Tag Archives: contaminants

Heavy Metals Testing: Methods, Strategies & Sampling

By Charles Deibel
No Comments

Editor’s Note: The following is based on research and studies performed in their Santa Cruz Lab, with contributions from Mikhail Gadomski, Lab Manager, Ryan Maus Technical Services Analyst, Laurie Post, Director of Food Safety & Compliance, and Charles Deibel, President Deibel Cannabis Labs.


Heavy metals are common environmental contaminants resulting from human industrial activities such as mining operations, industrial waste, automotive emissions, coal fired power plants and farm/house hold water run-off. They affect the water and soil, and become concentrated in plants, animals, pesticides and the sediments used to make fertilizers. They can also be present in low quality glass or plastic packaging materials that can leach into the final cannabis product upon contact. The inputs used by cultivators that can be contaminated with heavy metals include fertilizers, growing media, air, water and even the clone/plant itself.

The four heavy metals tested in the cannabis industry are lead, arsenic, mercury and cadmium. The California Bureau of Cannabis Control (BCC) mandates heavy metals testing for all three categories of cannabis products (inhalable cannabis, inhalable cannabis products and other cannabis and cannabis products) starting December 31, 2018. On an ongoing basis, we recommend cultivators test for the regulated heavy metals in R&D samples any time there are changes in a growing process including changes to growing media, cannabis strains, a water system or source, packaging materials and fertilizers or pesticides. Cultivators should test the soil, nutrient medium, water and any new clones or plants for heavy metals. Pre-qualifying a new packaging material supplier or a water source prior to use is a proactive approach that could bypass issues with finished product.

Testing Strategies

The best approach to heavy metal detection is the use of an instrument called an Inductively Coupled Plasma Mass Spectrometry (ICP-MS). There are many other instruments that can test for heavy metals, but in order to achieve the very low detection limits imposed by most states including California, the detector must be the ICP-MS. Prior to detection using ICP-MS, cannabis and cannabis related products go through a sample preparation stage consisting of some form of digestion to completely break down the complex matrix and extract the heavy metals for analysis. This two-step process is relatively fast and can be done in a single day, however, the instruments used to perform the digestion are usually the limiting step as the digesters run in a batch of 8-16 samples over a 2-hour period.

Only trace amounts of heavy metals are allowed by California’s BCC in cannabis and cannabis products. A highly sensitive detection system finds these trace amounts and also allows troubleshooting when a product is found to be out of specification.

For example, during the course of testing, we have seen lead levels exceed the BCC’s allowable limit of 0.5 ppm in resin from plastic vape cartridges. An investigation determined that the plastic used to make the vape cartridge was the source of the excessive lead levels. Even if a concentrate passes the limits at the time of sampling, the concern is that over time, the lead leached from the plastic into the resin, increasing the concentration of heavy metals to unsafe levels.

Getting a Representative Sample

The ability to detect trace levels of heavy metals is based on the sample size and how well the sample represents the entire batch. The current California recommended amount of sample is 1 gram of product per batch.  Batch sizes can vary but cannot be larger than 50 pounds of flower. There is no upper limit to the batch sizes for other inhalable cannabis products (Category II).

It is entirely likely that two different 1 gram samples of flower can have two different results for heavy metals because of how small a sample is collected compared to an entire batch. In addition, has the entire plant evenly collected and concentrated the heavy metals into every square inch of it’s leaves? No, probably not. In fact, preliminary research in leafy greens shows that heavy metals are not evenly distributed in a plant. Results from soil testing can also be inconsistent due to clumping or granularity. Heavy metals are not equally distributed within a lot of soil and the one small sample that is taken may not represent the entire batch. That is why it is imperative to take a “random” sample by collecting several smaller samples from different areas of the entire batch, combining them, and taking a 1 g sample from this composite for analysis.


References

California Cannabis CPA. 12/18/2018.  “What to Know About California’s Cannabis Testing Requirements”. https://www.californiacannabiscpa.com/blog/what-to-know-about-californias-cannabis-testing-requirements. Accessed January 10, 2019.

Citterio, S., A. Santagostino, P. Fumagalli, N. Prato, P. Ranalli and S. Sgorbati. 2003.  Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L.. Plant and Soil 256: 243–252.

Handwerk, B. 2015.  “Modern Marijuana Is Often Laced With Heavy Metals and Fungus.” Smithsonian.com. https://www.smithsonianmag.com/science-nature/modern-marijuana-more-potent-often-laced-heavy-metals-and-fungus-180954696/

Linger, P.  J. Mussig, H. Fischer, J. Kobert. 2002.  Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind. Crops Prod. 11, 73–84.

McPartland, J. and K. J McKernan. 2017.  “Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides”.  In: S. Chandra et al. (Eds.) Cannabis sativa L. – Botany and Biotechnology.  Springer International Publishing AG. P. 466-467.  https://www.researchgate.net/publication/318020615_Contaminants_of_Concern_in_Cannabis_Microbes_Heavy_Metals_and_Pesticides.  Accessed January 10, 2019.

Sidhu, G.P.S.  2016.  Heavy metal toxicity in soils: sources, remediation technologies and challenges.   Adv Plants AgricRes. 5(1):445‒446.

EVIO Logo

EVIO Labs Florida Expands Operations

By Aaron G. Biros
No Comments
EVIO Logo

More than a year ago, we sat down with Chris Martinez, co-founder and chief operating officer of EVIO Labs Florida, when he just started getting the laboratory off the ground. In February of 2018, they became Florida’s first ISO accredited cannabis testing lab.

Chris Martinez
Chris Martinez, co-founder and chief operating officer of EVIO Labs Florida

Fast-forward almost a year and EVIO Labs Florida is continuing their expansion in the state, now with locations in Broward County and Gainesville. “We are always looking at opportunities to better serve our clients and the patients of Florida,” says Martinez. “Opening Gainesville within a year of Davie was a goal we set for our team. We knew there was a need and opening Gainesville helped support the continued growth of FL medical marijuana program.” He says that between the two locations, they can now process upwards of 1,400 samples a day.

According to Martinez, much of that expanded throughput is thanks to their partnership with Shimadzu. “Our relationship with Shimadzu is very unique,” says Martinez. “Shimadzu instrumentation allows us to test in parts per billion for accuracy and sensitivity levels that empower us to see deep into the chemical makeup of these medicines. Operating in this space where speed and turnaround times are key, these instruments provide us with a platform to meet 24/48-hour deadlines.” They can now screen for contaminants such as pesticides, heavy metals, residual solvents, mycotoxins, aflatoxins and pathogens using instruments such as HPLC, GC-MS/MS, LC-MS/MS and ICP-MS, all provided by Shimadzu.EVIO Logo

While Florida doesn’t currently have a final rule on testing thresholds, there are proposed regulations that would require independent lab testing for medical cannabis products. “Our clients are self-regulating at this time and in favor of the current proposed regulation,” says Martinez. “The proposed regulations will give Florida the most comprehensive and stringent testing regulation in the U.S. and arguably the world.”

For Martinez and the rest of the EVIO Labs Florida team, this is about protecting public health. “Our lab’s main focus is always first and foremost patient safety,” says Martinez. “As the market continues to grow, we continue to innovate through business intelligence software and other technologies to streamline the testing process for our customer’s.”

Amy-Ankrum-headshot
From The Lab

The Case for ISO/IEC 17025 Accreditation in Cannabis Testing Laboratories

By Amy Ankrum
No Comments
Amy-Ankrum-headshot

Government regulations keep millions of Americans safe every year by controlling what companies can put in their products and the standards those products must meet to be sold to consumers.

Enter the strange case of legal cannabis: In order for cannabis to be legally distributed by licensed medical professionals and businesses, it must be tested. But unlike other consumable goods, cannabis is not regulated by the FDA. Without an overarching federal policy requiring cannabis testing laboratory accreditation, the testing and laboratory requirements differ greatly across state lines.For medical cannabis specifically, accredited testing facilities are especially important. 

To be federally regulated, cannabis would first have to be federally legalized. It turns out that states and businesses alike are not willing to wait for a federal mandate. Many states have begun to adopt standards for cannabis testing and some, such as Ohio, have even announced mandatory ISO/IEC 17025 accreditation for all cannabis testing laboratories. As the industry evolves, increased compliance expectations are certain to evolve in tandem.

Some cannabis labs have even taken the initiative to seek ISO/IEC 17025 accreditation of their own volition. Seth Wong, President of TEQ Analytics Laboratories, shared in a press release:

“By achieving ISO/IEC 17025 accreditation, TEQ Analytical Labs believes that we can address the concerns throughout the cannabis industry regarding insufficient and unreliable scientific analysis by providing our clients with State required tests that are accredited by an international standard.”

Other laboratories, such as DB Labs in Las Vegas and EVIO Labs in Florida are also leading the accreditation charge in their respective states, ahead of any state mandates.

There are key reasons why accreditation in cannabis testing labs is important. First and foremost, cannabis is a consumable product. Like fruits and vegetables, cannabis is prone to pesticides, fungi and contaminants. The result of putting a potentially hazardous material on the market without proper and documented testing could lead to a public health crisis. An accredited testing lab, however, will ensure that the cannabis products they test are free from harmful contaminants.

By utilizing role-based trainings, labs can trust employees are receiving proper onboarding.

For medical cannabis specifically, accredited testing facilities are especially important. Because many consumers of medical cannabis are immuno-compromised (such as in the case of chemotherapy patients), ensuring that products are free from any and all contaminants is critical. Further, in order to accurately determine both short- and long-term effects of prescribed cannabis consumption, accredited and compliant laboratories are necessary.

Accreditation standards like ISO/IEC 17025 also provide confidence that testing is performed properly and to an internationally accepted standard. Rather than returning a “pass/fail” rating on products, the Cannabis Safety Institute reports that an ISO/IEC 17025 laboratory is required to produce numerical accuracy percentages in testing for “at a minimum, cannabinoids, pesticides, microbiology, residual solvents, and water activity.” Reliable data sets that can be reviewed by both accreditors and the public foster trust between producers and consumers.

Finally, ISO/IEC 17025 accreditation demonstrates that a laboratory is properly staffed and trained. The Cannabis Safety Institute’s “Standards for Cannabis Testing Laboratories” explains that conducting proper analytical chemistry on cannabinoids (the chemical compounds extracted from cannabis that alter the brain’s neurotransmitter release) requires personnel who have met specific academic and training credentials. A system to monitor, manage and demonstrate proficiency is necessary to achieve and maintain accreditation. With electronic systems in place, this management and documentation minimizes risk and also minimizes administrative time tracking and maintaining training records.

Following the proper steps of a standardized process is key to improving and growing the cannabis industry in coming yearsFor cannabis testing labs, utilizing a comprehensive software solution to achieve and maintain compliance to standards such as ISO/IEC 17025 is key. Absent of a software solution, the necessary compliance requirements can become a significant burden to the organization. Paper tracking systems and complex spreadsheets open up organizations to the likelihood of errors and ultimately risk.

Because ISO/IEC 17025 has clearly defined expectations for training, a software solution also streamlines the training process while simultaneously documenting proficiency. By utilizing role-based trainings, organizations can be confident employees are receiving proper onboarding and in-service training. Additionally, the effectiveness of training can be proven with reports, which results in smoother audits and assessments.

Following the proper steps of a standardized process is key to improving and growing the cannabis industry in coming years- which means utilizing technology tools such as electronic workflows to ensure proper process controls. Beyond adding critical visibility, workflows also create efficiencies that can eliminate the need to increase staffing as companies expand and grow.

For an industry that is changing at a rapid pace, ensuring traceability, efficient processes and visibility across organizations is paramount. Using a system that enables automation, process control, document management and documented training procedures is a step in the right direction. With the proper software tools in place, cannabis testing labs can achieve compliance goals, demonstrate reliable and relevant results and most importantly ensure consumer safety.

emerald test retail

Analyzing The Emerald Test Results: Cannabis Labs Making Progress

By Aaron G. Biros
No Comments
emerald test retail

The Emerald Test advisory panel recently convened to review the results from the Fall 2016 round of the semi-annual Inter-Laboratory Comparison and Proficiency Test (ILC/PT), ahead of the third annual Emerald Conference just a few weeks away. After reviewing and analyzing the results, the panel noticed a significant improvement across the board over their Spring 2016 round of proficiency testing.rsz_emerald-scientific_letterhead-1

Emerald Scientific’s ILC/PT program is a tool laboratories use to check how accurate their testing capabilities are compared to other labs. A lab receiving The Emerald Test badge indicates their testing meets the criteria established by the panel to demonstrate competency. This means that they were within two standard deviations of the consensus mean for all analytes tested, according to Wes Burk, vice president of Emerald Scientific. He says the labs performed better than expected on both the microbial and pesticide tests.

Wes Burk, vice president of Emerald Scientific.
Wes Burk, vice president of Emerald Scientific.

emerald test retailEach lab has access to raw, anonymized data including a consensus mean, z-scores and kernel density plots. This round measured how well 35 cannabis labs perform in testing for potency, pesticides, residual solvents and microbial contaminants such as E. coli, Salmonella, Coliform, yeast and mold.

The advisory panel includes: Robert Martin, Ph.D., founder of CW Analytical, Cynthia Ludwig, director of technical services at AOCS, Rodger Voelker, Ph.D., lab director, OG Analytical, Tammie Mussitsch, QA manager at RJ Lee Group, Shawn Kassner, senior scientist at Neptune & Company, Inc., Jim Roe, scientific director at Steep Hill Labs, Chris Hudalla, Ph.D., founder and chief scientific officer at ProVerde Labs, Sytze Elzinga, The Werc Shop and Amanda Rigdon, Chief Technical Officer at Emerald Scientific.

amandarigdon
Amanda Rigdon, chief technical officer at Emerald Scientific

According to Amanda Rigdon, chief technical officer at Emerald Scientific, the labs performed very well in potency, residual solvents and microbial testing PTs. This is the first year the proficiency testing includes pesticides. “All of the labs did a great job identifying every pesticide in our hemp-based PT, but some more work will most likely have to be done to bring quantitative results in line,” says Rigdon. “Since this was the first pesticide PT we had offered, we were pretty conservative when choosing analytes and their levels. For the most part, analytes and levels were taken from the Oregon pesticide list, which is widely recognized to be the most reasonable and applicable pesticide list out there to date.” They covered pesticides of high concern, like abamectin and Myclobutanil, but also included a wide range of other pesticides that labs are expected to encounter.

Shawn Kassner, senior scientist at Neptune
Shawn Kassner, senior scientist at Neptune & Company, Inc.

Shawn Kassner, senior scientist at Neptune & Company, Inc., believes microbial contamination proficiency testing should be a priority for improving public health and safety going forward. Although five participating labs did not receive badges for the microbial contamination PTs, panel members say the overall performance was really quite good. “Microbiology testing are essential analyses for all cannabis products and it’s just slower in regulatory implementation than potency testing,” says Kassner. “The risk of Salmonella and E. coli to an individual using a medical cannabis product could be very life threatening. Microbiology contamination is a huge concern for any public health agency, which is why we have seen that microbiology testing is usually the first analytical test required after potency.” Kassner notes that there were few outliers and with each Emerald PT program, he is seeing an improvement in overall laboratory performance.

For The Emerald Test’s next round, the panel hopes to make some improvements in the test’s robustness and consistency, like obtaining assigned values for all samples and comparing to a consensus mean. “We want to develop permanent badge criteria, streamline the appeals process and possibly implement a qualitative performance review in the pesticide PT,” says Burk. For the next round of pesticide PTs, they want to build a better list of pesticides to cover more states, allowing labs to pick a set based on their state’s regulations. Burk says they also want to collect data on whether or not matrix-matched curves were used for pesticides.

Rodger Voelker, Cynthia Ludwig and Shawn Kassner, all members of the advisory panel, will be speaking at the Emerald Conference, discussing some of their findings from this round of proficiency testing. The Emerald Conference will take place February 2nd and 3rd in San Diego, CA.