Tag Archives: infused

CBD Watchdog Finds Beverage Labeling Inaccuracies

By Cannabis Industry Journal Staff
No Comments

According to a press release published in late August, CBD watchdog Leafreport found a large number of inaccuracies when testing CBD-infused beverages on the market today. Leafreport conducted independent lab testing on 22 different CBD-infused beverages and found more than half of the products had less CBD than the label claimed. To be specific, 12 out of the 22 products tested contained less CBD than advertised.

Canalysis Laboratories, the lab contracted to conduct the testing, found two of the products didn’t even contain any CBD. 18 of the beverages had CBD levels with a label claim variance greater than 10%. 14 of the beverages had CBD levels with a label claim variance greater than 40%. Only 4 of the beverages achieved an ‘A’ letter grade for coming within 10% of their advertised CBD levels.

According to Lital Shafir, head of product at Leafreport, the CBD beverage market is a bit tricky, largely due to product formulation issues. “This is in line with our expectations because CBD beverages are difficult to formulate and contain relatively small amounts of CBD, which means that variations of even a few milligrams can have a big effect,” says Shafir. “The CBD industry is completely unregulated and there have been many cases of companies selling products that contain little to no CBD. That’s why third-party testing is important for brands in this industry.”

Interestingly, this report did not find a positive correlation between a company’s reputation and their product’s test results. The full study can be found here. Leafreport is an independent, peer-reviewed website dedicated to increasing transparency in the CBD marketplace.

FDAlogo

Consumer Class Actions Against CBD Companies Are Hitting a Snag

By Seth A. Goldberg, Justin M. L. Stern
No Comments
FDAlogo

Over the past year, more and more consumer class actions have been filed against manufacturers and distributors of CBD-infused products. These actions typically assert claims based on how the product is marketed, such as whether it (i) contained the advertised amount of CBD, (ii) contained more THC than it should have or (iii) has the ability to provide the therapeutic benefits touted. The marketing of these products is subject to regulation by FDA, which has yet to issue pertinent regulations that have been expected since passage of the 2018 Farm Bill legalizing hemp and CBD products derived therefrom. Thus, in recent months, a number of federal courts have stopped these class actions in their tracks pending further guidance from FDA as to how CBD-infused products should be regulated. This growing body of precedent should be welcome news for the CBD supply chain, as it may provide a disincentive to the plaintiffs’ bar to expend their resources on similar actions until the regulatory framework is clear.

Just some of the many CBD products on the market today.

The first case that was put on hold until the “FDA completes its rulemaking regarding the marketing, including labeling, of hemp-derived ingestible products” was Snyder v. Green Roads of Florida, a case about the content of CBD in Green Roads’ products pending in the U.S. District Court for the Southern District of Florida. Then, in May, a judge in the U.S. District Court for the Central District of California took the same approach, deciding to stay the case of Colette v. CV Sciences, Inc., also on account of the lack of FDA regulations. Less than one month later, a judge in the U.S. District Court for the Eastern District of California, relying on the rulings in Snyder and Colette, stayed Glass v. Global Widget, LLC, also under the primary jurisdiction—a doctrine implicated where the claims involve a federal agency’s expertise concerning a regulated product.

On August 11, 2020, two federal judges became the most recent to stay putative class actions involving the sale of CBD products under the primary jurisdiction doctrine: Pfister v. Charlotte’s Web Holdings, Inc., in the U.S. District Court for the Northern District of Illinois, and Ahumada v. Global Widget LLC, in the U.S. District Court for the District of Massachusetts. Both were stayed on account of a lack of regulatory direction from FDA.

A trend appears to be developing, but not all courts faced with the option to stay the proceedings pursuant to the primary jurisdiction doctrine have chosen to put their respective cases on hold. In March, the judge overseeing Potter v. Diamond CBD (pending in the U.S. District Court for the Southern District of Florida) declined to stay the proceedings despite the absence of FDA regulations concerning ingestible CBD products. Despite the defendant’s objection, the court declined to stay the proceedings, finding that to the extent FDA regulations were forthcoming, they would be unlikely to change the food labeling requirements which were at issue in that case.

The stays of federal court cases involving CBD products highlight the need for FDA to issue regulations that cover the marketing of them. They also may provide the CBD product supply chain with a break in the number of consumer class actions filed until such regulations are issued.

Leaders in Extraction & Manufacturing: Part 2

By Aaron Green
No Comments

Cannabis extraction and manufacturing is big business in California with companies expanding brands into additional states as they grow. This is the second article in a series where we interview leaders in the California extraction and manufacturing industry from some of the biggest and most well-known brands. Click here to see Part 1.

In this week’s article we talk with Matthew Elmes, director of product development at Cannacraft. After cutting his teeth in academic and industry research, Matthew was approached by Cannacraft leadership to bring a new perspective to their product development efforts. The interview with Matthew was conducted on July 22, 2020.

Next week, we’ll interview Joaquin Rodriguez, chief operating officer at GenX BioTech. Stay tuned for more!

Aaron Green: Hi Matthew, and thank you for taking the time to chat today, I understand you have a busy schedule!

Matthew Elmes: Thanks – yeah, last week was pretty insane!

Aaron: Well, I’m happy we found a chance to put this together. Let’s start from the beginning. How did you get involved at Cannacraft?

Matthew Elmes, director of product development at Cannacraft

Matthew: I did my Ph.D in biochemistry at Stony Brook University on cannabinoid intracellular transport and metabolism. I then did a post-doc with Artelo Biosciences in endocannabinoid system modulation. While I was doing my post-doctoral research, Dennis Hunter, co-founder of Cannacraft, had learned about my work and reached out to offer me a position.

Aaron: Awesome, that’s a great feeling when people are reaching out to you! The next questions here will be focused on product development and manufacturing. What is your decision process for launching a new product?

Matthew: We do our best to anticipate what the market will want. A lot of our new product development comes from improving our current products. Things like improving stability, shelf-life and reducing bitterness. For brand-new products and technologies, we first get a lot of feedback from the marketing and sales teams and will then go into a planning session to decide what is feasible and what is not prior to moving forward.

Aaron: Do you personally get involved in manufacturing? Tell me about your process there.

Matthew: I do get involved in manufacturing. My main inputs are figuring out how much cannabis oil to use to hit a target potency around the size of a batch. This is the type of thing I do for all our beverage products like HiFi Hops, our Satori line of infused edibles, and the various gummy products sold under our brands Absolute Xtracts and Care By Design.

Aaron: Are you developing new products internally?

Matthew: For the most part we develop everything internally. We are very vertically integrated here at Cannacraft and we extract all of our oil in house. I don’t do the oil extractions myself. Most of our stuff is supercritical carbon dioxide extraction, but we have hydrocarbon and cryoethanol extraction facilities opening soon. For our gummies, we use distillate oils for the best flavor and for our droppers/vapes we use full-spectrum oils for a more sophisticated array of effects.

Aaron: In product development, what does getting stuck look like for you?

Matthew: Getting stuck happens a lot! You know, strict regulations make it challenging to source ingredients. Foods we’d like to source for a product are often too high in pesticides or heavy metals for the cannabis regulations. What’s good enough for the grocery store is very often not good enough to be compliant in the California cannabis industry. Fruits that are totally free from pesticides are hard to find. Our edibles brand Satori Chocolates actually might be the only player in the entire California cannabis industry that uses real whole fruit in our products rather than something artificial or a processed fruit paste. We actually had to source our strawberries from Italy to find ones that were both compliant in metals/pesticides and tasted good enough to meet our high standards! The same sort of challenges apply to sourcing biomass for oils.

Aaron: If you get stuck is it usually the same place? Or is it different each time?

Matthew: We’re so diversified. We have lots of different products. The process for each one can have its own issues. The problems you encounter with cannabis beverages are not the same ones that you’ll encounter with vapes, edibles, topicals or sublinguals, etc. We are one of the oldest players in the California cannabis industry (CannaCraft was founded in 2014, well before regulated recreational cannabis was a thing) so we have the advantage of working on all these issues for years longer than most of our competitors and we have largely figured out all the major ‘kinks’ already. A big part of it is also that we have assembled a great team of food scientists, chemical engineers, chemists, legal and regulatory experts, all with diverse specialties that allows us to quickly address any new ‘stucks’ and be fully confident in all of our products.

Aaron: Feel free to answer the next question however you like. What does your magic helper look like?

Matthew: I would love a magic helper! What would a magic helper look like to me? I think my magic helper is a recent undergrad with lab experience. I would have them take care of a lot of the quality and lab day to day activities. My responsibilities often make me too stuck to the computer screen where I don’t have time to get to all the experiments that I’d like to do…a trained magic helper could physically perform those experiments for me!

Aaron: OK, and now for our final question! What are you following in the market and what do you want to learn about?

Matthew: I am personally really interested in yeast grows and cannabinoid synthesis from biological organisms. We stick to only natural plant-derived cannabinoids for all our products, but it’s a new field that’s just fascinating to me. I also think that minor cannabinoids will have a bigger place in coming years. In particular I have my eye on THCV, ∆8-THC, CBG and THCP. THCP is a phytocannabinoid that was just discovered a year ago and exhibited very potent effects in preclinical models, but no one has been able to produce and purify it in appreciable amounts yet. We already manufacture and sell a ∆8-THC vape cart under our ABX brand, but for the others keep an eye out for new product announcements from us that are on the horizon.

Aaron: Well, that brings us to the end of the interview Matthew, this is all awesome feedback for the industry. Thanks so much for your time and insights into product development in the cannabis industry.

Matthew: Thanks, take care!

HACCP

HACCP for Cannabis: A Guide for Developing a Plan

By Radojka Barycki
1 Comment
HACCP

Hazard Analysis and Critical Control Points (HACCP) is a systematic approach that evaluates hazards that may potentially be present in food products that can harm the consumer. The process used to manufacture the product is evaluated from raw material procurement, receiving and handling, to manufacturing, distribution and consumption of the finished product1. The documented process is what is known as HACCP plan. Although HACCP was designed to evaluate hazards in foods, it can be used to assess or evaluate hazards that may potentially be present in cannabis consumable products (edibles and vaping) that can cause harm to the consumer.

HACCP plan development requires a systematic approach that covers 5 preliminary steps and 7 principles. A systematic approach means that each step must be followed as outlined. Skipping a step will result in a HACCP plan that most likely will be ineffective to control potential hazards in the product.

The 5 preliminary steps are:

  1. Establish a HACCP team
  2. Describe the product
  3. Establish the intended use of the product
  4. Develop a flow diagram
  5. Verify the flow diagram

The 7 Principles are:HACCP

  1. Conduct a hazard analysis
  2. Identify the critical control points (CCPs)
  3. Establish critical limits (CL)
  4. Establish monitoring procedures
  5. Establish corrective actions
  6. Establish verification procedures
  7. Establish records and record keeping procedures1,2

It is important to mention that HACCP plans are supported by programs and procedures that establish the minimum operational and sanitary conditions to manufacture safe products. These programs and procedures are known as pre-requisite programs (PRP) or preventative controls1,2.

Figure 1. Flow Diagram

A multidisciplinary team must be established in order to ensure that all inputs of the product manufacturing process are considered during the hazards analysis discussions. The description of the product and its intended use provides detail information on ingredients, primary packaging material, methods of distribution, chemical characteristics, labeling and if any consumer might be vulnerable to the consumption of the product. A verified flow diagram is an accurate representation of the different steps followed during the product manufacturing process and will be used to conduct a hazard analysis. An inaccurate flow diagram will set the stage for an inadequate HACCP plan. Therefore, it is important that the HACCP team members verify the flow diagram. Figure 1 is a flow diagram for a fictional infused apple juice manufacturing plan that I will be using as an example.

The hazard analysis is the backbone of the HACCP plan. There are two elements that must be considered when conducting the hazard analysis:

  • Identification of the hazard associated with the ingredient(s) and/or the product manufacturing steps. These hazards have been categorized as: Biological, chemical (including radiological) and physical. Biological, chemical and physical hazards should be considered for each ingredient, primary packaging and process step. Also, it is important that the team is specific as to what hazard they are referring to. I often find that biological hazards are identified as “pathogens” for example. The team has to be specific on which pathogen is of concern. For example, if you are processing apple juice, the pathogens of concern are pathogenic coli and Salmonella sp. However, if you are processing carrot juice, you need to add Clostridium botulinum as a biological hazard also. If the choice of method to eliminate the hazards is pasteurization for example, the processing temperature-time combinations will differ greatly when manufacturing the apple juice vs. the carrot juice as C. botulinum is an organism that can sporulate and, therefore, is harder to kill.
  • Characterization of the hazard. This implies determining the significance of the potential hazard based on the severity of the consequence if it is consumed and the likelihood of occurrence in the ingredient or process step. Only steps in the process that has significant hazards should be considered further.
Table 1. Ingredient Hazard Analysis

In my professional experience, the hazard analysis is one of the most difficult steps to achieve because it requires the expertise of the multidisciplinary team and a lot of discussion to get to the conclusion of which hazard is significant. I find that a lot of teams get overwhelmed during this process because they consider that everything in the process may represent a hazard. So, when I am working with clients or providing training, I remind everyone that, in the bigger scheme of things, we can get stricken by a lighting in the middle of a thunderstorm. However, what will increase our chances would be whether we are close or not to a body of water for example. If I am swimming in the middle of a lake, I increase my chances to get stricken by the lighting. In comparison, if I am just sitting in my living room drinking a cup of coffee during the thunderstorm, the likelihood of being stricken by a lighting is a lot less. The same rationale should be applied when conducting the hazard analysis for manufactured products. You may have a hazard that will cause illness or death (high on the severity chart) but you also may have a program that mitigates the likelihood of introducing or having the hazard. The program will reduce the significance of the hazard to a level that may not need a critical control point to minimize or eliminate it.

Table 2. Process Hazard Analysis (1)

Clear as mud, right? So, how would this look like on the infused apple juice example? Table 1 shows the hazard analysis for the ingredients. Tables 2 and 3 show the hazard analysis for the part of the process. In addition, I have identified the CCPs: Patulin testing and pasteurization. There is a tool called the CCP decision tree that is often used to determine the CCPs in the process.

Once we have the CCPs, we need to establish the critical limits to ensure that the hazard is controlled. These limits must be validated. In the case of Patulin, the FDA has done several studies and has established 50 ppm as the maximum limit. In the case of pasteurization, a validation study can be conducted in the juice by a 3rd party laboratory. These studies typically are called thermal death studies (TDS) and provide the temperature and time combination to achieve the reduction of the pathogen(s) of concern to an acceptable level that they do not cause harm. In juice, the regulatory requirement is a 5-log reduction. So, let’s say that the TDS conducted in the infused apple juice determined that 165°F for 5 seconds is the critical limit for pasteurization. Note that the 5 seconds will be provided by the flow of the product through the holding tube of the pasteurizer. This is measured based on flow in gallons per minute.

Table 3. Process Hazard Analysis (2)

Monitoring is essential to ensure that the critical limits are met. A monitoring plan that outlines what, how, when and who is responsible for the monitoring is required.

Ideally, the system should not fail. However, in a manufacturing environment, failures can happen. Therefore, it is important to pre-establish steps that will be taken to ensure that the product is not out of the control of the facility in the event of a deviation from the HACCP plan. These steps are called corrective actions and must be verified once they are completed. Corrective actions procedures must address the control of the product, investigation of the event, corrective actions taken so the deviation doesn’t reoccur and product disposition.

Table 4. HACCP Plan Summary

Verification activities ensure that the HACCP plan is being followed as written. Typically, verification is done by reviewing the records associated with the plan. These records include but are not limited to monitoring records, calibration records, corrective action records, and preventive maintenance records for equipment associated with the CCPs. Record review must be done within 7 working days of the record being produced.

Finally, establishing records and record keeping procedures is the last step on developing HACCP plans. Records must be kept in a dry and secure location.

Table 4 show the summary of the HACCP plan for the infused apple juice example.

For more information on how to develop a HACCP plan for your facility, read the resources below:

  1. HACCP Principles and Application Guidelines – The National Advisory Committee on Microbiological Criteria for Foods (NACMCF)
  2. ASTM D8250-19: Standard Practice for Applying a Hazard Analysis Critical Control Points (HACCP) Systems for Cannabis Consumable Products

Following Up: Questions From The Infused Products Virtual Conference Answered

By Ellice Ogle
No Comments

If you missed the Cannabis Industry Journal’s 3rd Annual Infused Products Virtual Conference last week, one of the speakers, Ellice Ogle, founder and CEO of Tandem Food presented on Food Safety Culture in the Cannabis Industry. An overview of the information in the presentation can be found here, Concentrate On a Food Safety Culture In Your Workplace. Below are answers to some of the post-presentation questions we received, but were unable to answer during the Q&A session. To get your additional questions answered or for a complimentary consultation for your company, specially provided to readers of Cannabis Industry Journal, contact Ellice Ogle at Ellice@tndmfood.com.

Question: What are some recommended digital programs for internal auditing?

Ellice Ogle, founder and CEO of Tandem Food

Ellice Ogle: Before looking at the tools for conducting an internal audit, understand the goal of the internal audit. One key aspect of internal auditing is knowing which standard(s) to audit against. For example, regulatory audits for cGMP certification are different than optional third-party certifications such as any GFSI scheme (SQF, BRC, PrimusGFS, etc). While the standards ultimately have the same goal of food safety with varying focuses, it is important to have an experienced food safety specialist conduct the audit as realistically as possible. The experienced specialist will then be able to recommend an appropriate tool for internal auditing moving forward, whether it is software such as FoodLogiQ, SafetyChain, Safefood 360°, among many others, or simply providing a template of the audit checklist. Overall, the risk of foodborne illnesses can be minimal, but it takes persistence and commitment to achieve a successful food safety culture. Metrics can assist in assessing the commitment to food safety and, as a result of these efforts, you will minimize the risk of compromising the health and safety of your guests, employees, foods and business. If you want a specific example, I’d like to direct you to a case study in partnership with Heylo LLC in Washington state, posted on the Tandem Food website.

Q: What are examples of ways to share environmental monitoring results to enhance a good edible safety culture?

Ellice: In the Control of Listeria monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance (2017), the FDA states that “a well-designed environmental monitoring program promotes knowledge and awareness of the environmental conditions that could result in product contamination and is a more effective program than product testing alone.” In other words, environmental monitoring programs and results can identify environmental conditions within a facility that could cause potential contamination. Publishing these findings, for example in the form of a case study or sharing the details of the practice, can enhance the food safety culture in the specific niche industry. For example, to borrow from the meat industry, Tyson Foods, Inc developed and shared environmental monitoring programs that are used by their peers, promoting a unified food safety culture, rather than competitive, guarded secrecy.

Q: Are the food safety requirements the same for retail and manufacturing?

Ellice: The food safety requirements are not exactly the same for retailers and manufacturers. The difference is inherent that retailers are working with finished product while manufacturers are working with raw ingredients and the manufacturing process to develop the finished product. Let’s take a closer look at cannabis regulation in Washington state. Chapter 314-55-104(12) states “Processors creating marijuana extracts must develop standard operating procedures (SOPs), good manufacturing practices (GMPs), and a training plan prior to producing extracts for the marketplace.” Compare this to the requirements for retailers, 314-55-105(11) which states “A marijuana producer, processor or retailer licensed by the WSLCB must conduct the production, processing, storage, and sale of marijuana-infused products using sanitary practices.” While SOPs and GMPs are not explicitly mentioned for retailers as they are for manufacturers, sanitary practices could be documented as Sanitation Standard Operating Procedures (SSOPs). Proper storage practices can also be an overlapping food safety concern with respect to temperature control or pest management systems. Overall, food safety should remain a top priority in maintaining the integrity of the products throughout the supply chain.

Q: To your knowledge, has there been a food safety outbreak associated with a cannabis-based product?

Ellice: One possible cannabis-related death investigated in 2017 uncovered deadly pathogens in medical cannabis. However, to  my knowledge, I have not seen a food safety outbreak associated with a cannabis-based product. There might be any number of reasons that this is so, for example, possibly because a food safety outbreak associated with a cannabis-based product might not have had a large impact to make headlines. Although, with the cannabis industry already misunderstood and a stigma so prevalent to even promote fake news, it is better to prevent an outbreak from ever occurring. One thing to note is that ultimately cannabis is just another ingredient in existing products, of course with special properties. So, the common food safety offenders are present: listeria, Salmonella, E. Coli, among others. On the plant, cannabis food product manufacturers must minimize the risk of mycotoxins produced by molds, pest contamination, and pesticide contamination. For products that contain cannabis infusions or extractions as an ingredient, there is the possibility of the growth of Botulism toxin. Many of these pathogens can be minimized by appropriate heat treatment or maintenance of refrigeration, testing, and by practicing preventive measures. Arguably, the largest potential for pathogenic contamination is due to improper employee handling. To refer to what we discussed earlier, employee training is key, as well as proper enforcement. Having a strong food safety culture ensures that people have the knowledge of food safety risks and the knowledge of preventing outbreaks.

Q: Do any of the panelists know of any efforts to develop a food safety-oriented standard for the cannabis industry?GMP

Ellice: One example of a specific effort to develop a food safety-oriented standard for the cannabis industry includes TraceTrust A True Dose™ & hGMP™ certification. However, there are efforts for other standards that have food safety included. Take organic certification, there are several companies creating and auditing against their own standard such as Clean Green Certified, Oregon Sungrown Farm Certification, or Washington Sungrowers Industry Association. The California Department of Food and Agriculture (CDFA) is also preparing a cannabis program comparable to the USA National Organic Program.

Q: Can you assist with cGMP certification?

Ellice: Yes, Tandem Food LLC is positioned to consult on cGMP certification for manufacturing facilities in the cannabis industry. First, a gap assessment can be conducted to obtain useful actionable data for you, rather than be an intimidating experience. Working from the identified baseline, Tandem Food will work with you to create and implement all related documentation and programs, providing training as necessary. Overall, with the right commitment, cGMP certification can take 6-12 months.

Cannabis Industry Journal

Infused Products Virtual Conference Coming on March 31

By Cannabis Industry Journal Staff
No Comments
Cannabis Industry Journal

In the midst of a global pandemic with schools closing, businesses asking employees to work from home and events being canceled left and right, we have one event that will remain scheduled: The Infused Products Virtual Conference on March 31. The event is complimentary for attendees to register. Click here to sign up for this virtual conference.

On March 31, the event will begin with a presentation from the folks at Cresco Labs: Applying Food Science Principles to Cannabis Edibles. Marina Mincheva, Director of Manufacturing Quality Assurance and Stephanie Gorecki, Director of Food Sciences at Cresco Labs will deliver this talk. They will discuss what a research and development process looks like for creating cannabis-infused edible products, how to then commercialize those products and developing CPG products with input from marketing and quality.

Ellice Ogle, CEO & Founder of Tandem Food LLC, will deliver a talk on the importance of food safety culture in the cannabis space. Kathy Knutson, founder of Kathy Knutson Food Safety Consulting, will follow that talk with a discussion of GMPs, HACCP and how cannabis companies can apply preventive controls. The last presentation on the schedule is The New Canadian Edibles Market, where Steven Burton, Founder & CEO of Icicle Technologies, will discuss edibles regulations in Canada, a current state of affairs of the Canadian infused products market, as well as what US edibles companies can expect when it comes to new regulations.

To learn more about this virtual event, see the agenda and register to attend, visit the website here.

control the room environment

Food Safety: What it Means and How ERP Helps Edibles Manufacturers

By Daniel Erickson
2 Comments
control the room environment

The diverse cannabis industry has experienced tremendous growth, especially in the popular edibles market whether consumed recreationally or medicinally. Since these cannabis-infused food and beverage products come in a variety of forms, including candies, baked goods, energy drinks, chips, chocolates and teas, food safety questions and concerns for companies manufacturing these products can seem daunting. ERP software solutions designed for the cannabis industry play an imperative and necessary role in addressing key food safety issues for edibles producers, helping to fill in the gaps where new and established businesses struggle. By mitigating the potential for damaging effects of a food safety event, companies can prevent, or greatly lessen the impact, to both their reputation and public perception, as well as limit the financial liability and legal penalties.

What is safety?

On a fundamental level, safety is the state of being protected from undergoing or causing hurt, injury or loss. As a manufacturer of cannabis edibles, it is critical that products are consistent, labeled appropriately and safe for consumers. Forward-thinking companies are employing ERP solutions to help ensure their products are not harmful to their current and future customers.

FDAlogoA lack of safety in the cannabis edibles market stems from the unregulated nature of the industry on a federal level, despite consumers’ expectations otherwise. Similar to products in the food and beverage industry, safety issues with inaccurate labeling, food-borne pathogens and disease outbreaks are all concerns within the manufacturing environment. Particularly to cannabis businesses, extraction methods, bacteria and mold growth, pest and pesticide contamination, chemical exposure, improper employee handling and the unintentional consumption or overconsumption of edibles are all potential safety concerns. In states where edible products are legal, local municipalities and state governments each have their own unique regulations – requiring manufacturers to comply to different guidelines. With the absence of federal regulations, many cannabis companies have adopted a more conservative approach to food safety. Following U.S. Food and Drug Administration (FDA) guidelines and Food Safety Modernization Act (FSMA) best practices allows manufacturers to address key current food safety issues and prepare for future regulation.

Utilize Best Practices and ERPGMP

Introducing current Good Manufacturing Practices (cGMP’s) traditionally implemented in the food and beverage industry help to form a foundation for cannabis edibles safety in 9 key areas:

  1. Personnel – As an often-overlooked aspect of cannabis edibles manufacturing, adequate training on procedures to ensure disease control and proper cleanliness is required to maintain a company culture of safety. Advocating for quality standards with proper safety procedures should be a priority for every employee.
  2. Manufacturing Environment – Effective management of the manufacturing environment ensures that facilities are controlled to prevent the contamination of finished goods – restricting extraneous materials such as glass, metal, rubber, etc. from the production floor. Warehouse and office lighting should be adequately maintained so that employees are able to inspect equipment, by-products and finished goods and conduct their jobs effectively.
  3. Sanitary Operations – Physical facilities and all equipment must be maintained in clean and sanitary conditions and kept in good repair to prevent food and beverages from becoming contaminated. Cleaning processes should protect ingredients, work in progress, finished goods and workspaces from potential contamination.
  4. Sanitary Facilities and Controls – Effective control of water, plumbing, sewage disposal and drainage are essential. Staff must have access to adequate handwashing and restroom facilities and employee changing rooms. Restrooms and break rooms should be clean and stocked at all times, while garbage is handled properly and disposed of in a timely manner.
  5. Equipment and Utensils – Properly cleaning and maintaining vats, conveyor belts, shrink wrap machines, blenders, etc. to avoid contamination and allergen cross-contact ensures safe procedures are being followed. A robust sanitation program with defined cleaning schedules should be followed for the sanitizing of utensils and equipment.
  6. Processes and Controls – The manufacturing of edible products should be done in accordance with best practices established in the food and beverage industry, taking account of sanitation, quality control and protection from allergens and contamination. Ongoing testing is conducted to identify sanitation failures and contamination occurrences and ensure items are discarded properly.

    control the room environment
    Personal Protective Equipment (PPE) can reduce the risks of contamination
  7. Warehousing and Distribution – Establishing proper storage and transportation processes protects the products from contamination, allergen cross-contact and container deterioration – ensuring proper handling procedures throughout the growing, manufacturing and distribution steps.
  8. Defect Action Levels – Quality control is used to minimize defects by requiring an action response when a problem is discovered. An established response plan demonstrates the proper procedures to follow when defects occur during production.
  9. Holding and Distribution of By-products for use as Animal Food (if applicable) – This applies to food and beverage facilities that either donate or sell a by-product for use as animal food. By-products used for animal consumption that are managed properly remain free from contamination. Accurate labeling should identify by-product by the common or usual name and denote not for human consumption when distributed.

Cannabis-specific ERP solutions efficiently provide the structure, integration and processes to follow cGMP’s to address food safety concerns in all phases of growing, manufacturing and distribution. By automating the documentation of audit trails, edibles companies are equipped with the same tools that food and beverage manufacturers have utilized for decades. Validated procedures and best practices incorporate safety initiatives from cannabis cultivation to the sale of edible products and beyond, offering greater efficiency than manual methods. Since cGMP’s provide a foundation for Hazard Analysis Critical Control Points (HACCP) planning, edibles manufacturers are able to take advantage of incorporating control points into the ERP solution to prevent and control hazards before they affect food safety. Having a HACCP Plan, along with proper implementation and adherence to cGMP’s, helps to minimize food safety hazards for edibles manufacturers in the cannabis industry.

Quality and safety in the cannabis edibles market is an area that cannot be ignored, as the consequences for failing to handle hazards are potentially devastating. Savvy cannabis companies are employing best practices of food and beverage manufacturers, including the 9 addressed above, in tandem with an ERP software solution, to effectively navigating this highly competitive market. Paving the way with their commitment to quality and in delivering safe and consistent products to the market demonstrates to customers and investors alike their preparedness for growth.

Canadian Cannabis 2.0: Going Beyond GPP

By Lindsay Glass
No Comments

One year after Canadian recreational cannabis’s historic date of October 17th, 2018, in comes Cannabis 2.0, which will see edibles containing cannabis and cannabis concentrates enter the legal recreational market. As of October 17th, 2019, there are seven classes of legal cannabis products in the marketplace, making Canada an innovative leader in this evolving industry.

The launch of cannabis edibles and concentrates into the legal market has also led to changes in the regulatory framework and the introduction of new best practices in terms of Good Production Practices (GPP). This should not come as a surprise, as these products are introducing the inclusion of cannabis and food products.

Since Oct 17th, 2019, we have seen a significant amendment to the Cannabis Regulations through the addition of sections 88.93 and 88.94, stating that holders of a license to process cannabis edibles or extracts must identify and analyze all potential hazards and have control measures in place to prevent, eliminate or reduce these hazards from occurring. Any license holder that conducts activities related to cannabis edibles, extracts or produces an ingredient used in an edible or extract must also prepare, retain, maintain and implement a preventive control plan (PCP). To indicate that cannabis edibles and extracts regulations resemble other regulated food commodities, would not be an understatement.

By having license holders establish food safety practices similar to the ones being used by federally regulated food commodities, it is allowing cannabis producers to implement a preventive approach by focusing on safety and reducing hazards in their operation.

According to the Cannabis Regulations a license holder’s PCP must include the following:

  • Identify all of the biological, chemical and physical hazards that could contaminate or could be at risk of contaminating any cannabis product or anything that could be used as an ingredient in producing a cannabis product. Once all of the hazards have been identified, you need to determine the likelihood of that hazard occurring
  • The measures to be taken to control each identified hazard. Each control measure must then describe the task involved, how the monitoring task is carried out, who will be performing the monitoring task and how often the monitoring task is carried out
  • A description of the critical control points, which are the steps in the process where a control measure is applied and is essential to eliminating a hazard. Next are the measures to be taken to monitor a critical control point
  • A description of each cannabis product produced or ingredient that will be used in a cannabis product, including extract contents, permitted & prohibited ingredients, exceptions, naturally occurring substances and uniform distribution
  • A description of corrective action procedures for every critical control point
  • A description of verification procedures

What else comes with the collaboration of these two commodities in a regulatory environment? The need for industry to adapt and move beyond the basic GPP and pharmaceutical requirements and start thinking in terms of preventative controls and food safety. By encompassing the GPP requirements, traceability, employee training and now a complete hazard analysis and preventive control plan, you have the makings of a full food safety plan. However, food safety plans can be comprehensive and difficult to manage by utilizing a manual system.

HACCPCompanies that are serious about the integration of cannabis edibles and extracts into their operations, will need to implement compliance and traceability technology that will facilitate an automated system. In return, you will streamline all monitoring processes throughout the production, packaging and storage stages of the system. This is crucial to a preventive control plan. An automated solution will also help with record keeping, document management and corrective actions, as license holders deal with failures in real time to avoid negative impacts on their products.

There are many compliance software platforms available in the industry and choosing the right one for your operation is a task in itself, as not all software platforms for the cannabis industry are created equally. Although many seed-to-sale platforms handle regulatory requirements and some document management, these platforms do not see cannabis as food products, and therefore, are leaving companies with a void in this aspect of their operation. When looking for a software platform that will encompass all of your regulatory needs, pay particular attention to systems that are designed for the food industry but have adapted to cannabis. These systems will be the most dynamic when it comes to implementing preventive control plans, handling in-depth traceability with recall plans and the ability to become completely digital.

For more information on how to automate your food safety plan for cannabis edibles and extracts, please contact Iron Apple QMS to learn about our online Cannabis QMS.

Soapbox

3 Food Safety Precautions for Edibles

By Cindy Rice
No Comments

You’ve survived seasons of cannabis cultivations, bringing in quality plants in spite of mold, mites, drought and other challenges that had to be conquered. Extraction methods are sometimes challenging, but you are proud to have a cannabinoid extract that can be added into your own products for sale. Edibles are just waiting to be infused with the cannabinoids, for consumers demanding brownies, gummies, tinctures and almost any food and beverage imaginable. You’ve been through the fire, and now the rest is easy peasy, right?

Food processing and sanitation
Avoiding cross contamination should be a priority for edibles manufacturing

Actually, producing edibles may not be so seamless as you think. Just as in the rest of the food industry, food safety practices have to be considered when you’re producing edibles for public consumption, regardless of the THC, CBD, terpene or cannabinoid profile. Once you’ve acquired the extract (a “food grade ingredient”) containing the active compounds, there are three types of hazards that could still contribute to foodborne illness from your final product if you’re not careful- Biological, Chemical and Physical.

Biological hazards include pathogenic bacteria, viruses, mold, mildew (and the toxins that they can produce) that can come in ingredients naturally or contaminate foods from an outside source. Chemical hazards are often present in the kitchen environment, including detergents, floor cleaners, disinfectants and caustic chemicals, which can be harmful if ingested- they are not destroyed through cooking. Physical objects abound in food production facilities, including plastic bits, metal fragments from equipment, staples or twist ties from ingredient packages, and personal objects (e.g., buttons, jewelry, hair, nails.)

There are three main safety precautions that can help control these hazards during all the stages of food production, from receiving ingredients to packaging your final products:

1. Avoid Cross Contamination

  • Prevent biological, chemical or physical hazards from coming into contact with foods
  • Keep equipment, utensils and work surfaces clean and sanitized.
  • Prevent raw foods (as they usually carry bacteria) from coming into contact with “Ready-to-eat” foods (foods that will not be cooked further before consuming).
  • Keep chemicals away from food areas.

2. Personal Hygiene

  • Don’t work around foods if you’re sick with fever, vomiting or diarrhea. These could be signs of contagious illness and can contaminate foods or other staff, and contribute to an outbreak.
  • Do not handle ready-to-eat foods with bare hands, but use a barrier such as utensils, tissues or gloves when handling final products such as pastries or candies.
  • Wash hands and change gloves when soiled or contaminated.
  • Wear hair restraints and clean uniforms, and remove jewelry from hands and arms.

3. Time & Temperature control

  • Prevent bacterial growth in perishable foods such as eggs, dairy, meats, chicken (TCS “Time and Temperature Control for Safety” foods according to the FDA Model Food Code) by keeping cold foods cold and hot foods hot.
  • Refrigerate TCS foods at 41˚ F or below, and cook TCS foods to proper internal temperatures to kill bacteria to safe levels, per state regulations for retail food establishments.
  • If TCS foods have been exposed to room temperature for longer than four hours (Temperature Danger Zone 41˚ F – 135˚ F,) these foods should be discarded, as bacteria could have grown to dangerous levels during this time.

As cannabis companies strive for acceptance and legalization on a federal level, adopting these food safety practices and staff training is a major step in the right direction, on par with standards maintained by the rest of the retail food industry. The only difference is your one specially extracted cannabinoid ingredient that separates you from the rest of the crowd… with safe and healthy edibles for all.

From MedTech to Cannabis: A Q&A with Jennifer Raeder-Devens

By Aaron G. Biros
No Comments

Project Yosemite, a cannabis product innovation and brand development company, announced earlier this month the appointment of Jennifer Raeder-Devens as their new Chief Scientific Officer. Raeder-Devens is a veteran of the MedTech industry, working for companies like Becton Dickinson, Cardinal Health, Medtronic and 3M.

Prior to joining Yosemite, she was the Vice President of Research & Development at Becton, Dickinson, where she oversaw product development and technology strategies to launch infection prevention products including the ChloraPrep first-in-the-US sterile solution patient preoperative topical antiseptic. She was previously the Vice President of R&D, Strategy and Innovation at Cardinal Health. She’s also held roles at Medtronic, 3M Drug Delivery Systems and 3M Skin Health Division and she has a number of patents in drug delivery and medical devices.

Jennifer Raeder-Devens, Chief Scientific Officer at Project Yosemite

In November of 2018, Project Yosemite launched their first product, OLO, which is an infused, controlled-release sublingual strip. Part of Raeder-Devens’ new role at the company is the continued development and expansion of the OLO sublingual strip technology platform. Andrew Mack, CEO and founder of Project Yosemite, says he’s thrilled to have Raeder-Devens on the team. “Jennifer is an extremely accomplished scientist and engineer with extensive experience driving innovation and R&D in the pharmaceutical and medical device industries,” says Mack.

We caught up with Jennifer over the phone to talk about her background in the MedTech space, why she decided to jump ship to join the cannabis industry and what she’s excited to work on now.

Cannabis Industry Journal: Can you tell us about your background, including your work with 3M and Medtronic? 

Jennifer Raeder-Devens: I’m coming directly from Becton Dickinson, a global med tech company, where I supervised the development of drug-device combination products for topical antiseptics. I spent about 10 years there, mostly in topical drug and combination product development. Prior to that, I was at 3M and Medtronic working in drug-device combination products. At 3M, I was supervising a team of technology developers for the 3M Drug Delivery Systems business. I had experience working with designing and manufacturing transdermal, nasal, buccal and inhalation drug delivery mechanisms for pharmaceutical partners.

I worked on implantable drug delivery systems at Medtronic, which included working on the biocompatibility of things like pacemakers and drug infusion pumps and optimizing them to reduce infection and enhance healing after the implantation procedure.

CIJ: What made you consider joining the cannabis industry? 

Jennifer: With my work in topicals, transdermal and inhalation drug delivery, I had an easy understanding of the different routes of administration we see today in the cannabis industry. And so, from the technology standpoint, I thought this was a place I could contribute to immediately. And then what got me really excited about it was thinking about cannabis, and just like any other drug, with oral drug delivery, you’ve got first class metabolism and side effects from the 11-Hydroxy-THC that are undesirable and you’d rather not have delivered through the gut.

OLO sublingual strips have a 10-minute onset time

I got excited when I saw the development of things like sublingual strips that were focusing on alternatives to smoking that would preserve that relatively fast onset and mitigate some of the side effects of edibles.

The other thing I really like about the cannabis industry: Previously I have been very focused on known drugs that are already approved and repurposing them into a new delivery system. What really interests me about the cannabis industry is the active cannabinoids and terpenes are somewhat known and somewhat unknown, so there is this really interesting challenge there of trying to separate the wheat from the chaff in terms of producing therapeutic effects.

It is a really interesting space where the indications of certain molecules are evolving along with the delivery technology. So, it is a really exciting and eye-opening way to take the next step in my career and have this wide-open space in front of me, both in terms of the different cannabinoids, their effects and the delivery systems we can use.

CIJ: How might you be prepared, given your background, for some of the challenges in the cannabis space?

Jennifer: I think the challenges in cannabis delivery are not different from the challenges in pharmaceutical drug delivery. It’s just that we have this additional complexity of the entourage effect. We can be engineering not just the main ingredient of THC, but also all the other cannabinoids and terpenes. So, for example, with my background in infection prevention, we build a product that we know reduces the risk of infection, but we are really challenged to actually prove it reduces the risk of infection. We have a similar situation in the cannabis industry, where we can get the THC, or CBG or CBN where we want it to go, but then we are really challenged to figure out how we can find, what we call in the pharmaceutical industry, a surrogate end point for efficacy, so that we can test that product and really believe that when we put the product on the market, even though we haven’t tested thousands of users or conducted large randomized clinical trials, that the effect will be shown. We are networking and partnering with a good scientific community to build the right product and do some testing at a small scale that really demonstrates the product achieves the effect that we are really looking for.

CIJ: Can you tell us a little about your new role with Project Yosemite?

Jennifer: My job description falls into three buckets: The first part is that we are forming a scientific advisory board and we are working with some of the leading cannabinoid researchers around the country and around the world. These are the people identifying whether or not certain cannabinoids could reduce cancer cell metabolism or whether cannabinoids contribute to weight loss or diabetes control and other things of that nature. We are trying to reach as far upstream as we can to grasp the emerging understanding of the performance of cannabinoids and terpenes in the endocannabinoid system. So, part of my job is to chair that scientific advisory board, get the thought leaders together in the room and have them bring their knowledge and explore with our own knowledge what cannabis can really do.

The OLO sublingual strips

I have worked in topical, transdermal, buccal, nasal, inhalation drug delivery. In the second bucket of my job, we are trying to understand a given indication or experience that our users want to have, what would be the right route for them. We are challenging our sublingual delivery mechanism to see how fast of an onset we can really get. Right now, we are at 10 minutes for drug delivery in sublingual and we are still trying to get an even faster onset time for the sublingual strip.

For other indications, like chronic pain, we may want to think about a sustained release, so sort of aligning the different indications with which different cannabinoids and terpenes will work for it and see which delivery platform will work for what we are trying to accomplish in each indication.  So, we do not plan to remain solely a sublingual strip company, but will build out additional delivery platforms as we develop new indications.

Right now, we are working upstream with the growers and the processors to get cannabis oil and extracts. Some of the growers are working on different genetics in their cultivars to grow plants that have different ratios of different cannabinoids that we know from the emerging research will have an impact on people’s experience. Now we are working with growers to really get ahead of the curve on how to formulate products with various cannabinoids.

We have an R&D team in house that I supervise. We are always working with our production team to make small improvements such as the faster onset and the dissolution rate and things like flavors, which covers a downstream focus as well.