenues for cannabinoid production. Biosynthesis provides a method of cannabinoid production that requires significantly less time, energy and natural resources than cultivation through plants—resulting in not only a decreased environmental footprint but also safer and less expensive products.

Mark Your Calendars: The Cannabis Cultivation Virtual Conference Returns

By Cannabis Industry Journal Staff
No Comments

On March 23, 2021, Cannabis Industry Journal is hosting our annual Cannabis Cultivation Virtual Conference. From Noon to 5 pm EST, you’ll get access to nine veterans of the cultivation market discussing a variety of topics related to the ins and outs of growing cannabis and hemp.

Hear from subject matter experts who will share their perspectives on growing organically, facility design and planning, hemp farming and integrated pest management.

Back in December during the Cannabis Quality Virtual Conference, the Cultivation Technology episode featured a session titled A Panel Discussion: Integrated Lifecycle of Designing a Cultivation Operation. Due to a large amount of interest and attendee questions that the panel did not have time to address, we are reprising this panel discussion and bringing it back on March 23.

Speakers for that panel discussion include: Gretchen Schimelpfenig, PE, Technical Director of Resource Innovation; Brandy Keen, Co-Founder & Sr. Technical Advisor at Surna, Inc; Adam Chalasinski, Applications Engineer at Rough Brothers/Nexus Greenhouse Systems/Tetra; David Vaillencourt, Founder & CEO of The GMP Collective, and Kyle Lisabeth, Vice President of Horticulture at Silver Bullet Water.

Other talks from the Cannabis Cultivation Virtual Conference on March 23 include:

  • Why CBD Companies Should Go Organic
    • Brad Kelley, COO of Socati
  • The Beginner’s Guide to Integrated Pest Management
    • David Perkins, Founder of Floresco Consulting
  • Starting from Scratch: Launching a Hemp Farm in Georgia
    • Reginald “Reggie” Reese, Founder & CEO of The Green Toad Hemp Farm
    • Dwayne Hirsch, President & Chief of Business Development at The Green Toad Hemp Farm

You can check out the agenda in its entirety and register here. Attendees will have the opportunity to ask speakers questions during the live Q&A session that follows each session. Registration is complimentary. For sponsorship opportunities, contact RJ Palermo at Rj@innovativepublishing.net

Recent Developments in Supercritical CO₂ Winterization

By Aaron Green
No Comments

Supercritical carbon dioxide (CO2) extraction is a processing technique whereby CO2 is pressurized under carefully controlled temperatures to enable extraction of terpenes, cannabinoids and other plant molecules. Once the extract is obtained the crude is often subjected to an ethanol winterization process to remove chlorophyll, fats and waxes.

Green Mill Supercritical is a Pittsburgh-based manufacturing and engineering company focused on cannabis and hemp extraction. The company offers a range of CO2 extraction equipment where users can tune and control their extraction methods. They recently announced  a technology advance enabling winterization in-process, which has the potential to remove the need for ethanol winterization.

We spoke with Jeff Diehl, director of marketing at Green Mill Supercritical, to learn more about the new process. Jeff was working in the tech industry in San Francisco in 2017 when he was invited to join Green Mill by his cousin, Jeremy Diehl, who is the founder and CTO.

Aaron Green: Before we get to your new technology, can you explain what industry trends you are watching?

Jeff Diehl: A big thing that I watch is the premium extract space. More and more consumers are demanding higher premium extracts. They want differentiated products. They want products that are safe and that have some kind of meaningful connection to the specific plant from which they came. Right now, CO2 plays a small role in the market for those products. Most premium products are generated through hydrocarbon extraction. So, I am watching how people are using CO2 to create the next generation of safe, premium products.

Aaron: What is the normal process for a CO2 extraction today?

Jeff Diehl, director of marketing at Green Mill Supercritical

Jeff: The current CO2 extraction process generally consists of two major phases to producing your final extract. In the first phase, you have extraction where you get your crude product. The second phase is post-extraction where you do cleanup to get your refined oil. Within that post-extraction phase, most operations include an ethanol-based winterization process.

Aaron: What does the winterization step do, exactly?

Jeff: Winterization is about removing waxes. Your main extraction is considered crude because it’s got a lot of materials from the plant that you don’t want. The large majority of unwanted material is waxes. Winterization is the process of using a solvent, traditionally ethanol, to separate the waxes from the cannabinoids. There are multiple challenges inherent in ethanol-based winterization that introduce cost, time and product loss. It’s terribly inefficient. Plus, there will always be residual ethanol left in your final product, and that’s not something consumers appreciate.

Aaron: You’ve recently announced a new process at Green Mill that moves the winterization step into the supercritical CO2 equipment. Can you explain how that works?

Jeff: With our process, which we call Real-Time Winterization, there is no ethanol involved in winterization anymore. It is all done with CO₂ during the primary extraction. That’s the major advance of our process and although it has been attempted before, no one has succeeded at doing it in a viable way. You take a process which is normally four days – one day for CO2 extraction and three days for ethanol winterization – and you do it all in less than a day. We have automated software, sensors and pumps that makes this all possible.

Aaron: How does the quality of the resulting product compare with the new process?

Jeff: You can see the difference right away, if you’re at all familiar with extraction. It just looks clean and bright. Lab analysis has been very positive thus far, but we continue to run tests. Our R&D team has done multiple tests, mostly on hemp and CBD. That’s because we don’t have a license for THC. We’re currently engaging with a licensed partner so that we can collect more data on THC-containing products, so we can give exact numbers. But with CBD, we’ve done multiple tests to validate the method and the technology, and are seeing consistently excellent results in regards to both purity of the product and efficiency of the process.

Aaron: How do yields compare between the processes?

Hemp CBD extract straight out of a Green Mill SFE Pro running Real-Time Winterization.

Jeff: From the data that we’ve seen in the industry, it looks like when you winterize with ethanol, you leave anywhere from 5 to 10% of your cannabinoids behind in the waxes. That’s just lost. With Real-Time Winterization using CO2 we have seen recovery rates as high as 99%. We are continuing to investigate that result with testing to make sure it was not an outlier, but in any case, recovery rates look promising.

Aaron: One of the other issues with ethanol is taxes and the ability to find food grade supply. Do you have any perspective you can share on that?

Jeff: There are a number of advantages to moving away from ethanol. The sheer quantity of ethanol is a factor. There are a lot of regulations and fire requirements around managing large quantities of ethanol. The ethanol winterization process itself is not just one process. There are multiple stages, from mixing, to freezing, to filtering, to removing the solvent. These are all opportunities for things to go wrong, so you’re always managing those risks. Multiple large pieces of equipment, including fume hoods, filter skids, cryo freezers and rotary evaporators, are expensive and require heavy management.

I think Elon Musk said the best process is no process. Anytime in an industrial process when you can remove steps in the process, that’s the direction you want to go in. And, that’s what we’ve done. With this recent work, we have effectively removed post processing for certain categories of end product.

Aaron: Do you have any patents on the new process?

Jeff: We have a patent pending on both the method and the equipment, which is allowing us to talk about this as much as we are.

Aaron: So, how does this work if somebody already owns an existing piece of Green Mill equipment? Is this something that can be retrofitted? Is it a software upgrade?

Jeff: There are two components. One is an equipment upgrade, which can be done retroactively for existing customers, and one is a methodology upgrade, which we assist our customers with. The automation software inherently can handle the settings that you need to run the methodology. In fact, it’s that software and the rest of our existing tech stack, the proprietary pump, the triple inline fractionation, the precision and stability of the overall system, that is what made this winterization advance possible.

Aaron: Where are you rolling this out first? And do you plan to go international?

Jeff: International is definitely in the plan, since we’ve already sold systems abroad. We are currently getting ready to announce the opening of our beta program with the new technology. So, we’re not ready to sell this widely at this time, but we are taking submissions from companies that want to get in early and join us at the forefront of CO₂ extraction innovation.

Aaron: Okay, great. Thanks Jeff, that’s the end of the interview.

Wyoming Lawmakers Introduce Bill to Legalize Cannabis

By Cannabis Industry Journal Staff
No Comments

Update: The House Judiciary Committee has passed the legalization bill, HB0209, by a 6-3 vote. After moving out of the Judiciary Committee, the bill now awaits a floor hearing, which is expected to come within the next week or two during the legislative session that ends on April 2. 

A bipartisan group of lawmakers in Wyoming have introduced a bill to legalize cannabis in the state’s legislature. First reported by Buckrail.com, HB0209 was assigned on March 2. The bill would legalize possession, home grow and sales for adults, as well as establish a regulatory framework for licensing, tracking and taxation.

In November 2020, voters in Montana and South Dakota passed ballot measures that legalize adult use and sales of cannabis. About a month after Election Day, the University of Wyoming conducted a poll that found roughly 54% of Wyoming residents now support legal adult use cannabis. In 2018, UW found that 85% of Wyoming residents support medical cannabis legalization.

In March of 2019, Wyoming Governor Mark Gordon signed a bill into law that essentially legalized hemp in the state. That bill was a boon for the state’s agricultural economy, giving many farmers a much-needed boost in their crop diversity.

Wyoming Governor Mark Gordon

You can find the current version of HB0209 here. Sponsors of the bill include: Representatives Jared Olsen (R-Laramie), Mark Baker (R-Sweetwater) Eric Barlow (R-Campbell/Converse), Landon Brown (R-Laramie), Marshall Burt (L-Sweetwater), Cathy Connolly (D-Albany), Karlee Provenza (D-Albany), John Romero-Martinez (R-Laramie), Pat Sweeney (R-Natrona), Cyrus Western (R-Sheridan), Mike Yin (R-Teton) and Dan Zwonitzer (R-Laramie) and Senators Cale Case (R-Fremont) and Chris Rothfuss (D-Albany).

According to Buckrail, if the bill becomes law, Wyoming could get roughly $49.15 million in tax and license fee revenue in 2022. That number would mean a sizable windfall for the state that saw an 8.5% decline in tax revenue in 2020. Governor Gordon proposed budget cuts as high as 15% for agencies across the state last year. Most of the revenue generated from cannabis taxes would be earmarked for education.

Wyoming’s tax revenue is notoriously limited when it comes to diversity: the state makes its money on oil and gas, and that’s about it. Earlier this year, the Biden administration halted oil and gas leasing on federal land, hitting pause on a nearly half-million-acre deal. If the pause on oil and gas leasing on federal lands continues or were to become permanent, Wyoming stands to lose tens, if not hundreds, of millions of dollars every year.

So, what does the least populous state in the country do when they can no longer generate revenue from oil and gas? Simple. Legalize cannabis.

Navigating Compliance: Practical Application of Fit-For-Purpose

By Darwin Millard
No Comments

What is “fit-for-purpose?” Fit-for-purpose is an established best practice used in several major industries, like information technology, pharmaceuticals, agriculture and inventory management. It is a concept that aligns infrastructure and systems specifications with desired outputs – be that product, service or bottom line. When applied to a cannabis plant, its parts, products and associated processes, it can streamline regulatory framework development, implementation and compliance.

Fit-for-purpose is simply a series of logic questions you ask yourself to determine what business practices you should implement and the regulatory framework in which you must comply. What are you making? Who is it for? Where will it be sold? All this impacts how you would cultivate, process, handle and store a cannabis plant, its parts and products regardless of the type of cannabis plant. The fit-for-purpose concept is a tool that can be applied to any scenario within the cannabis/hemp marketplace. Take for instance, sustainability: a practical example would be to design cultivation standards that are “fit-for-purpose” to the climatic region in which the plants are grown – allowing any type of cannabis plant grown anywhere in the world to meet specifications regardless of the method of production.

There is no “special sauce” here. All fit-for-purpose does is get you to ask yourself: “Are the protocols I am considering implementing ‘fit/appropriate’ to my situation, and if not, which protocols are more ‘fit/appropriate’ based on the products I am making, the target consumer and marketplace in which the products are to be sold?”“Fit-for-purpose is a powerful concept that can be used for simplifying regulatory framework development, implementation and compliance”

A non-cannabis/hemp example of fit-for-purpose could be a scenario where a banana producer wants to implement a data management system into their cultivation practices to better track production and yields. There are many data management systems this banana producer could implement. They could implement a data management system like that of big pharma with multiple levels of redundancy and access control related to intellectual property and other sensitive data. They could also implement a data management system used for tracking warehouse inventory; it cannot exactly capture everything they need but it is better than nothing. Neither example is really “fit/appropriate” to the banana producer’s needs. They need something in between, something that allows them to track the type of products they produce and the data they want to see in a way that is right for them. This idea is at the core of the fit-for-purpose concept.

Applying Fit-for-Purpose

So how do we apply fit-for-purpose to the cannabis/hemp marketplace? Fit-for-purpose reduces the conversation down to two questions: What products are you planning to make and how do those products affect your business practices, whether that be cultivation, processing, manufacturing or compliance. The point being the products you plan to produce determine the regulations you need to follow and the standards you need to implement.

Growers can use it to guide cultivation, harvesting, handling and storage practices. Processors and product manufacturers can use it to guide their production, handling, packing and holding practices. Lawmakers can use it to guide the development, implementation and enforcement of commonsense regulations. This is the beauty and simplicity of fit-for-purpose, it can be applied to any situation and related to any type of product.

Growers can use fit-for-purpose to guide most aspects of their operation

Let us look at some practical examples of fit-for-purpose for cultivators and processors. Cultivators have three main areas of focus, growing, harvesting and storage, whereas processors and product manufacturers have it a little more complicated.

Cultivation of a Cannabis Plant

Growing

Requirements for growing a cannabis plant, including those that can be classified as “hemp”, should be dictated by the product with the strictest quality and safety specifications. For example, growing for smokable fruiting tops (i.e. the flowers) may require different cultivation techniques than other products. You may not want to apply the same pesticides or growth additives to a cannabis plant grown for smokable fruiting tops as you would to a cannabis plant grown for seed and fiber.

Harvesting

The next point is important – harvesting and handling requirements should be agricultural, period. Except for those products intended to be combusted or vaporized and then inhaled. Following our previous example, smokable fruiting tops may require different harvesting techniques than other products, especially if you are trying to maintain the aesthetic quality of these goods. You may choose a different harvesting technique to collect these fruiting tops than you would if primarily harvesting the seed and fiber and thinking of the leftover biomass as secondary.

Storage

When considering the products and their storage, you need to consider each one’s quality and safety specifications. One product may have a temperature specification, whereas another may have a humidity specification. You need to make sure that you store each product according to their individual quality and safety specifications. Then consider the products with the highest risks of diversion and potentially if you need to implement any extra protocols. Continuing our example – smokable fruiting tops, whether classifiable as “hemp” or not, pose a higher risk of theft than seeds or fiber and may require additional security measures depending on the authority having jurisdiction.

Processing and Manufacturing Operations

When applying fit-for-purpose to processing and manufacturing operations, first you must choose the products you want to make and specify the intended use for each product. This allows you to identify the quality and safety requirements and the potential for diversion for each good. Which in turn allows you to specify your manufacturing, processing and handling protocols for each product related to their quality and safety requirements. Then those specific products with higher risks of diversion requiring extra protocols to be put into place depending on local regulations and/or internal risk assessments, should be considered and your practices modified, as necessary.

Commonsense Regulations

Image if regulations governing a cannabis plant, its parts, products and associated processes were based on the intended use rather than a set of attributes that vary from jurisdiction to jurisdiction. It is complicated enough for regulators to think about a cannabis plant or cannabis product without having to worry about if that cannabis plant or cannabis product can be classified as “marijuana” or “hemp.” Fit-for-purpose removes this complication and simplifies the debate.

Using a fit-for-purpose approach eliminates the need to think about the molecular constituents and focuses the conversation on the intended use rather than one or two specific molecules – in this case, d9-THC, the boogie-man cannabinoid. Considering the intended use promotes consumer and environmental health and safety by allowing operators and regulators to focus on what is most important – quality and safety instead of whether something is “marijuana” or “hemp.”

This idea is what drives the real impact of fit-for-purpose. It creates a path forward to a one plant solution. We have where we are now – with “marijuana” and “hemp” – and where we want to get to – cannabis. It is all one plant with many different applications that can be used to create different commercial products. Fit-for-purpose helps bridge the gap between where we are now and where we want to get to and allows us to start thinking about “marijuana” and “hemp” in the same manner – the intended use.

Fit-for-purpose is a powerful concept that can be used for simplifying regulatory framework development, implementation and compliance. Regulations imposed on a cannabis plant, its parts and products should be appropriate to their intended use, i.e. “fit-for-purpose.” This approach challenges the confines of the current draconian bifurcation of the cannabis plant while working within this system to push the boundaries. It creates a path forward to a one plant solution and begs the question: Is the world ready for this novel concept?

Jane & Leafly Join Forces: An Interview with Socrates Rosenfeld, CEO of Jane

By Aaron Green
No Comments

As retailers accept the end of in-store shopping as we know it and start adjusting to e-commerce, an improved and more involved customer experience will be imperative for an e-retailer to grow, let alone stay afloat.

Jane recently announced a strategic partnership that combines Jane’s best-in-class product catalog and business tools with Leafly’s consumer marketplace and reach. Together, the companies will build solutions that empower cannabis retailers with fast and simple online shopping experiences that increase consumer purchase behavior. The partnership will seek to help instill consumer trust in the online shopping experience, build stronger customer acquisition tools for retailers, and help dispensaries grow their ecommerce capabilities with consistency and automation.

This strategic partnership comes after a massive year of growth for both Jane and Leafly. In the past year, Jane powered over 17 million orders and $2 billion in cannabis sales, while Leafly has seen more than 4,500 cannabis retailers in North America leverage their platform to bring new customers through the door.

Socrates Rosenfeld, CEO of Jane

We spoke with Socrates Rosenfeld, CEO of Jane to learn more about e-commerce and online marketplaces and how Jane and Leafly came together as partners, rather than competitors. Prior to Jane, Socrates was an Apache helicopter pilot for the US Army later transitioning to consulting with McKinsey.

Aaron Green: Socrates, thanks for taking the time today. What trends are you seeing and following in the industry?

Socrates Rosenfeld: Always happy to chat about the industry. Thanks for having me.

If you were to ask me that question a year ago, I’d say having a digital footprint was something that would give a dispensary or a brand a nice advantage. Today, it’s a must-have for survival. Where it used to be one or the other; online or offline, now we are able to merge the two by replicating a physical store into a digitized form to extend its reach far beyond its walls.

As things become more digitized, information becomes more necessary to run operations. With that we are able to meet the expectations of the consumers who are accustomed to convenience and curation. The omnichannel experience provides the best of both worlds. Access and ease of search with the ability to pick up or have the product delivered the same day from a locally owned and run business.

Reviews are one of the most important aspects of this unification of online and offline. It is something that is lost in solely offline purchases, that we’re now able to collect and organize. This product information allows us to provide customers the purchasing power to make a well-informed decision.

At Jane, we believe it is possible to create wins for the dispensaries, brands and customers – and digitization creates the opportunity for that to happen. I think there’s no better incubator in the world than the cannabis industry to prove that online and offline retail can work in harmony.

Aaron: Jane is the largest e-commerce platform in North American cannabis and Leafly is the largest marketplace in North American cannabis. What’s the difference between an e-commerce platform and a marketplace?

Socrates: Great question. There is definitely some overlap between the two, which is why it makes so much sense for us to collaborate. Ultimately though, our focus and expertise are different. Jane’s ecommerce platform serves as the industry’s digital infrastructure that pushes digital products across various order origination points like a dispensary’s own website, a brand’s own website and now, Leafly’s marketplace. Paired with Leafly’s industry-leading content and market information, together we can complete the entire online cannabis shopping experience – from product discovery through order fulfillment.

Aaron: At first glance, one might think that Jane and Leafly are competitors. How did you see it differently? And how did this partnership come about?

Socrates: Not only is our tech complementary, but we are aligned on mission – to empower consumers, dispensaries and brands with the integrity of the plant in mind.

We want to make it simple for consumers to reach the products that will be most helpful for them. We want to make it possible for dispensaries and brands, regardless of their size, to be able to compete on an even playing field.

It all comes back to being good stewards of the industry. Education and access create a healthy demand for a diverse range of products. That means that the plant stays in the hands of many – safeguarding it from homogenization.

Aaron: How do consumers benefit from the partnership?

Socrates: It really is all about bringing this industry in line with any other retail vertical and meeting the customer where they are. It unlocks more avenues for customers to discover products and access a vast catalog of information and verified customer reviews. Bottom line, this partnership makes shopping for cannabis as simple as shopping online for everything else in the world, while also ensuring the success of the sellers.

Aaron: When you say the sellers, are you talking about the dispensary or the brands?

Socrates: Both, we want to provide value for the entire ecosystem. We can do that directly for dispensaries and brands by enabling an automated ecommerce platform that they can use to power their own website. At Jane, we know that technology can unlock value for everyone, where it is not a zero-sum game and success for one means success for the other. With Jane, both the dispensaries and the brands win.

Aaron: What kind of regulatory challenges do you face through the partnership?

Socrates: There are no real regulatory challenges for the partnership itself. The entire industry operates under regulatory challenges, but it is those regulations that have been the catalyst for innovation. I see the opportunity for legal online payments and national product distribution to play a large role in shaping the industry soon, and a partnership like this will ensure a seamless transition for the industry as things continue to evolve.

Aaron: Final question. What are you personally interested in learning more about?

Socrates: I’ve always been curious about disruptive models. The companies, not just in tech, but any company that has set out to do things differently and has been able to hold true to a vision. That’s what interests me, and I think I will always have something to learn and draw inspiration from. 

Aaron: Excellent, that’s the end of the interview, Socrates!

Socrates: Thanks, Aaron.

GMPs & Cannabis Manufacturing

By Kathleen May
No Comments

Editor’s Note: While CIJ typically omits the word “marijuana” where possible due to antiquated nomenclature and prejudicial connotations, we understand the legal distinction between cannabis containing THC and hemp requires the use of the word when referencing federal government policies and legislative language.


Despite the rapid evolution of the cannabis industry, the assurance of safe manufacturing practices remains unclear.Both the Food and Drug Administration (FDA) and the Drug Enforcement Administration (DEA) have imposed significant hurdles for cannabis operators to remain on the “right side of the law.” Therefore, manufacturers of both hemp and marijuana products have been left to figure things out on their own, or choose to ignore existing guidance because the lack of federal oversight allows them to do so. Inconsistent regulation on manufacturing, packaging, labeling and testing of cannabis products offers the potential for unsubstantiated, non-scientific and often times blatantly false claims on product safety and efficacy.

Science vs. Law

Hemp and marijuana are both species of the Cannabis family, Cannabaceae. Genetically they are identical but are arbitrarily defined by the presence of delta-9 tetrahydrocannabinol (THC). While science does not differentiate between hemp and marijuana, the law does.

The hemp industry declared a small victory with the passing of the Agricultural Act of 2014 (2014 Farm Bill). Under this bill universities and state agriculture departments were allowed to grow hemp under state law. Additionally, “industrial hemp” was officially defined by establishing the legal limit of THC at 0.3% on a dry weight basis. The Agricultural Improvement Act of 2018 (2018 Farm Bill), under the guidance of the United States Department of Agriculture (USDA), took things a few steps further by authorizing the cultivation of hemp and removed hemp and hemp seeds from the CSA. The bill however provides no language that mandates the safe manufacture of hemp-derived consumer goods. The 2018 version also preserved the FDA’s authority to regulate products containing cannabis and cannabis-derived compounds under the Federal Food, Drug, and Cosmetic Act (FD&C Act). To the surprise of most, listing cannabidiol (CBD), even hemp-derived, as an ingredient on consumer product labels remains illegal under the bill. Furthermore, CBD product manufacturers are not protected under the current regulations. Since 2015 the FDA has issued warning letters to firms marketing CBD products as dietary supplements and/or foods, and in December 2018, FDA declared it illegal to introduce food containing CBD (or THC) into interstate commerce, regardless if it is derived from hemp. To date, the only FDA approved CBD product is GW Pharmaceutical’s Epidiolex.

Marijuana remains classified as a Schedule I controlled substance under the CSA. Thirty-six (36) states have approved comprehensive, publicly available medical marijuana programs, and now 14 states have approved adult use programs, with New Jersey passing legislation on February 22, 2021. However, the industry has seen minimal movement toward mandating GMP requirements in the marijuana market. Only a handful of medical programs require manufacturers to follow GMP. Furthermore, the requirements are inconsistent between states and the language in the regulations on how to approach GMP implementation is vague and disjointed. This fragmented guidance supports the complexity and difficulty of enforcing a coherent, standardized and reliable approach to safe manufacturing practices.

What is GMP and Why Should You Care?

Good Manufacturing Practices (GMPs) are a system for ensuring that products are consistently manufactured and controlled according to quality standards and regulatory guidelines. The implementation of a GMP compliant program ensures consumer health and safety, allows manufacturers to understand the intended use of their products, allows manufacturers to defend product specifications as being appropriate, considers the risks to vulnerable populations and minimizes overall business risk. In a nutshell, GMP equals product safety and quality, and defines the responsibilities of the manufacturer to ensure consumers are protected from the distribution of unsafe and ineffective products. Currently, the GMP “landscape” in the cannabis space is complicated. The various “flavors” (food, dietary supplements, cosmetics and drugs/devices) of GMP leave many confused and frustrated when making the decision to implement GMP. Confusion is a result of unclear regulatory requirements as well as operators not fully understanding how to classify or designate the end use of their product(s). Implementing an effective GMP program requires proper planning (both short and long term), financial commitment and qualified resources.

Where Should You Start?

As the regulatory landscape continues to evolve and mature in the cannabis space, your business model must consider GMP implementation if you wish to remain successful and sustainable.

Intended Use

Before you can implement GMP you must first understand what GMP regulations apply to the intended use of your product(s). Are you manufacturing food, beverages or dietary supplements? Get acquainted with the FDA Code of Federal Regulations (CFRs) on GMP. 

Conduct a Gap Assessment

A gap assessment allows you to determine your deficiencies in relation to GMP compliance. The assessment should include, but is not limited to facility design, equipment design, supply chain, risk management and employee training.

Develop an Action Plan

Once the gap assessment is complete a comprehensive action plan will be developed to map out the steps required to achieve GMP compliance. The action plan should follow the SMART Goal principles:

  • Specific (simple, well-defined)
  • Measurable (meaningful)
  • Attainable (achievable, agreed upon)
  • Relevant (resource-based, reasonable and realistic)
  • Timely (time-based, defined due dates)

The plan will include prioritized deliverables, due dates and allocated resources in order to strategically plan and execute and complete the required tasks.

Schedule a Mock GMP Inspection

A mock inspection verifies that the action plan was adequately executed. Hire an experienced resource familiar with related GMPs and QMS to conduct the inspection. A successful mock inspection is a perfect litmus test if the end goal is to achieve GMP certification.

Cannabis manufacturers that ignore the obvious progression toward an FDA-like industry will not survive the long game. Those that embrace the momentum and properly plan to mitigate product and business risk – those who demonstrate integrity and are truly in this space to ensure safe, effective and quality products to consumers will come out on top, gain credibility and secure brand recognition.


References:

  • 21 CFR Part 111, Current Good Manufacturing Practice in Manufacturing, Packaging, Labeling, or Holding Operations for Dietary Supplements.
  • 21 CFR Part 117, Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Human Food and the Food Safety Modernization Act (FSMA).
  • 21 CFR Part 210, Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs; General.
  • 21 CFR Part 211, Current Good Manufacturing Practice for Finished Pharmaceuticals.
  • 21 CFR Part 700, Subchapter G-Cosmetics.
  • 21 CFR Part 820, Subchapter H-Medical Devices; Quality System Regulation
  • Congressional Research Service, FDA Regulation of Cannabidiol (CBD) Products, June 12, 2019.
  • United States Food and Drug Administration-Warning Letters, Current Content as of 02/19/2021.

Links: