Tag Archives: test

HACCP

Hazard Analysis and Critical Control Points (HACCP) for the Cannabis Industry: Part 2

By Kathy Knutson, Ph.D.
2 Comments
HACCP

HACCP is a food safety program developed in the 1960s for the food manufacturing industry, mandated for meat, seafood and juice and adopted by foodservice for the safe serving of meals at restaurants. With state requirements for the safe production of cannabis-infused products, namely edibles, facilities may be inspected against HACCP principles. The cannabis industry and state inspectors recognize the need for safe edible manufacture. Lessons can be learned from the food industry, which has advanced beyond HACCP plans to food safety plans, starting with procurement and including the shipment of finished product to customers.

In my work with the food industry, I write HACCP and food safety plans and deliver training on food safety. In Part 1 of this series, I wrote about the identification of hazards, which is the first step in HACCP plan development. Before we continue with the next HACCP step, I will discuss Good Manufacturing Practices (GMPs). GMPs are the foundation on which HACCP is built. In other words, without GMPs in place, the facility will not have a successful HACCP program. GMPs are required in the food, dietary supplement and pharmaceutical industries, all under the enforcement of the federal Food and Drug Administration (FDA). Without federal regulation for cannabis edible manufacture, there may not be state-mandated requirements for GMPs. Let me warn you that any food safety program will not succeed without proper control of GMPs.HACCP

GMPs cover all of your programs and procedures to support food safety without having a direct, instant control. For example, when brownies are baked as edibles, food safety is controlled by the time and temperature of baking. A written recipe and baking procedure are followed for the edible. The time and temperature can be recorded to provide documentation of proper baking. In the food industry, this is called a process preventative control, which is critical to food safety and is part of a HACCP plan. Failure of proper time and temperature of baking not only leads to an unacceptable product in terms of quality, but results in an unsafe product that should not be sold.

Back to GMPs. Now think of everything that was done up to the steps of mixing and baking. Let’s start with personnel. Facilities for edibles have hiring practices. Once an employee is hired, the employee is trained, and training will include food safety procedures. When working at the job after training, the employee measuring ingredients will demonstrate proper grooming and hand washing. Clean aprons, hairnets, beard nets and gloves will be provided by the facility and worn by the employee. The same goes for the employee that bakes and the employee that packages the edible. One category of GMPs is Personnel.

Edibles facilities are not foodservice; they are manufacturing. A second GMP category is cleaning and sanitizing. Food safety is controlled through proper cleaning and sanitizing of food contact surfaces (FCS). The edible facility will have in place the frequency and methods for cleaning all parts of the facility- outside, offices, restrooms, break room and others. GMPs cover the general cleaning procedures and procedures for cleaning receiving, storage; what we would consider processing to include weighing, process steps and packaging; finished product storage and shipping. Management of the facility decides the methods and frequency of cleaning and sanitizing with greater care given to processing. Without proper cleaning and sanitizing, a facility cannot achieve food safety.

I could go on and on about GMPs. Other GMPs include water safety, integrity of the buildings, pest control program, procurement, sewage disposal and waste disposal. Let’s transition back to HACCP. In Part 1 of this series, I explained identification of hazards. Hazards are one of three types: biological, chemical and physical.

At this point, I am not surprised if you are overwhelmed. After reading Part 1 of this series, did you form a food safety team? At each edibles facility, there should be at least one employee who is trained externally in food safety to the standard that foodservice meets. Classes are offered locally and frequently. When the facility is ready, the next step of training is a HACCP workshop for the food industry, not foodservice. Edibles facilities are not foodservice; they are manufacturing. Many colleges and associations provide HACCP training. Finally, at the least, one employee should attend a workshop for Preventive Controls Qualified Individual.

To institute proper GMPs, go to ConnectFood.com for a GMP checklist. Did you draw up a flow diagram after reading Part 1? With a flow diagram that starts at Receiving and ends at Shipping, the software at ConnectFood.com takes you through the writing steps of a HACCP or food safety plan. There are many resources out there for GMPs, so it can get overwhelming. ConnectFood.com is my favorite resource.

The next step in HACCP development after identification of hazards is to identify the exact step where the hazard will be controlled. Strictly speaking, HACCP only covers process preventive controls, which typically start with a weigh step and end with a packaging step. A facility may also have a step where temperature must be controlled for food safety, e.g. cooling. In HACCP, there are commonly two process preventive controls:

  • Biological hazard of Salmonella and Escherichia coli: the heat step
  • Physical hazard of metal: metal detector

Strictly speaking, HACCP does not include cleaning, sanitizing and supplier approval for procurement of ingredients and packaging. I hope you see that HACCP is not enough. There have been hundreds of recalls and outbreaks due to problems in non-processing steps. The FDA requires food manufactures to go beyond HACCP and follow a written food safety plan, which includes hazards controlled at these steps:

  • Biological hazard of Listeria monocytogenes: cleaning and sanitizing of the processing environment and equipment
  • Physical hazards coming in with ingredients: supplier approval
  • Physical hazard of glass and hard plastic: Here I am thinking of glass breaking or plastic pieces flying off buckets. This is an internal hazard and is controlled by following written procedures. The written document is a Standard Operating Procedure (SOP).
  • Chemical hazard of pesticides: supplier approval
  • Chemical hazard of mycotoxins: supplier approval
  • Chemical hazard of allergens: supplier approval, label check at Receiving and product labeling step

Does a cannabis edible facility honestly not care or not control for pesticides in ingredients because this is not part of HACCP? No. There are two ways for procurement of ingredients in which pesticides are controlled. Either the cannabis cultivation is controlled as part of the samebusiness or the facility works with a supplier to confirm the ingredient meets pesticide tolerances. Strictly speaking, this control is not part of HACCP. For this and many other reasons, HACCP is a good place to start the control of food safety when built on a solid foundation of GMPs. In the same way the food industry is required to go beyond HACCP with a food safety plan, the cannabis industry must go beyond HACCP.

My thoughts will be shared in a webinar on May 2nd hosted by CIJ and NEHA. I encourage you to listen in to continue this discussion.Please comment on this blog post below. I love feedback!

Is There a Looming Supply Bottleneck in California?

By Aaron G. Biros
No Comments

California’s regulated adult use cannabis market has been up and running for around four months now and rumors of a potential supply bottleneck on the horizon are beginning to circulate. There are a number of factors that could have an impact on the cannabis supply in the market, most of which stem from changes in the distribution channels now that the state is implementing new regulations.

Those include a slow rollout in licensing cannabis businesses, new testing requirements, the supply carryover period prior to January 1stas well as new labeling and packaging regulations. In this piece, we are going to examine some of those rumors, see if there might be some truth to them and provide some guidance for what businesses can do to prepare for this.

A Slow Start to Licensing

This one is perhaps the most obvious factor to impact the supply chain in California. Much of the delays in licensing cannabis businesses came from the issue of local control, where businesses needed to get approval from their municipality before getting a state license. In the first month of the new market, it took Los Angeles weeks longer than other counties to begin licensing dispensaries. Whereas San Diego retailers saw a massive influx of customers right away, forcing them to buy up product to meet the high demand. Smaller producers also had trouble getting licenses as quickly as some of the larger ones.

Basically it all boils down to a slow start for the new market, according to Diane Czarkowski, co-founder of Canna Advisors. “The state is requiring businesses to get their local licenses before they can get their state license and that will create a delay in operators being able to bring products to market,” says Czarkowski. She says this is pretty typical of new markets, or when a market experiences dramatic changes quickly. “It could be a brand-new market, like in Hawaii, where the operators were ready with product, but there were no labs to test the products, which caused delays.” In addition to the licensing roll out being slow to start, the temporary licenses initially awarded to businesses are set to expire soon, by the end of April.

Stricter Rules to Come

The same logic goes for the testing regulations. New testing and labeling requirements, according to the Bureau of Cannabis Control regulating the market, will be phased in throughout 2018.

CA cannabis testing chart
California’s plan for phasing in testing requirements.

The state has already phased in cannabinoids, moisture content, residual solvent, pesticide, microbial impurities and homogeneity testing to some extent. On July 1st, the state will add additional residual solvent and pesticide testing as well as foreign material testing. At the end of 2018, they plan on requiring terpenoids, mycotoxins, heavy metals and water activity testing. All of those tests cost money and all of those tests could impact suppliers’ ability to bring product to market. “Oftentimes regulations require different types of testing to be done to products without recognizing that adequately completing those tests requires different methods, equipment, and standards,” says Czarkowski. “Most labs do not have all of the necessary components, and they are very costly. Producers could wait weeks to get test results back before they know if they can sell their products.”

Back when we spoke with Josh Drayton, deputy director of the California Cannabis Industry Association, about the upcoming changes to the California market, he voiced his concerns with the coming testing rules. “A lot of testing labs are concerned they are unable to test at the state’s threshold for some of these contaminants and pesticides; the detection limits seem very low,” says Drayton. “The testing portion will take years to work out, I am sure we will remove and add different pesticides and contaminants to the list.” California’s testing industry is, however, capable of adapting to changing rules, as they’ve done in the past on more than one occasion. It should be noted that many labs in the state are on the cutting edge of testing cannabis, working with The Bureau to implement the new rules.

roybingham
Roy Bingham, CEO of BDS Analytics

Cannabis products made prior to December 31st, 2017, did not need to comply with the stricter testing rules that are coming in the next few months. This carryover period allowed dispensaries to have products on the shelves when the new market launched in the beginning of 2018. Retailers knew this rule meant they needed to stockpile product in the event of a supply bottleneck, and it appears much of that product is now sold and running out, according to Roy Bingham, founder and chief executive officer of BDS Analytics. “The true impact of licenses is starting to be felt since the carryover from December buying prior to the licensed market has been sold,” says Bingham. “Some of the major brands have consciously not applied for licenses. Some of that has to do with the flexibility the government has given them to wait.”

A fourth reason for a potential bottleneck could also come from packaging and labeling rules. “There will have to be many modifications to products to ensure they follow the new potency regulations, and many formulations will have to be modified in order to meet new regulations,” says Czarkowski. Distributor licenses, according to The Bureau, have a number of compliance documentation requirements, such as arranging for all product testing, quality assurance and packaging and label accuracy. Everything has to be packaged before it gets to a dispensary, which is a new rule California businesses need to comply with.

Pricing is the Indicator

There are a handful of reasons why prices could increase; some of them are more defined than others, the biggest factor being the tax burden passed on to consumers, where reports showed up to a 40% increase from last year. A price increase in the future could also come from The Bureau implementing testing regulations throughout 2018, as mentioned previously.

If prices were to surge enormously and very quickly, that might be an indicator that a shortage is fast approaching. A dramatic increase in price over this year could squeeze margins for smaller producers, forcing retailers to pass that burden on to consumers as well.“So yes, the rumors are true.”

According to Roy Bingham, there has been a significant increase in pricing in all categories at the retail level. “In January and February, we are seeing about 10% increases per month in average retail prices,” says Bingham. “If we look at concentrates in California during 2017, they averaged about $34 by the end of the year, whereas it was about $31 at the start of 2017. So in January, prices have increased up to $38, which is a bit above trend, but in fact we were seeing a trend upwards before January 1st as well.” Comparing that with edibles pricing, Bingham says we see a clear jump at the start of 2018. “It was basically flat in 2017, averaging $14 roughly almost straight-line across, dipped in December, then in January it jumped to $17 and then to $18 in February, a big increase and significantly more than concentrates,” says Bingham. He also says flower was hovering around $9 per gram in December 2017, but surged above $10 in February 2018.

According to Cannabis Benchmarks, the California wholesale averages surged in the summer of 2017 up to $1,631 by September, then reached their lowest point in December, with their spot index at $1,368. The Cannabis Benchmarks report underlines some important reasons for the changes in pricing, but they also attribute it to the new licensing system.

“Increasing operating expenses for businesses preparing to enter California’s licensed system in 2018 were key to propping up supply side rates in the first six months of 2017. New compliance requirements were being instituted to varying degrees by local governments, while market participants warily eyed draft regulations from state officials for guidance as to how to prepare their sites and facilities to meet under-construction regulatory mandates.”

Their report highlights some very important aspects of the supply chain. “Again, it is likely that the increased costs faced by operators up and down the supply chain exert some upward pressure on wholesale rates, preventing them from steep year-over-year declines that were observed in some of the other major Western markets,” reads the Cannabis Benchmarks report.

So How Can Businesses Prepare?

Well to start, producers should make sure their operations and product are clean and safe. Making sure your product will pass a pesticide test should be top of mind. Dispensaries should also be wise in selecting their suppliers, performing supplier quality audits or some form of verification that they meet your standards is key in a consistent supply chain.

Dr. Jon Vaught, chief executive officer of Front Range Biosciences, believes tissue culture could be a viable solution for some California producers. Using tissue culture, as a form of propagation instead of mothers and clones can be cleaner, cheaper and more efficient, thus allowing growers to keep up with demand and prevent a shortage.

Dr. Jon Vaught headshot
Dr. Jon Vaught, CEO of Front Range Biosciences

Dr. Vaught says growers could look to tissue culture as a means to “mitigate risk to their supply chain and mitigate the risk of potential loss and improve their ability to efficiently grow their plant.” Maintaining a disease-free, sterile environment is a huge advantage in the cannabis market. “The real use of tissue culture is to provide disease free, clean, certified material, that has gone through a QA program,” says Dr. Vaught. “In greenhouses, the ability to control your environment is also critical because your margin of error is high. Variations in sunlight, weather, humidity all of these things have an impact in your plants. Technology can help monitor this.”

We’ve covered the basics of tissue culture previously on CIJ, with Dr. Hope Jones chief science officer of C4 Laboratories. She echoes many of Dr. Vaught’s points, firmly believing that, having existed for decades, tissue culture is an effective propagation tool for advanced breeders or growers looking to scale up.It is a complex supply chain that requires systems thinking.

It is important to note they don’t think growers should try this at home. Work with professionals, get the necessary funding, the training and facilities required if this is a project that interest you. “There’s a pretty big barrier to entry there,” Dr. Vaught urges. “The ability to manage thousands or millions of plants in a greenhouse increases risk, whereas in the lab, you’ve got a safe, secure, sterile environment, reducing risk of disease, making things easier to manage. The producers most successful at large scale are controlling those variables to the T.”

Ultimately, one segment of the market can’t prevent a bottleneck. It is a complex supply chain that requires systems thinking. Regulators need to work with producers, manufacturers, retailers, distributors, patients, consumers and laboratories to keep an eye on the overall supply chain flow.

Diane Czarkowski says the California market should prepare for this now if they haven’t already. “We have seen supply issues in every market going through a change. Other potential bottlenecks will occur because former distribution channels will be required to change,” says Czarkowski. “So yes, the rumors are true.”

Washington Lab Conducts Transparency Study

By Aaron G. Biros
2 Comments

Earlier this week Capitol Analysis Group, a cannabis-testing laboratory based in Lacey, Washington, announced they are conducting a “data-driven Lab Transparency Project, an effort to improve accuracy of cannabis testing results in the state through transparency and a new third-party auditing process,” according to a press release. They plan to look through the state’s traceability data to find patterns of deviations and possible foul play.

The project launch comes after Straightline Analytics, a Washington cannabis industry data company, released a report indicating they found rampant laboratory shopping to be present in the state. Lab shopping is a less-than-ethical business practice where cannabis producers look for the lab that will give them the most favorable results, particularly with respect to higher potency figures and lower contamination fail rates.“Lab shopping shouldn’t exist, because it is a symptom of lab variability,”

According to the press release, their report “shows that businesses that pay for the highest number of lab tests achieve, on average, reported potency levels 2.71% higher than do those that pay for the lowest number of lab tests.” They also found labs that provide higher potency figures tend to have the largest market share.

The Lab Transparency Project logo
The Lab Transparency Project logo

The goal of The Lab Transparency Project is to provide summaries of lab data across the state, shining a light in particular on which labs provide the highest potency results. “Lab shopping shouldn’t exist, because it is a symptom of lab variability,” says Jeff Doughty, president of Capitol Analysis. “We already have standards that should prevent variations in lab results and proficiency testing that shows that the labs are capable of doing the testing.” The other piece to this project is independent third party auditing, where they hope other labs will collaborate in the name of transparency and honesty. “Problems arise when the auditors aren’t looking,” says Doughty. “Therefore, we’re creating the Lab Transparency Project to contribute to honesty and transparency in the testing industry.”

Dr. Jim McRae, founder of Straightline Analytics, and the author of that inflammatory report, has been a vocal critic of the Washington cannabis testing industry for years now. “I applaud Capitol Analysis for committing to this effort,” says McRae. “With the state’s new traceability system up and running following a 4-month breakdown, the time for openness and transparency is now.” Dr. McRae will be contributing to the summaries of lab data as part of the project.

According to Doughty, the project is designed to be a largely collaborative effort with other labs, dedicated to improving lab standards and transparency in the industry.

Amy-Ankrum-headshot
From The Lab

The Case for ISO/IEC 17025 Accreditation in Cannabis Testing Laboratories

By Amy Ankrum
No Comments
Amy-Ankrum-headshot

Government regulations keep millions of Americans safe every year by controlling what companies can put in their products and the standards those products must meet to be sold to consumers.

Enter the strange case of legal cannabis: In order for cannabis to be legally distributed by licensed medical professionals and businesses, it must be tested. But unlike other consumable goods, cannabis is not regulated by the FDA. Without an overarching federal policy requiring cannabis testing laboratory accreditation, the testing and laboratory requirements differ greatly across state lines.For medical cannabis specifically, accredited testing facilities are especially important. 

To be federally regulated, cannabis would first have to be federally legalized. It turns out that states and businesses alike are not willing to wait for a federal mandate. Many states have begun to adopt standards for cannabis testing and some, such as Ohio, have even announced mandatory ISO/IEC 17025 accreditation for all cannabis testing laboratories. As the industry evolves, increased compliance expectations are certain to evolve in tandem.

Some cannabis labs have even taken the initiative to seek ISO/IEC 17025 accreditation of their own volition. Seth Wong, President of TEQ Analytics Laboratories, shared in a press release:

“By achieving ISO/IEC 17025 accreditation, TEQ Analytical Labs believes that we can address the concerns throughout the cannabis industry regarding insufficient and unreliable scientific analysis by providing our clients with State required tests that are accredited by an international standard.”

Other laboratories, such as DB Labs in Las Vegas and EVIO Labs in Florida are also leading the accreditation charge in their respective states, ahead of any state mandates.

There are key reasons why accreditation in cannabis testing labs is important. First and foremost, cannabis is a consumable product. Like fruits and vegetables, cannabis is prone to pesticides, fungi and contaminants. The result of putting a potentially hazardous material on the market without proper and documented testing could lead to a public health crisis. An accredited testing lab, however, will ensure that the cannabis products they test are free from harmful contaminants.

By utilizing role-based trainings, labs can trust employees are receiving proper onboarding.

For medical cannabis specifically, accredited testing facilities are especially important. Because many consumers of medical cannabis are immuno-compromised (such as in the case of chemotherapy patients), ensuring that products are free from any and all contaminants is critical. Further, in order to accurately determine both short- and long-term effects of prescribed cannabis consumption, accredited and compliant laboratories are necessary.

Accreditation standards like ISO/IEC 17025 also provide confidence that testing is performed properly and to an internationally accepted standard. Rather than returning a “pass/fail” rating on products, the Cannabis Safety Institute reports that an ISO/IEC 17025 laboratory is required to produce numerical accuracy percentages in testing for “at a minimum, cannabinoids, pesticides, microbiology, residual solvents, and water activity.” Reliable data sets that can be reviewed by both accreditors and the public foster trust between producers and consumers.

Finally, ISO/IEC 17025 accreditation demonstrates that a laboratory is properly staffed and trained. The Cannabis Safety Institute’s “Standards for Cannabis Testing Laboratories” explains that conducting proper analytical chemistry on cannabinoids (the chemical compounds extracted from cannabis that alter the brain’s neurotransmitter release) requires personnel who have met specific academic and training credentials. A system to monitor, manage and demonstrate proficiency is necessary to achieve and maintain accreditation. With electronic systems in place, this management and documentation minimizes risk and also minimizes administrative time tracking and maintaining training records.

Following the proper steps of a standardized process is key to improving and growing the cannabis industry in coming yearsFor cannabis testing labs, utilizing a comprehensive software solution to achieve and maintain compliance to standards such as ISO/IEC 17025 is key. Absent of a software solution, the necessary compliance requirements can become a significant burden to the organization. Paper tracking systems and complex spreadsheets open up organizations to the likelihood of errors and ultimately risk.

Because ISO/IEC 17025 has clearly defined expectations for training, a software solution also streamlines the training process while simultaneously documenting proficiency. By utilizing role-based trainings, organizations can be confident employees are receiving proper onboarding and in-service training. Additionally, the effectiveness of training can be proven with reports, which results in smoother audits and assessments.

Following the proper steps of a standardized process is key to improving and growing the cannabis industry in coming years- which means utilizing technology tools such as electronic workflows to ensure proper process controls. Beyond adding critical visibility, workflows also create efficiencies that can eliminate the need to increase staffing as companies expand and grow.

For an industry that is changing at a rapid pace, ensuring traceability, efficient processes and visibility across organizations is paramount. Using a system that enables automation, process control, document management and documented training procedures is a step in the right direction. With the proper software tools in place, cannabis testing labs can achieve compliance goals, demonstrate reliable and relevant results and most importantly ensure consumer safety.

oregon

Turning the Oregon Outdoor Market into a Research Opportunity

By Dr. Zacariah Hildenbrand, Dr. Kevin A. Schug
No Comments
oregon

Much has been made about the plummeting market value of cannabis grown outdoors in Oregon. This certainly isn’t a reflection of the product quality within the marketplace, but more closely attributable to the oversaturation of producers in this space. This phenomenon has similarities to that of ‘Tulip Mania’ within the Dutch Golden Age, whereby tulip bulbs were highly coveted assets one day, and almost worthless the next. During times like these, it is very easy for industry professionals to become disheartened; however, from a scientific perspective, this current era in Oregon represents a tremendous opportunity for discovery and fundamental research.

Dr. Zacariah Hildenbrand
Dr. Zacariah Hildenbrand, chief technical officer at Inform Environmental.

As we have mentioned in previous presentations and commentaries, our research group is interested in exploring the breadth of chemical constituents expressed in cannabis to discover novel molecules, to ultimately develop targeted therapies for a wide range of illnesses. Intrinsically, this research has significant societal implications, in addition to the potential financial benefits that can result from scientific discovery and the development of intellectual property. While conducting our experiments out of Arlington, Texas, where the study of cannabis is highly restricted, we have resorted to the closet genetic relative of cannabis, hops (Humulus lupulus), as a surrogate model of many of our experiments (Leghissa et al., 2018a). In doing so, we have developed a number of unique methods for the characterization of various cannabinoids and their metabolites (Leghissa et al., 2018b; Leghissa et al., 2018c). These experiments have been interesting and insightful; however, they pale in comparison to the research that could be done if we had unimpeded access to diverse strains of cannabis, as are present in Oregon. For example, gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) is a relatively new tool that has recently been proven to be an analytical powerhouse for the differentiation of various classes of terpene molecules (Qiu et al., 2017). In Arlington, TX, we have three such GC-VUV instruments at our disposal, more than any other research institution in the world, but we do not have access to appropriate samples for application of this technology. Similarly, on-line supercritical fluid extraction – supercritical fluid chromatography – mass spectrometry (SFE-SFC-MS) is another capability currently almost unique to our research group. Such an instrument exhibits extreme sensitivity, supports in situ extraction and analysis, and has a wide application range for potential determination of terpenes, cannabinoids, pesticides and other chemical compounds of interest on a single analytical platform. Efforts are needed to explore the power and use of this technology, but they are impeded based on current regulations.

Dr Kevin Schug
Dr. Kevin A. Schug, Professor and the Shimadzu Distinguished Professor of Analytical Chemistry in the Department of Chemistry and Biochemistry at The University of Texas at Arlington (UTA)

Circling back, let’s consider the opportunities that lie within the abundance of available outdoor-grown cannabis in Oregon. Cannabis is extremely responsive to environmental conditions (i.e., lighting, water quality, nutrients, exposure to pest, etc.) with respect to cannabinoid and terpene expression. As such, outdoor-grown cannabis, despite the reduced market value, is incredibly unique from indoor-grown cannabis in terms of the spectrum of light to which it is exposed. Indoor lighting technologies have come a long way; full-spectrum LED systems can closely emulate the spectral distribution of photon usage in plants, also known as the McCree curve. Nonetheless, this is emulation and nothing is ever quite like the real thing (i.e., the Sun). This is to say that indoor lighting can certainly produce highly potent cannabis, which exhibits an incredibly robust cannabinoid/terpene profile; however, one also has to imagine that such lighting technologies are still missing numerous spectral wavelengths that, in a nascent field of study, could be triggering the expression of unknown molecules with unknown physiological functions in the human body. Herein lies the opportunity. If we can tap into the inherently collaborative nature of the cannabis industry, we can start analyzing unique plants, having been grown in unique environments, using unique instruments in a facilitative setting, to ultimately discover the medicine of the future. Who is with us?


References

Leghissa A, Hildenbrand ZL, Foss FW, Schug KA. Determination of cannabinoids from a surrogate hops matrix using multiple reaction monitoring gas chromatography with triple quadrupole mass spectrometry. J Sep Sci 2018a; 41: 459-468.

Leghissa A, Hildenbrand ZL, Schug KA. Determination of the metabolites of Δ9-Tetrahydrocannabinol using multiple reaction monitoring gas chromatography – triple quadrapole – mass spectrometry. Separation Science Plus 2018b; 1: 43-47.

Leghissa A, Smuts J, Changling Q, Hildenbrand ZL, Schug KA. Detection of cannabinoids and cannabinoid metabolites using gas chromatography-vacuum ultraviolet spectroscopy. Separation Science Plus 2018c; 1: 37-42.

Qiu C, Smuts J, Schug KA. Analysis of terpenes and turpentines using gas chromatography with vacuum ultraviolet detection. J Sep Sci 2017; 40: 869-877.

Swetha Kaul, PhD

Colorado vs. California: Two Different Approaches to Mold Testing in Cannabis

By Swetha Kaul, PhD
8 Comments
Swetha Kaul, PhD

Across the country, there is a patchwork of regulatory requirements that vary from state to state. Regulations focus on limiting microbial impurities (such as mold) present in cannabis in order for consumers to receive a safe product. When cultivators in Colorado and Nevada submit their cannabis product to laboratories for testing, they are striving to meet total yeast and mold count (TYMC) requirements.In a nascent industry, it is prudent for state regulators to reference specific testing methodologies so that an industry standard can be established.

TYMC refers to the number of colony forming units present per gram (CFU/g) of cannabis material tested. CFU is a method of quantifying and reporting the amount of live yeast or mold present in the cannabis material being tested. This number is determined by plating the sample, which involves spreading the sample evenly in a container like a petri dish, followed by an incubation period, which provides the ideal conditions for yeast and mold to grow and multiply. If the yeast and mold cells are efficiently distributed on a plate, it is assumed that each live cell will give rise to a single colony. Each colony produces a visible spot on the plate and this represents a single CFU. Counting the numbers of CFU gives an accurate estimate on the number of viable cells in the sample.

The plate count methodology for TYMC is standardized and widely accepted in a variety of industries including the food, cosmetic and pharmaceutical industries. The FDA has published guidelines that specify limits on total yeast and mold counts ranging from 10 to 100,000 CFU/g. In cannabis testing, a TYMC count of 10,000 is commonly used. TYMC is also approved by the AOAC for testing a variety of products, such as food and cosmetics, for yeast and mold. It is a fairly easy technique to perform requiring minimal training, and the overall cost tends to be relatively low. It can be utilized to differentiate between dead and live cells, since only viable living cells produce colonies.

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus.
Photo courtesy of USDA ARS & Peggy Greb.

There is a 24 to 48-hour incubation period associated with TYMC and this impedes speed of testing. Depending on the microbial levels in a sample, additional dilution of a cannabis sample being tested may be required in order to count the cells accurately. TYMC is not species-specific, allowing this method to cover a broad range of yeast and molds, including those that are not considered harmful. Studies conducted on cannabis products have identified several harmful species of yeast and mold, including Cryptococcus, Mucor, Aspergillus, Penicillium and Botrytis Cinerea. Non-pathogenic molds have also been shown to be a source of allergic hypersensitivity reactions. The ability of TYMC to detect only viable living cells from such a broad range of yeast and mold species may be considered an advantage in the newly emerging cannabis industry.

After California voted to legalize recreational marijuana, state regulatory agencies began exploring different cannabis testing methods to implement in order to ensure clean cannabis for the large influx of consumers.

Unlike Colorado, California is considering a different route and the recently released emergency regulations require testing for specific species of Aspergillus mold (A. fumigatus, A. flavus, A. niger and A. terreus). While Aspergillus can also be cultured and plated, it is difficult to differentiate morphological characteristics of each species on a plate and the risk of misidentification is high. Therefore, positive identification would require the use of DNA-based methods such as polymerase chain reaction testing, also known as PCR. PCR is a molecular biology technique that can detect species-specific strains of mold that are considered harmful through the amplification and analysis of DNA sequences present in cannabis. The standard PCR testing method can be divided into four steps:

  1. The double stranded DNA in the cannabis sample is denatured by heat. This refers to splitting the double strand into single strands.
  2. Primers, which are short single-stranded DNA sequences, are added to align with the corresponding section of the DNA. These primers can be directly or indirectly labeled with fluorescence.
  3. DNA polymerase is introduced to extend the sequence, which results in two copies of the original double stranded DNA. DNA polymerases are enzymes that create DNA molecules by assembling nucleotides, the building blocks of DNA.
  4. Once the double stranded DNA is created, the intensity of the resulting fluorescence signal can uncover the presence of specific species of harmful Aspergillus mold, such as fumigatus.

These steps can be repeated several times to amplify a very small amount of DNA in a sample. The primers will only bind to the corresponding sequence of DNA that matches that primer and this allows PCR to be very specific.

PCR testing is used in a wide variety of applications
PCR testing is used in a wide variety of applications
Photo courtesy of USDA ARS & Peggy Greb.

PCR is a very sensitive and selective method with many applications. However, the instrumentation utilized can be very expensive, which would increase the overall cost of a compliance test. The high sensitivity of the method for the target DNA means that there are possibilities for a false positive. This has implications in the cannabis industry where samples that test positive for yeast and mold may need to go through a remediation process to kill the microbial impurities. These remediated samples may still fail a PCR-based microbial test due to the presence of the DNA. Another issue with the high selectivity of this method is that other species of potentially harmful yeast and mold would not even be detected. PCR is a technique that requires skill and training to perform and this, in turn, adds to the high overall cost of the test.

Both TYMC and PCR have associated advantages and disadvantages and it is important to take into account the cost, speed, selectivity, and sensitivity of each method. The differences between the two methodologies would lead to a large disparity in testing standards amongst labs in different states. In a nascent industry, it is prudent for state regulators to reference specific testing methodologies so that an industry standard can be established.

KenSnoke

Emerald Conference Showcases Research, Innovation in Cannabis

By Aaron G. Biros
No Comments
KenSnoke

Last week, the 4th annual Emerald Conference brought attendees from around the world to San Diego for two days of education, networking and collaboration. Leading experts from across the industry shared some of the latest research in sessions and posters with over 600 attendees. The foremost companies in cannabis testing, research and extraction brought their teams to exhibit and share cutting edge technology solutions.

KenSnoke
Ken Snoke, president of Emerald Scientific, delivers the opening remarks

The diversity in research topics was immense. Speakers touched on all of the latest research trends, including tissue culture as a micropropagation technique, phenotype hunting, pharmaceutical product formulation, chromatography methods and manufacturing standards, to name a few.

On the first day of the event, Ken Snoke, president of Emerald Scientific, gave his opening remarks, highlighting the importance of data-driven decisions in our industry, and how those decisions provide the framework and foundation for sound progress. “But data also fuels discovery,” says Snoke, discussing his remarks from the event. “I told a story of my own experience in San Diego almost 30 years ago while working in biotech, and how data analysis in a relatively mundane and routine screening program led to discovery. And how we (the folks at Emerald) believe that when we get our attendees together, that the networking and science/data that comes from this conference will not only support data-driven decisions for the foundation of the industry, but it will also lead to discovery. And that’s why we do this,” Snoke added.

Postersession
Arun Apte, CEO of CloudLIMS, discusses his poster with an attendee

Snoke says the quality of the content at the poster session was phenomenal and engaging. “We had over 500 attendees so we continue to grow, but it’s not just about growth for us,” says Snoke. “It’s about the quality of the content, and providing a forum for networking around that content. I met a scientist that said this conference renewed his faith in our industry. So I firmly believe that the event has and will continue to have a profound and immensely positive impact on our industry.”

Introducing speakers as one of the chairs for first session focused on production, Dr. Markus Roggen says he found a number of speakers delivered fascinating talks. “This year’s lineup of presentations and posters really showcase how far the cannabis industry has come along,” says Dr. Roggen. “The presentations by Roger Little, PhD and Monica Vialpando, PhD, both showed how basic research and the transfer of knowledge from other industries can push cannabis science forward. Dr. Brian Rohrback’s presentation on the use of chemometrics in the production of pharmaceutical cannabis formulations was particular inspiring.”

RogerLittle
Roger Little, Ph.D., owner of CTA, LLC, presents his research

Shortly after Snoke gave his opening remarks, Dr. Roggen introduced the first speaker, Roger Little, Ph.D., owner of CTA, LLC. He presented his research findings on phenotype hunting and breeding with the help of a cannabis-testing laboratory. He discussed his experience working with local breeders and growers in Northern California to identify high-potency plants early in their growth. “You can effectively screen juvenile plants to predict THC potency at harvest,” says Dr. Little. The other research he discussed included some interesting findings on the role of Methyl jasmonate as an immune-response trigger. “I was looking at terpenes in other plants and there is this chemical called methyl jasmonate,” says Dr. Little. “It is produced in large numbers of other plants and is an immune response stimulator. This is produced from anything trying to harm the plant such as a yeast infection or mites biting the stem.” Dr. Little says that the terpene has been used on strawberries to increase vitamin C content and on tobacco plants to increase nicotine content, among other uses. “It is a very potent and ubiquitous molecule,” says Dr. Little. “Cannabis plants’ immune-response is protecting the seeds with cannabinoid production. We can trick plants to think they are infected and thus produce more cannabinoids, stimulating them to produce their own jasmonate.”

Dr. Hope Jones, chief scientific officer of C4 Laboratories, spoke about tissue culture as an effective micropropagation technique, providing attendees with a basic understanding of the science behind it, and giving some estimates for how it could effectively replace cloning and the use of mother plants. You could overhear attendees discussing her talk throughout the remainder of the show.

HopeJones
Dr. Hope Jones, chief scientific officer at C4 Laboratories, discusses tissue culture during her talk

Dr. Jones has worked with CIJ on a series of articles to help explain cannabis tissue culture, which you can find here. “In this example, we started with one vessel with 4 explants,” says Dr. Jones. “Which when subcultured 4-6 weeks later, we now have 4 vessels with 16 plants.” She says this is instrumental in understanding how tissue culture micropropagation can help growers scale without the need for a ton of space and maintenance. From a single explant, you can potentially generate 70,000 plants after 48 weeks, according to Dr. Jones.

Those topics were just the first two of many presentations at Emerald Conference. You can take a look at some of the other presentation abstracts in the agenda here. The 5th Annual Emerald Conference in 2019 will be held February 28th through March 1st in San Diego next year.

Swetha Kaul, PhD

An Insider’s View: How Labs Conduct Cannabis Mold Testing

By Swetha Kaul, PhD
No Comments
Swetha Kaul, PhD

As both recreational and medical cannabis legalization continues to progress across the country, each state is tasked with developing regulatory requirements to ensure that customers and patients receive clean cannabis for consumption. This requires cannabis to undergo laboratory testing that analyzes the presence of microbial impurities including yeast and mold.

Some states, such as Colorado, Nevada, Maine, Illinois and Massachusetts use total yeast and mold count testing (TYMC) and set a maximum yeast and mold count threshold that cultivators must fall below. Other states, such as California, require the detection of species-specific strains of Aspergillus mold (A. fumigatus, A. flavus, A. niger and A. terreus), which requires analyzing the DNA of a cannabis sample through polymerase chain reaction testing, also known as PCR.

Differences in state regulations can lead to different microbiological techniques implemented for testing.Before diving in further, it is important to understand the scientific approach. Laboratory testing requirements for cannabis can be separated into two categories: analytical chemistry methods and microbiological methods.

Analytical chemistry is the science of qualitatively and quantitatively determining the chemical components of a substance, and usually consists of some kind of separation followed by detection. Analytical methods are used to uncover the potency of cannabis, analyze the terpene profile and to detect the presence of pesticides, chemical residues, residuals solvents, heavy metals and mycotoxins. Analytical testing methods are performed first before proceeding to microbiological methods.

Petri dish containing the fungus Aspergillus flavus
Petri dish containing the fungus Aspergillus flavus. It produces carcinogenic aflatoxins, which can contaminate certain foods and cause aspergillosis, an invasive fungal disease.
Photo courtesy of USDA ARS & Peggy Greb.

Microbiological methods dive deeper into cannabis at a cellular level to uncover microbial impurities such as yeast, mold and bacteria. The techniques utilized in microbiological methods are very different from traditional analytical chemistry methods in both the way they are performed and target of the analysis. Differences in state regulations can lead to different microbiological techniques implemented for testing. There are a variety of cell and molecular biology techniques that can be used for detecting microbial impurities, but most can be separated into two categories:

  1. Methods to determine total microbial cell numbers, which typically utilizes cell culture, which involves growing cells in favorable conditions and plating, spreading the sample evenly in a container like a petri dish. The total yeast and mold count (TYMC) test follows this method.
  2. Molecular methods intended to detect specific species of mold, such as harmful aspergillus mold strains, which typically involves testing for the presence of unique DNA sequences such as Polymerase Chain Reaction (PCR).


Among states that have legalized some form of cannabis use and put forth regulations, there appears to be a broad consensus that the laboratories should test for potency (cannabinoids concentration), pesticides (or chemical residues) and residual solvents at a minimum. On the other hand, microbial testing requirements, particularly for mold, appear to vary greatly from state to state. Oregon requires random testing for mold and mildew without any details on test type. In Colorado, Nevada, Maine, Illinois and Massachusetts, regulations explicitly state the use of TYMC for the detection of mold. In California, the recently released emergency regulations require testing for specific species of
Aspergillus mold (A. fumigatus, A. flavus, A. niger and A. terreus), which are difficult to differentiate on a plate and would require a DNA-based approach. Since there are differences in costs associated and data produced by these methods, this issue will impact product costs for cultivators, which will affect cannabis prices for consumers.

 

dSPE cleanups

The Grass Isn’t Always Greener: Removal of Purple Pigmentation from Cannabis

By Danielle Mackowsky
1 Comment
dSPE cleanups
strains
Cannabis strains used (clockwise from top left): Agent Orange, Tahoe OG, Blue Skunk, Grand Daddy and Grape Drink

Cannabis-testing laboratories have the challenge of removing a variety of unwanted matrix components from plant material prior to running extracts on their LC-MS/MS or GC-MS. The complexity of the cannabis plant presents additional analytical challenges that do not need to be accounted for in other agricultural products. Up to a third of the overall mass of cannabis seed, half of usable flower and nearly all extracts can be contributed to essential oils such as terpenes, flavonoids and actual cannabinoid content1. The biodiversity of this plant is exhibited in the over 2,000 unique strains that have been identified, each with their own pigmentation, cannabinoid profile and overall suggested medicinal use2. While novel methods have been developed for the removal of chlorophyll, few, if any, sample preparation methods have been devoted to removal of other colored pigments from cannabis.

QuEChERS
Cannabis samples following QuEChERS extraction

Sample Preparation

Cannabis samples from four strains of plant (Purple Drink, Tahoe OG, Grand Daddy and Agent Orange) were hydrated using deionized water. Following the addition of 10 mL acetonitrile, samples were homogenized using a SPEX Geno/Grinder and stainless steel grinding balls. QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) non-buffered extraction salts were then added and samples were shaken. Following centrifugation, an aliquot of the supernatant was transferred to various blends of dispersive SPE (dSPE) salts packed into centrifugation tubes. All dSPE tubes were vortexed prior to being centrifuged. Resulting supernatant was transferred to clear auto sampler vials for visual analysis. Recoveries of 48 pesticides and four mycotoxins were determined for the two dSPE blends that provided the most pigmentation removal.

Seven dSPE blends were evaluated for their ability to remove both chlorophyll and purple pigmentation from cannabis plant material:

  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg C18, 50 mg Chlorofiltr®
  • 150 mg MgSO4, 50 mg PSA
  • 150 mg MgSO4, 25 mg C18
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18
  • 150 mg MgSO4, 25 mg PSA, 7.5 mg GCB
  • 150 mg MgSO4, 50 mg PSA, 50 mg C18, 50 mg GCB

Based on the coloration of the resulting extracts, blends A, F and G were determined to be the most effective in removing both chlorophyll (all cannabis strains) and purple pigments (Purple Drink and Grand Daddy). Previous research regarding the ability of large quantities of GCB to retain planar pesticides allowed for the exclusion of blend G from further analyte quantitation3. The recoveries of the 48 selected pesticides and four mycotoxins for blends A and F were determined.

dSPE cleanups
Grand Daddy following various dSPE cleanups

Summary

A blend of MgSO4, C18, PSA and Chlorofiltr® allowed for the most sample clean up, without loss of pesticides and mycotoxins, for all cannabis samples tested. Average recovery of the 47 pesticides and five mycotoxins using the selected dSPE blend was 75.6% were as the average recovery when including GCB instead of Chlorofiltr® was 67.6%. Regardless of the sample’s original pigmentation, this blend successfully removed both chlorophyll and purple hues from all strains tested. The other six dSPE blends evaluated were unable to provide the sample clean up needed or had previously demonstrated to be detrimental to the recovery of pesticides routinely analyzed in cannabis.


References

(1)           Recommended methods for the identification and analysis of cannabis and cannabis products, United Nations Office of Drugs and Crime (2009)

(2)            W. Ross, Newsweek, (2016)

(3)            Koesukwiwat, Urairat, et al. “High Throughput Analysis of 150 Pesticides in Fruits and Vegetables Using QuEChERS and Low-Pressure Gas Chromatography Time-of-Flight Mass Spectrometry.” Journal of Chromatography A, vol. 1217, no. 43, 2010, pp. 6692–6703., doi:10.1016/j.chroma.2010.05.012.

Multi-analyte Configuration for Cannabis Testing Services

Managing Cannabis Testing Lab Workflows using LIMS

By Dr. Susan Audino
No Comments
Multi-analyte Configuration for Cannabis Testing Services

With the state led legalization of both adult recreational and medical cannabis, there is a need for comprehensive and reliable analytical testing to ensure consumer safety and drug potency. Cannabis-testing laboratories receive high volumes of test requests from cannabis cultivators for testing quantitative and qualitative aspects of the plant. The testing market is growing as more states bring in stricter enforcement policies on testing. As the number of testing labs grow, it is anticipated that the laboratories that are now servicing other markets, including high throughput contract labs, will cross into cannabis testing as regulations free up. As the volume of tests each lab performs increases, the need for laboratories to make effective use of time and resource management, such as ensuring accurate and quick results, reports, regulatory compliance, quality assurance and many other aspects of data management becomes vital in staying competitive.

Cannabis Testing Workflows

To be commercially competitive, testing labs offer a comprehensive range of testing services. These services are available for both the medical and recreational cannabis markets, including:

  • Detection and quantification of both acid and neutral forms of cannabinoids
  • Screening for pesticide levels
  • Monitoring water activity to indicate the possibility of microbiological contamination
  • Moisture content measurements
  • Terpene profiling
  • Residual solvents and heavy metal testing
  • Fungi, molds, mycotoxin testing and many more

Although the testing workflows differ for each test, here is a basic overview of the operations carried out in a cannabis-testing lab:

  1. Cannabis samples are received.
  2. The samples are processed using techniques such as grinding and homogenization. This may be followed by extraction, filtration and evaporation.
  3. A few samples will be isolated and concentrated by dissolving in solvents, while others may be derivatized using HPLC or GC reagents
  4. The processed samples are then subjected to chromatographic separation using techniques such as HPLC, UHPLC, GC and GC-MS.
  5. The separated components are then analyzed and identified for qualitative and quantitative analysis based on specialized standards and certified reference materials.
  6. The quantified analytical data will be exported from the instruments and compiled with the corresponding sample data.
  7. The test results are organized and reviewed by the lab personnel.
  8. The finalized test results are reported in a compliant format and released to the client.

In order to ensure that cannabis testing laboratories function reliably, they are obliged to follow and execute certain organizational and regulatory protocols throughout the testing process. These involve critical factors that determine the accuracy of testing services of a laboratory.

Factors Critical to a Cannabis Testing Laboratory 

  • Accreditations & Regulatory Compliance: Cannabis testing laboratories are subject to regulatory compliance requirements, accreditation standards, laboratory practices and policies at the state level. A standard that most cannabis testing labs comply to is ISO 17025, which sets the requirements of quality standards in testing laboratories. Accreditation to this standard represents the determination of competence by an independent third party referred to as the “Accreditation Body”. Accreditation ensures that laboratories are adhering to their methods. These testing facilities have mandatory participation in proficiency tests regularly in order to maintain accreditation.
  • Quality Assurance, Standards & Proficiency Testing: Quality assurance is in part achieved by implementing standard test methods that have been thoroughly validated. When standard methods are not available, the laboratory must validate their own methods. In addition to using valid and appropriate methods, accredited laboratories are also required to participate in appropriate and commercially available Proficiency Test Program or Inter-Laboratory Comparison Study. Both PT and ILC Programs provide laboratories with some measure of their analytic performance and compare that performance with other participating laboratories.

    Multi-analyte Configuration for Cannabis Testing Services
    CloudLIMS Cannabis Testing LIMS: Multi-analyte Configuration for Cannabis Testing Services
  • Real-time Collaboration: Testing facilities generate metadata such as data derived from cannabis samples and infused products. The testing status and test results are best served for compliance and accessibility when integrated and stored on a centralized platform. This helps in timely data sharing and facilitates informed decision making, effective cooperation and relationships between cannabis testing facilities and growers. This platform is imperative for laboratories that have grown to high volume throughput where opportunities for errors exist. By matching test results to samples, this platform ensures consistent sample tracking and traceability. Finally, the platform is designed to provide immediate, real-time reporting to individual state or other regulatory bodies.
  • Personnel Management: Skilled scientific staff in cannabis-testing laboratories are required to oversee testing activities. Staff should have experience in analytical chromatography instruments such as HPLC and GC-MS. Since samples are often used for multi-analytes such as terpenes, cannabinoids, pesticides etc., the process often involves transferring samples and tests from one person to another within the testing facility. A chain of custody (CoC) is required to ensure traceability and ‘ownership’ for each person involved in the workflow.

LIMS for Laboratory Automation

Gathering, organizing and controlling laboratory-testing data can be time-consuming, labor-intensive and challenging for cannabis testing laboratories. Using spreadsheets and paper methods for this purpose is error-prone, makes data retrieval difficult and does not allow laboratories to easily adhere to regulatory guidelines. Manual systems are cumbersome, costly and lack efficiency. One way to meet this challenge is to switch to automated solutions that eliminate many of the mundane tasks that utilize valuable human resources.. Laboratory automation transforms the data management processes and as a result, improves the quality of services and provides faster turnaround time with significant cost savings. Automating the data management protocol will improve the quality of accountability, improve technical efficiency, and improve fiscal resources.

cloudlims screenshot
Real Time Test Status in CloudLIMS

A Laboratory Information Management System (LIMS) is a software tool for testing labs that aids efficient data management. A LIMS organizes, manages and communicates all laboratory test data and related information, such as sample and associated metadata, tests, Standard Operating Procedures (SOPs), test reports, and invoices. It also enables fully automated data exchange between instruments such as HPLCs, GC-FIDs, etc. to one consolidated location, thereby reducing transcription errors.

How LIMS Helps Cannabis Testing Labs

LIMS are much more capable than spreadsheets and paper-based tools for streamlining the analytical and operational lab activities and enhances the productivity and quality by eliminating manual data entry. Cloud-enabled LIMS systems such as CloudLIMS are often low in the total cost of acquisition, do not require IT staff and are scalable to help meet the ever changing business and regulatory compliance needs. Some of the key benefits of LIMS for automating a cannabis-testing laboratory are illustrated below [Table 1]:

Key Functionality Benefit
Barcode label designing and printing Enables proper labelling of samples and inventory

Follows GLP guidelines

Instant data capture by scanning barcodes Facilitates quick client registration and sample access
3600 data traceability Saves time and resources for locating samples and other records
Inventory and order management Supports proactive planning/budgeting and real time accuracy
Custodian management Promotes overall laboratory organization by assigning custodians for samples and tests

Maintains the Chain-of-custody (CoC)

Test management Accommodates pre-loaded test protocols to quickly assign tests for incoming samples
Accounting for sample and inventory quantity Automatically deducts sample and inventory quantities when consumed in tests
Package & shipment management Manages incoming samples and samples that have been subcontracted to other laboratories
Electronic data import Electronically imports test results and metadata from integrated instruments

Eliminates manual typographical errors

Report management Generates accurate, customizable, meaningful and test reports for clients

Allows user to include signatures and additional sections for professional use

21 CFR Part 11 compliant Authenticates laboratory activities with electronic signatures
ISO 17025 accreditation Provides traceable documentary evidence required to achieve ISO 17025 accreditation
Audit trail capabilities Adheres to regulatory standards by recording comprehensive audit logs for laboratory activities along with the date and time stamp
Centralized data management Stores all the data in a single, secure database facilitating quick data retrieval
Workflow management Promotes better data management and resource allocation
High-configurability Enables modification of screens using graphical configuration tools to mirror testing workflows
State compliance systems Integrates with state-required compliance reporting systems and communicates using API
Adheres to regulatory compliance Creates Certificates of Analysis (CoA) to prove regulatory compliance for each batch as well as batch-by-batch variance analysis and other reports as needed.
Data security & confidentiality Masks sensitive data from unauthorized user access

 

Cloud-based LIMS encrypts data at rest and in-transit while transmission between the client and the server

Global accessibility Cloud-based LIMS provides real-time access to laboratory data from anytime anywhere
Real-time collaboration Cloud-based LIMS enhances real-time communication within a laboratory, between a laboratory and its clients, and across a global organization with multiple sites

Table 1. Key functionality and benefits of LIMS for cannabis testing laboratories

Upon mapping the present day challenges faced by cannabis testing laboratories, adopting laboratory automation solutions becomes imperative. Cloud-based LIMS becomes a valuable tool for laboratory data management in cannabis testing laboratories. In addition to reducing manual workloads, and efficient resource management, it helps labs focus on productive lab operations while achieving compliance and regulatory goals with ease.

For more information on this, check out a webinar here: Webinar: How to Meet Cannabis Testing Standards and Regulatory Requirements with LIMS by Stephen Goldman, laboratory director at the State of Colorado certified Cannabis testing facility, PhytaTech.